Stochastic Parsing

Roberto Basili, Fabio Zanzotto

Department of Computer Science, System and Production University of Roma, Tor Vergata Via Della Ricerca Scientifica s.n.c., 00133, Roma, ITALY e-mail: {basili, zanzotto}@info.uniroma2.it

Outline:

- Stochastic Processes and Methods
- POS tagging as a stochastic process
- Probabilistic Approaches to Syntactic Analysis
	- CF grammar-based approaches (e.g. PCFG)
	- Other Approaches (lexicalized or dependency based)
- Further Relevant Issues

The role of Quantitative Approaches

Weighted grammars are models of the degree of grammaticality able to deal with disambiguation:

- 1. S \rightarrow NP V
- $2.$ S \rightarrow NP
- 3. NP -> PN
- 4. NP -> N
- 5. NP -> Adj N
- 6. N -> imposta
- 7. V -> imposta
- 8. Adj -> Pesante
- 9. PN -> Pesante

...

"*Pesante imposta*"

Derivation Trees for the sentence "Pesante imposta"

The role of Quantitative Approaches

Weighted grammars are models of the degree of grammaticality able to deal with disambiguation:

...

Derivation Trees for the sentence "Pesante imposta"

The role of Quantitative Approaches

Weighted grammars are models of the degree of grammaticality able to deal with disambiguation:

1. S -> NP V .7 2. S -> NP .3 3. NP -> PN .1 4. NP -> N .6 5. NP -> Adj N .3 6. N -> imposta .6 7. V -> imposta .4 8. Adj -> Pesante .8 9. PN -> Pesante .2

...

prob(((Pesante)_{PN} (imposta)_V)_S)= (.7 * .1 * .2 * .4) = 0.0084 prob(((Pesante)_{Adj} (imposta)_N)_S) = (.3 * .3 * .8 * .6) = 0.0432

Structural Disambiguation

Derivation Trees for a structurally ambiguous sentence.

Structural Disambiguation (cont'd)

"*portare borsa in mano*"

Derivation Trees for a second structurally ambiguous sentence.

Struc

Disambiguation of structural ambiguity

An example of ungrammatical but meaningful sentence.

Error tolerance

"*vendita di articoli da regalo*"

Error tolerance (cont'd)

Modeling of ungrammatical phenomena

- Aims
	- to extend existing models with predictive and disambiguation capabilities
	- to offer theoretically well founded inductive methods
	- to develop (not-so) quantitative models of linguistic phenomena
- Methods and Resources:
	- Methematical theories (e.g. Markov models)
	- Systematic testing/evaluation frameworks
	- Extended repositories of language use instances
	- Traditional linguistic resources (e.g. "models" like dictionaries)

Probability and the Empiricist Renaissance (2)

- Differences
	- amount of knowledge available a priori
	- target: competence vs. performance
	- methods: deduction vs. induction
- The role of probability in NLP is also related to:
	- difficulties in categorial statements in language study (e.g. grammaticality or syntactic categorization)
	- the cognitive nature of language understanding
	- the role of uncertainty

- Signals are abstracted via symbols not known in advance
- \bullet Emitted signals belong to an alphabet A

- \bullet A random variable X can be introduced so that
	- $-$ It assumes values w_i in the alfabet A
	- Probability is used to describe the uncertainty on the emitted signal

$$
p(X = w_i) \qquad w_i \in A
$$

- A random variable X can be introduced so that
	- X assumes values in A at each step *i*, i.e. $X_i = w_j$
	- probability is $p(X_i = w_j)$

…, wi8 , wi7 , wi6 , wi5 , wi4 , wi3 , wi2 , wi1 …, 8, 7, 6, 5, 4, 3, 2, 1

• Notice that time points can be represented as states of the emitting

 \bullet and \bullet are considered as emitted in a given state \bullet and \bullet \bullet \bullet

 ϵ - Formally:

• $p(the,black, dog) = p(dog|the,black) \dots$

• $p(the, black, dog) = p(dog|the, black)p(black|the)p(the)$

• $p(the_{DT}, black_{ADJ}, dog_N) = p(dog_N|the_{DT}, black_{ADJ}) \dots$

• What's in a state

• $p((the_{Det}, (black_{ADJ}, dog_N)_{NP})_{NP}) = p(dog_N)((the_{Det}), (black_{ADJ}, -))$...

