Decision tree algorithm
short Weka tutorial

Croce Danilo, Roberto Basili

Machine learning for Web Mining
a.a. 2009-2010
Machine Learning: brief summary

Example

You need to write a program that:

- given a Level Hierarchy of a company
- given an employee described through some attributes (the number of attributes can be very high)
- assign to the employee the correct level into the hierarchy.
You need to write a program that:

- given a Level Hierarchy of a company
- given an employee described through some *attributes* (the number of attributes can be very high)
- assign to the employee the correct level into the hierarchy.

How many *if* are necessary to select the correct level?
Example

You need to write a program that:

- given a Level Hierarchy of a company
- given an employee described through some attributes (the number of attributes can be very high)
- assign to the employee the correct level into the hierarchy.

How many if are necessary to select the correct level?
How many time is necessary to study the relations between the hierarchy and attributes?
You need to write a program that:

- given a Level Hierarchy of a company
- given an employee described through some attributes (the number of attributes can be very high)
- assign to the employee the correct level into the hierarchy.

How many if are necessary to select the correct level?
How many time is necessary to study the relations between the hierarchy and attributes?

Learn the function to link each employee to the correct level.
Supervised Learning process: two steps

Learning (Training)
Learn a *model* using the training data
Supervised Learning process: two steps

Learning (Training)
Learn a *model* using the training data

Testing
Test the model using unseen test data to assess the model accuracy
Supervised Learning process: two steps

Learning (Training)
Learn a *model* using the training data

Testing
Test the model using unseen test data to assess the model accuracy
Learning Algorithms

- Probabilistic Functions (Bayesian Classifier)
- Functions to partitioning Vector Space
 - Non-Linear: KNN, Neural Networks, ...
 - Linear: Support Vector Machines, Perceptron, ...
Learning Algorithms

- Probabilistic Functions (Bayesian Classifier)
- Functions to partitioning Vector Space
 - Non-Linear: KNN, Neural Networks, ...
 - Linear: Support Vector Machines, Perceptron, ...
- Boolean Functions (Decision Trees)
The class to learn is: approve a loan

<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Has_Job</th>
<th>Own_House</th>
<th>Credit_Rating</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>young</td>
<td>false</td>
<td>false</td>
<td>fair</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>young</td>
<td>false</td>
<td>false</td>
<td>good</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>young</td>
<td>true</td>
<td>false</td>
<td>good</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>young</td>
<td>true</td>
<td>true</td>
<td>fair</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>young</td>
<td>false</td>
<td>false</td>
<td>fair</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>middle</td>
<td>false</td>
<td>false</td>
<td>fair</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>middle</td>
<td>false</td>
<td>false</td>
<td>good</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>middle</td>
<td>true</td>
<td>true</td>
<td>good</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>middle</td>
<td>false</td>
<td>true</td>
<td>excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>middle</td>
<td>false</td>
<td>true</td>
<td>excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>old</td>
<td>false</td>
<td>true</td>
<td>excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>old</td>
<td>false</td>
<td>true</td>
<td>good</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>old</td>
<td>true</td>
<td>false</td>
<td>good</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>old</td>
<td>true</td>
<td>false</td>
<td>excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>old</td>
<td>false</td>
<td>false</td>
<td>fair</td>
<td>No</td>
</tr>
</tbody>
</table>
Decision Tree example for the loan problem
Is the decision tree unique?

- No. Here is a simpler tree.
Is the decision tree unique?

- No. Here is a simpler tree.
- We want smaller tree and accurate tree.
 - Easy to understand and perform better.
Is the decision tree unique?

- No. Here is a simpler tree.
- We want smaller tree and accurate tree.
 - Easy to understand and perform better.
Is the decision tree unique?

- No. Here is a simpler tree.
- We want smaller tree and accurate tree.
 - Easy to understand and perform better.

- Finding the best tree is NP-hard.
Is the decision tree unique?

- No. Here is a simpler tree.
- We want smaller tree and accurate tree.
 - Easy to understand and perform better.

Finding the best tree is NP-hard.

All current tree building algorithms are heuristic algorithms.
Is the decision tree unique?

- No. Here is a simpler tree.
- We want smaller tree and accurate tree.
 - Easy to understand and perform better.

