Statistical approaches to NLP Basic Terminology

Roberto Basili

Department of Computer Science, System and Production University of Roma, *Tor Vergata* Via Della Ricerca Scientifica s.n.c., 00133, Roma, ITALY

e-mail: basili@info.uniroma2.it

Contenuti:

- Probabilita'
- Probabililta' Condizionata
- Statistica Bayesiana
- IT Elementare

Probability and language models:

- Language Models: predict next word on basis of knowledge or assumptions
- Probability theory developed as a way of reasoning about uncertainty and (especially) games of chance
- Strategy: conceptualise language as a game of chance, then use probability theory

Statistical Thinking:

- Language Models: predict the next word assumptions
- Applications: act on limited information
- Linguistics 1: prefer economical theories
- Linguistics 2: explain natural language phenomena
- Linguistics 1: explain language acquisition

Events, Trials and Outcomes:

- We sometimes say that an event (e.g. heads), is the outcome of a trial (e.g Tossing a coin)
- Now imagine a series of trials (repeatedly tossing a coin)
- ullet Plausible that the outcome of trial n+1 will be unaffected by that of trial n

Random variables:

- ullet Random variables formalise the idea of a trial (e.g. W_n for the n-th word in a string)
- Random variables represent what you know about the trial before you have seen its outcome
- After the trial, you have an outcome (e.g. $W_n = dog$ or $W_n = w_k$)

Notation for probabilities:

- $P(X = x_i)$, a probability (i.e. number) for x_i
- \bullet $P(x_i)$ an abbreviation for the above
- ullet P(X), or either of above to mean the function that assigns a value to each x_i
- $|X = x_i|$ for the number of times x_i occurs
- Can define $P(X=x_i)$ as $\frac{|X=x_i|}{\sum_j |X=x_j|}$ if large number of trials

Conditional probabilities:

- Conan-Doyle does not play dice:
 Holmes follows every use of Sherlock
- The formal statement of this fact is that the conditional probability of the n-th word being Holmes if the (n-1)-th is Sherlock appears to be 1 for ConanDoyle stories
- $P(W_n = holmes|W_{n-1} = sherlock) = 1$

Joint events:

• Joint event of the (n-1)-th word being "Sherlock" and the n-th "Holmes":

$$P(W_{n-1} = sherlock, W_n = holmes)$$

 Know identity of the next word when we have seen the Sherlock, so

$$P(W_n = holmes, W_{n-1} = sherlock) = P(W_{n-1} = sherlock)$$

• $P(W_n = holmes|W_{n-1} = sherlock) = 1$

Decomposing joint events:

In general, for any pair of words w_k , w_k^\prime , we will have :

•
$$P(W_n = w'_k, W_{n+1} = w_k) =$$

 $P(W_n = w_k)P(W_{n+1} = w'_k|W_n = w_k)$

which is usually written more compactly in a form like:

•
$$P(w_n^k, w_{n+1}^{k'}) = P(w_n^k) P(w_{n+1}^{k'} | w_n^k)$$

Pitfalls:

• $P(w_n^k, w_{n+1}^{k'}) \neq P(w_{n+1}^{k'}, w_n^k)$ order different

• $P(w_n^k|w_{n+1}^{k'}) \neq P(w_{n+1}^k|w_n^{k'})$ order same, but given is different

Just because *Holmes* is the only word that follows *Sherlock*, it need not be that *Holmes* is always preceded by *Sherlock*, e.g. *Mr. Holmes*

Bayes' theorem:

•
$$P(w_n^k, w_{n+1}^{k'}) = P(w_n^k) P(w_{n+1}^{k'} | w_n^k) = P(w_{n+1}^{k'}) P(w_n^k | w_{n+1}^{k'})$$

Divide through by $P(w_n^k)$

•
$$P(w_{n+1}^{k'}|w_n^k) = P(w_{n+1}^{k'}) \frac{P(w_n^k|w_{n+1}^{k'})}{P(w_n^k)}$$

Which is an instance of Bayes' theorem

$$P(A|B) = P(A)\frac{P(B|A)}{P(B)}$$

Medical diagnosis:

• The doctors problem: P(S,C) vs P(S,P)

• Causal Information: P(S|C) = P(S|P) = 1

• Base Rates: $P(P) = 10^{-6}$, P(P) = 0.25, P(S) = 0.33

• Wants: P(C|S) and P(P|S)

Medical diagnosis: Bayes' rule applied:

•
$$P(P|S) = \frac{P(P)P(S|P)}{P(S)}$$

• In this case $(10^{-6} \cdot 1)/0.33 = 3 \cdot 10^{-6}$

• In an epidemic the prior might change dramatically, affecting the outcome

• The prior dominates the posterior

Bayesian inference:

• Posterior = α Prior \times Likelihood

•
$$P(L|X) = \alpha$$
 $P(L) \times P(X|L)$

Grammar inference =
 Prior beliefs about possible grammars × Language model