- Expressivity
	- The predictivity of a statistical device can be very good explanatory model of the source information
	- Simpler and Systematic Induction
	- Simpler and Augmented Description (e.g. grammatical preference)
	- Optimized Coverage (better on more important phenomena)
- Integrating Linguistic Description
	- Start with poor assumptions and approximate as much as possible what is known (evaluate performance only)
	- $-$ Bias the statistical model since the beginning and check the results on a *linguistic ground*

Performances

- Faster Processing
- Faster Design
- Linguistic Adequacy
	- Acceptance
	- Psychological Plausibility
	- Explanatory power
- Tools for further analysis of Linguistic Data

Markov Models

Suppose $X_1, X_2, ..., X_T$ form a sequence of random variables taking values in a countable set $W = p_1, p_2, ..., p_N$ (State space).

• Limited Horizon Property:

$$
P(X_{t+1} = p_k | X_1, ..., X_t) = P(X_{t+1} = k | X_t)
$$

• Time invariant:

$$
P(X_{t+1} = p_k | X_t = p_l) = P(X_2 = p_k | X_1 = p_l) \qquad \forall t (>1)
$$

It follows that the sequence of $X_1, X_2, ..., X_T$ is a Markov chain.

Representation of a Markov Chain

Matrix Representation:

• A (transition) matrix A:

$$
a_{ij} = P(X_{t+1} = p_j | X_t = p_i)
$$

Note that $\forall i,j \quad a_{ij} \ge 0$ and $\forall i$ $\overline{ }$ $j a_{ij} = 1$

• Initial State description (i.e. probabilities of initial states):

$$
\pi_i = P(X_1 = p_i)
$$

Note that $\sum_{j=1}^n \pi_{ij} = 1$.

Representation of a Markov Chain

Graphical Representation (i.e. Automata)

- States as nodes with names
- Transitions from states i-th and j-th as arcs labelled by conditional probabilities $P(X_{t+1} = p_j | X_t = p_i)$ Note that 0 probability arcs are omitted from the graph.

Representation of a Markov Chain

 $•$ Gr

Crazy Coffee Machine

- Two states: Tea Preferring (TP) , Coffee Preferring (CP)
- Switch from one state to another randomly
- Simple (or visible) Markov model: Iff the machine output Tea in TP AND $Cof fee$ in CP

What we need is a description of the random event of switching from one state to another. More formally we need for each time step n and couple of states p_i and p_j to determine following conditional probabilities:

$$
P(X_{n+1} = p_j | X_n = p_i)
$$

where p_t is one of the two states TP, CP.

Crazy Coffee Machine

Assume, for example, the following state transition model:

and let CP be the starting state (i.e. $\pi_{CP} = 1$, $\pi_{TP} = 0$).

Potential Use:

- Which is the probability at time step 3 to be in state TP
- Which is the probability at time step n to be in state TP
- Which is the probability of the following sequence in output $(Cof fee, Tea, Cof fee)$

Crazy Coffee Machine

Solutions:

• $P(X_3 = TP) =$ (given by (CP, CP, TP) and (CP, TP, TP))

 $= P(X_1 = CP) * P(X_2 = CP | X_1 = CP) * P(X_3 = TP | X_1 = CP, X_2 = CP) +$ $+ P(X_1 = CP) * P(X_2 = TP | X_1 = CP) * P(X_3 = TP | X_1 = CP, X_2 = TP) =$