- Finding the best tree is NP-hard.
- All current tree building algorithms are heuristic algorithms
- A decision tree can be converted to a set of rules.
From a decision tree to a set of rules

- Own_house = true → Class = yes
- Own_house = false, Has_job = true → Class = yes
- Own_house = false, Has_job = false → Class = no
From a decision tree to a set of rules

Each path from the root to a leaf is a rule

- Own_house = true → Class = yes
- Own_house = false, Has_job = true → Class = yes
- Own_house = false, Has_job = false → Class = no
From a decision tree to a set of rules

Each path from the root to a leaf is a rule

Rules

- Own_house = true → Class = yes
- Own_house = false, Has_job = true → Class = yes
- Own_house = false, Has_job = false → Class = no
Choose an attribute to partition data

How chose the best attribute set?

The objective is to reduce the impurity or uncertainty in data as much as possible. A subset of data is pure if all instances belong to the same class. The heuristic is to choose the attribute with the maximum Information Gain or Gain Ratio based on information theory.
Choose an attribute to partition data

How chose the best attribute set?

The objective is to reduce the impurity or uncertainty in data as much as possible
Choose an attribute to partition data

How chose the best attribute set?

The objective is to reduce the impurity or uncertainty in data as much as possible

- A subset of data is *pure* if all instances belong to the same class.
Choose an attribute to partition data

How chose the best attribute set?

The objective is to reduce the impurity or uncertainty in data as much as possible.

- A subset of data is *pure* if all instances belong to the same class.

The heuristic is to choose the attribute with the maximum *Information Gain* or *Gain Ratio* based on information theory.
Choose an attribute to partition data

How chose the best attribute set?

The objective is to reduce the impurity or uncertainty in data as much as possible

- A subset of data is *pure* if all instances belong to the same class.

The heuristic is to choose the attribute with the maximum *Information Gain* or *Gain Ratio* based on information theory.

```
<table>
<thead>
<tr>
<th>Age?</th>
<th>Young</th>
<th>middle</th>
<th>old</th>
</tr>
</thead>
<tbody>
<tr>
<td>No:</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Yes:</td>
<td>2</td>
<td>Yes: 3</td>
<td>Yes: 4</td>
</tr>
</tbody>
</table>

(A)

<table>
<thead>
<tr>
<th>Own_house?</th>
<th>true</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>No:</td>
<td>0</td>
<td>No: 6</td>
</tr>
<tr>
<td>Yes:</td>
<td>6</td>
<td>Yes: 3</td>
</tr>
</tbody>
</table>

(B)
```
Entropy is a measure of the uncertainty associated with a random variable.

Given a set of examples D is possible to compute the original entropy of the dataset such as:

$$H[D] = - \sum_{j=1}^{\left|C\right|} P(c_j) \log_2 P(c_j)$$

where C is the set of desired class.
Entropy

1. The data set \(D \) has 50% positive examples (\(\Pr(\text{positive}) = 0.5 \)) and 50% negative examples (\(\Pr(\text{negative}) = 0.5 \)).

\[
\text{entropy}(D) = -0.5 \times \log_2 0.5 - 0.5 \times \log_2 0.5 = 1
\]

2. The data set \(D \) has 20% positive examples (\(\Pr(\text{positive}) = 0.2 \)) and 80% negative examples (\(\Pr(\text{negative}) = 0.8 \)).

\[
\text{entropy}(D) = -0.2 \times \log_2 0.2 - 0.8 \times \log_2 0.8 = 0.722
\]

3. The data set \(D \) has 100% positive examples (\(\Pr(\text{positive}) = 1 \)) and no negative examples, (\(\Pr(\text{negative}) = 0 \)).

\[
\text{entropy}(D) = -1 \times \log_2 1 - 0 \times \log_2 0 = 0
\]

As the data become purer and purer, the entropy value becomes smaller and smaller.
Information Gain

Entropy of D

Given a set of examples D is possible to compute the original entropy of the dataset such as:

$$H[D] = - \sum_{j=1}^{\mid C \mid} P(c_j) \log_2 P(c_j)$$

where C is the set of desired class.

Entropy of an attribute A_i

If we make attribute A_i, with v values, the root of the current tree, this will partition D into v subsets D_1, D_2, \ldots, D_v. The expected entropy if A_i is used as the current root:

$$H_{A_i}[D] = \sum_{j=1}^{v} \frac{|D_j|}{|D|} H[D_j]$$
Information Gain

Information gained by selecting attribute A_i to branch or to partition the data is given by the difference of prior entropy and the entropy of selected branch

$$gain(D, A_i) = H[D] - H_{A_i}[D]$$
Information Gain

Information gained by selecting attribute A_i to branch or to partition the data is given by the difference of prior entropy and the entropy of selected branch:

$$gain(D, A_i) = H[D] - H_{A_i}[D]$$

We choose the attribute with the highest gain to branch/split the current tree.
Decision Tree: Domain Example

The class to learn is: approve a loan

<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Has_Job</th>
<th>Own_House</th>
<th>Credit_Rating</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>young</td>
<td>false</td>
<td>false</td>
<td>fair</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>young</td>
<td>false</td>
<td>false</td>
<td>good</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>young</td>
<td>true</td>
<td>false</td>
<td>good</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>young</td>
<td>true</td>
<td>true</td>
<td>fair</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>young</td>
<td>false</td>
<td>false</td>
<td>fair</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>middle</td>
<td>false</td>
<td>false</td>
<td>fair</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>middle</td>
<td>false</td>
<td>false</td>
<td>good</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>middle</td>
<td>true</td>
<td>true</td>
<td>good</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>middle</td>
<td>false</td>
<td>true</td>
<td>excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>middle</td>
<td>false</td>
<td>true</td>
<td>excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>old</td>
<td>false</td>
<td>true</td>
<td>excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>old</td>
<td>false</td>
<td>true</td>
<td>good</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>old</td>
<td>false</td>
<td>false</td>
<td>good</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>old</td>
<td>true</td>
<td>false</td>
<td>excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>old</td>
<td>false</td>
<td>false</td>
<td>fair</td>
<td>No</td>
</tr>
</tbody>
</table>
Example

9 examples belong to "YES" category and 6 to "NO". Exploiting prior knowledge we have:

\[H[D] = - \sum_{j=1}^{\mid C \mid} P(c_j) \log_2 P(c_j) \]

\[H[D] = - \frac{6}{15} \log_2 \frac{6}{15} - \frac{9}{15} \log_2 \frac{9}{15} = 0.971 \]
9 examples belong to "YES" category and 6 to "NO". Exploiting prior knowledge we have:

\[H[D] = - \sum_{j=1}^{\mid C \mid} P(c_j) \log_2 P(c_j) \]

\[H[D] = - \frac{6}{15} \log_2 \frac{6}{15} - \frac{9}{15} \log_2 \frac{9}{15} = 0.971 \]

while partitioning through the Age feature:

\[H_{Age}[D] = - \frac{5}{15} H[D_1] - \frac{5}{15} H[D_2] - \frac{5}{15} H[D_3] = 0.888 \]

where

\[H[D_1] = - \frac{3}{3+2} \cdot \log_2 \left(\frac{3}{3+2} \right) - \frac{2}{3+2} \cdot \log_2 \left(\frac{2}{3+2} \right) = 0.971 \]

\[H[D_2] = - \frac{2}{2+3} \cdot \log_2 \left(\frac{2}{2+3} \right) - \frac{3}{2+3} \cdot \log_2 \left(\frac{3}{2+3} \right) = 0.971 \]

\[H[D_3] = - \frac{1}{1+4} \cdot \log_2 \left(\frac{1}{1+4} \right) - \frac{4}{1+4} \cdot \log_2 \left(\frac{4}{1+4} \right) = 0.722 \]
Example

```
Own_house?
  true  false
    No: 0    No: 6
    Yes: 6    Yes: 3
```
Example

Decision Tree

\[H[D] = - \frac{6}{15} \log_2 \frac{6}{15} - \frac{9}{15} \log_2 \frac{9}{15} = 0.971 \]

\[H_{OH}[D] = - \frac{6}{15} H[D_1] - \frac{9}{15} H[D_2] = \]

\[-\frac{6}{15} \times 0 + \frac{9}{15} \times 0.918 = 0.551 \]
Example

Decision Tree WEKA

\[H[D] = - \frac{6}{15} \log_2 \frac{6}{15} - \frac{9}{15} \log_2 \frac{9}{15} = 0.971 \]

\[H_{OH}[D] = - \frac{6}{15} H[D_1] - \frac{9}{15} H[D_2] = \]
\[-\frac{6}{15} \times 0 + \frac{9}{15} \times 0.918 = 0.551 \]

\[\text{gain}(D, \text{Age}) = 0.971 - 0.888 = 0.083 \]
\[\text{gain}(D, \text{Own_House}) = 0.971 - 0.551 = 0.420 \]
\[\text{gain}(D, \text{Has_Job}) = 0.971 - 0.647 = 0.324 \]
\[\text{gain}(D, \text{Credit}) = 0.971 - 0.608 = 0.363 \]
Example

\[
H[D] = -\frac{6}{15} \log_2 \frac{6}{15} - \frac{9}{15} \log_2 \frac{9}{15} = 0.971
\]

\[
H_{OH}[D] = - \frac{6}{15} H[D_1] - \frac{9}{15} H[D_2] = - \frac{6}{15} \times 0 + \frac{9}{15} \times 0.918 = 0.551
\]

gain\((D, \text{Age}) \) = 0.971 − 0.888 = 0.083

gain\((D, \text{Own_House}) \) = 0.971 − 0.551 = 0.420

gain\((D, \text{Has_Job}) \) = 0.971 − 0.647 = 0.324

gain\((D, \text{Credit}) \) = 0.971 − 0.608 = 0.363
Algorithm for decision tree learning

Basic algorithm (a greedy divide-and-conquer algorithm)

- Assume attributes are categorical now
Algorithm for decision tree learning

Basic algorithm (a greedy *divide-and-conquer* algorithm)

- Assume attributes are categorical now
- Tree is constructed in a top-down recursive manner
Algorithm for decision tree learning

Basic algorithm (a greedy *divide-and-conquer* algorithm)

- Assume attributes are categorical now
- Tree is constructed in a top-down recursive manner
- At start, all the training examples are at the root
Algorithm for decision tree learning

Basic algorithm (a greedy *divide-and-conquer* algorithm)

- Assume attributes are categorical now
- Tree is constructed in a top-down recursive manner
- At start, all the training examples are at the root
- Examples are partitioned recursively based on selected attributes
Algorithm for decision tree learning

Basic algorithm (a greedy *divide-and-conquer* algorithm)

- Assume attributes are categorical now
- Tree is constructed in a top-down recursive manner
- At start, all the training examples are at the root
- Examples are partitioned recursively based on selected attributes
- Attributes are selected on the basis of an impurity function (e.g., information gain)
Algorithm for decision tree learning

Basic algorithm (a greedy divide-and-conquer algorithm)
- Assume attributes are categorical now
- Tree is constructed in a top-down recursive manner
- At start, all the training examples are at the root
- Examples are partitioned recursively based on selected attributes
- Attributes are selected on the basis of an impurity function (e.g., information gain)

Conditions for stopping partitioning
- All examples for a given node belong to the same class
Algorithm for decision tree learning

Basic algorithm (a greedy divide-and-conquer algorithm)

- Assume attributes are categorical now
- Tree is constructed in a top-down recursive manner
- At start, all the training examples are at the root
- Examples are partitioned recursively based on selected attributes
- Attributes are selected on the basis of an impurity function (e.g., information gain)

Conditions for stopping partitioning

- All examples for a given node belong to the same class
- There are no remaining attributes for further partitioning? majority class is the leaf
Algorithm for decision tree learning

Basic algorithm (a greedy divide-and-conquer algorithm)

- Assume attributes are categorical now
- Tree is constructed in a top-down recursive manner
- At start, all the training examples are at the root
- Examples are partitioned recursively based on selected attributes
- Attributes are selected on the basis of an impurity function (e.g., information gain)

Conditions for stopping partitioning

- All examples for a given node belong to the same class
- There are no remaining attributes for further partitioning ? majority class is the leaf
- There are no examples left
Algorithm for decision tree learning

1. Algorithm decisionTree(D, A, T)
2. if D contains only training examples of the same class c ∈ C then
3. make T a leaf node labeled with class c;
4. else if A = ∅ then
5. make T a leaf node labeled with c_j, which is the most frequent class in D
6. else // D contains examples belonging to a mixture of classes. We select a single
7. // attribute to partition D into subsets so that each subset is purer
8. p_0 = impurityEval-1(D);
9. for each attribute A_i ∈ {A_1, A_2, ..., A_k} do
10. p_i = impurityEval-2(A_i, D)
11. end
12. Select A_g ∈ {A_1, A_2, ..., A_k} that gives the biggest impurity reduction,
13. computed using p_0 − p_i;
14. if p_0 − p_g < threshold then // A_g does not significantly reduce impurity p_0
15. make T a leaf node labeled with c_j, the most frequent class in D.
16. else // A_g is able to reduce impurity p_0
17. Make T a decision node on A_g;
18. Let the possible values of A_g be v_1, v_2, ..., v_m. Partition D into m
19. disjoint subsets D_1, D_2, ..., D_m based on the m values of A_g.
20. for each D_j in {D_1, D_2, ..., D_m} do
21. if D_j ≠ ∅ then
22. create a branch (edge) node T_j for v_j as a child node of T;
23. decisionTree(D_j, A-{A_g}, T_j); // A_g is removed
24. end
25. end
26. end
What is WEKA?

Collection of ML algorithms - open-source Java package

Site: http://www.cs.waikato.ac.nz/ml/weka/

Documentation: http://www.cs.waikato.ac.nz/ml/weka/index_documentation.html

Schemes for classification include:
- decision trees
- rule learners
- naive Bayes
- decision tables
- locally weighted regression
- SVMs
- instance-based learners
- logistic regression
- voted perceptrons
- multi-layer perceptron

For classification, Weka allows train/test split or Cross-fold validation

Schemes for clustering:
- EM
- Cobweb
What is WEKA?

- Collection of ML algorithms - open-source Java package

 Site:
 http://www.cs.waikato.ac.nz/ml/weka/

 Documentation:
 http://www.cs.waikato.ac.nz/ml/weka/index_documentation.html
What is WEKA?

- Collection of ML algorithms - open-source Java package

 Site:

 http://www.cs.waikato.ac.nz/ml/weka/

 Documentation:

 http://www.cs.waikato.ac.nz/ml/weka/index_documentation.html

- Schemes for classification include:

 - decision trees, rule learners, naive Bayes, decision tables, locally weighted regression, SVMs, instance-based learners, logistic regression, voted perceptrons, multi-layer perceptron
Collection of ML algorithms - open-source Java package

Site:
http://www.cs.waikato.ac.nz/ml/weka/

Documentation:
http://www.cs.waikato.ac.nz/ml/weka/index_documentation.html

Schemes for classification include:
- decision trees, rule learners, naive Bayes, decision tables, locally weighted regression, SVMs, instance-based learners, logistic regression, voted perceptrons, multi-layer perceptron

For classification, Weka allows train/test split or Cross-fold validation

Schemes for clustering:
- EM and Cobweb
ARFF File Format

- Require declarations of @RELATION, @ATTRIBUTE and @DATA
ARFF File Format

- Require declarations of @RELATION, @ATTRIBUTE and @DATA
- @RELATION declaration associates a name with the dataset
 - @RELATION <relation-name>
ARFF File Format

- Require declarations of **@RELATION**, **@ATTRIBUTE** and **@DATA**
- **@RELATION** declaration associates a name with the dataset
 - **@RELATION** <relation-name>
- **@ATTRIBUTE** declaration specifies the name and type of an attribute
 - **@ATTRIBUTE** <attribute-name> <datatype>
 - Datatype can be numeric, nominal, string or date

Example:

```plaintext
@RELATION Iris

@ATTRIBUTE sepal-length NUMERIC
@ATTRIBUTE sepal-width NUMERIC
@ATTRIBUTE petal-length NUMERIC
@ATTRIBUTE petal-width NUMERIC
@ATTRIBUTE class {Setosa, Versicolor, Virginica}

@DATA
4.4, 1.4, 0.2, Setosa
4.6, 1.4, 0.2, Versicolor
```

ARFF File Format

- Require declarations of @RELATION, @ATTRIBUTE and @DATA
- @RELATION declaration associates a name with the dataset
 - @RELATION <relation-name>
- @ATTRIBUTE declaration specifies the name and type of an attribute
 - @ATTRIBUTE <attribute-name> <datatype>
 - Datatype can be numeric, nominal, string or date
 - @ATTRIBUTE sepal length NUMERIC
 - @ATTRIBUTE petal width NUMERIC
 - @ATTRIBUTE class {Setosa, Versicolor, Virginica}
ARFF File Format

- Require declarations of @RELATION, @ATTRIBUTE and @DATA
- @RELATION declaration associates a name with the dataset
 - @RELATION <relation-name>
- @ATTRIBUTE declaration specifies the name and type of an attribute
 - @ATTRIBUTE <attribute-name> <datatype>
 - Datatype can be numeric, nominal, string or date
 - @ATTRIBUTE sepallength NUMERIC
 - @ATTRIBUTE petalwidth NUMERIC
 - @ATTRIBUTE class {Setosa,Versicolor,Virginica}
- @DATA declaration is a single line denoting the start of the data segment
 - Missing values are represented by ?
ARFF File Format

- Require declarations of @RELATION, @ATTRIBUTE and @DATA
- @RELATION declaration associates a name with the dataset
 - @RELATION <relation-name>
- @ATTRIBUTE declaration specifies the name and type of an attribute
 - @ATTRIBUTE <attribute-name> <datatype>
 - Datatype can be numeric, nominal, string or date
 - @ATTRIBUTE sepalwidth NUMERIC
 - @ATTRIBUTE petalwidth NUMERIC
 - @ATTRIBUTE class {Setosa, Versicolor, Virginica}
- @DATA declaration is a single line denoting the start of the data segment
 - Missing values are represented by ?
 - @DATA
 - 1.4, 0.2, Setosa
 - 1.4, ?, Versicolor
ARFF Sparse File Format

- Similar to AARF files except that data value 0 are not represented
ARFF Sparse File Format

- Similar to AARF files except that data value 0 are not represented
- Non-zero attributes are specified by attribute number and value
ARFF Sparse File Format

- Similar to AARF files except that data value 0 are not represented
- Non-zero attributes are specified by attribute number and value
- Full:

```plaintext
@DATA
0 , X , 0 , Y , "class A"
0 , 0 , W , 0 , "class B"
```

Note that the omitted values in a sparse instance are 0, they are not missing values! If a value is unknown, you must explicitly represent it with a question mark (?)
ARFF Sparse File Format

- Similar to AARF files except that data value 0 are not represented
- Non-zero attributes are specified by attribute number and value
- Full:
  ```
  @DATA
  0, X, 0, Y, "class A"
  0, 0, W, 0, "class B"
  ```
- Sparse:
  ```
  @DATA
  {1 X, 3 Y, 4 "class A"}
  {2 W, 4 "class B"}
  ```

Note that the omitted values in a sparse instance are 0, they are not missing values! If a value is unknown, you must explicitly represent it with a question mark (?)
ARFF Sparse File Format

- Similar to AARF files except that data value 0 are not represented
- Non-zero attributes are specified by attribute number and value
- Full:
  ```
  @DATA
  0 , X , 0 , Y , "class A"
  0 , 0 , W , 0 , "class B"
  ```
- Sparse:
  ```
  @DATA
  {1 X, 3 Y, 4 "class A"}
  {2 W, 4 "class B"}
  ```
- Note that the omitted values in a sparse instance are 0, they **are not** missing values! If a value is unknown, you must explicitly represent it with a question mark (?)
Running Learning Schemes

- java -Xmx512m -cp weka.jar <learner class> [options]
Running Learning Schemes

- java -Xmx512m -cp weka.jar <learner class> [options]
- Example learner classes:
 - Decision Tree: weka.classifiers.trees.J48
 - Naive Bayes: weka.classifiers.bayes.NaiveBayes
 - k-NN: weka.classifiers.lazy.IBk
Running Learning Schemes

- java -Xmx512m -cp weka.jar <learner class> [options]

Example learner classes:
- Decision Tree: `weka.classifiers.trees.J48`
- Naive Bayes: `weka.classifiers.bayes.NaiveBayes`
- k-NN: `weka.classifiers.lazy.IBk`

Important generic options:
- `-t <training file>` Specify training file
- `-T <test files>` Specify Test file. If none testing is performed on training data
- `-x <number of folds>` Number of folds for cross-validation
- `-l <input file>` Use saved model
- `-d <output file>` Output model to file
- `-split-percentage <train size>` Size of training set
- `-c <class index>` Index of attribute to use as class (NB: the index start from 1)
- `-p <attribute index>` Only output the predictions and one attribute (0 for none) for all test instances.