 $= P(CP)P(CP|CP)P(TP|CP, CP) + P(CP)P(TP|CP)P(TP|CP, TP) =$ $= P(CP)P(CP|CP)P(TP|CP) + P(CP)P(TP|CP)P(TP|TP) =$ $= 1 * 0.50 * 0.50 + 1 * 0.50 * 0.70 = 0.25 + 0.35 = 0.60$

• In the general case,
\n
$$
P(X_n = TP) =
$$

\n $\sum_{CP, p_2, p_3, \dots, TP} P(X_1 = CP)P(X_2 = p_2 | X_1 = CP)P(X_3 = p_3 | X_1 = CP, X_2 = p_2) * ... *$
\n $P(X_n = TP | X_1 = CP, X_2 = p_2, ..., X_{n-1} = p_{n-1}) =$
\n $= \sum_{CP, p_2, p_3, \dots, TP} P(CP)P(p_2 | CP)P(p_3 | p_2) * ... * P(TP | p_{n-1}) =$
\n $= \sum_{CP, p_2, p_3, \dots, TP} P(CP) * \prod_{t=1}^{n-1} P(p_{t+1} | p_t) =$
\n $= \sum_{p_1, \dots, p_n} P(p_1) * \prod_{t=1}^{n-1} P(p_{t+1} | p_t)$

•
$$
P(Cof,Tea, Cof) =
$$

= $P(Cof) * P(Tea|Cof) * P(Cof|Tea) = 1 * 0.5 * 0.3 = 0.15$

Crazy Coffee Machine

• Hidden Markov model: If the machine output Tea, Coffee or Capuccino independently from CP and TP .

What we need is a description of the random event of output(ting) a drink.

Crazy Coffee Machine

A description of the random event of output(ting) a drink.

More formally we need (for each time step n and for each kind of output $O = \{Tea, Cof, Cap\}$, the following conditional probabilities:

$$
P(O_n = k | X_n = p_i, X_{n+1} = p_j)
$$

where k is one of the values Tea. Coffee or Capuccino.

This matrix is called the **output matrix** of the machine (or of its Hidden markov Model).

Crazy Coffee Machine

Given the following output probability for the machine

and let CP be the starting state (i.e. $\pi_{CP} = 1$, $\pi_{TP} = 0$).

- Find the following probabilities of output from the machine
	- 1. $(Cappuccino, Coffee)$ given that the state sequence is (CP, TP, TP)
	- 2. $(Tea, Coffee)$ for any state sequence
	- 3. a generic output $O = (o_1, ..., o_n)$ for any state sequence

Solution for the problem 1

• For the given state sequence $X = (CP, TP, TP)$ $P(O_1 = Cap, O_2 = Cof, X_1 = CP, X_2 = TP, X_3 = TP) =$ $P(O_1 = Cap, O_2 = Cof | X_1 = CP, X_2 = TP, X_3 = TP) P(X_1 = CP, X_2 = TP, X_3 = P)$ $TP)$) = $P(Cap, Cof | CP, TP, TP)P(CP, TP, TP))$

Now:

 $P(Cap, Cof | CP, TP, TP)$ is the probability of output Cap, Cof during transitions from CP to TP and TP to TP

and

 $P(CP, TP, TP)$ is the probability of the transition chain.

Therefore, $= P(Cap|CP, TP)P(Cof|TP, TP) = ($ in our simplified model) $= P(Cap|CP)P(Cof|TP) = 0.2 * 0.2 = 0.04$

Solutions for the problem 2

In general, for any sequence of three states $X = (X_1, X_2, X_3)$ $P(Tea, Cof | X_1, X_2, X_3) =$ $P(Tea, Cof) =$ (as sequences are a partition for the sample space) $=\sum_{X_1,X_2,X_3}P(Tea,Cof|X_1,X_2,X_3)P(X_1,X_2,X_3)$

where

 $P(Tea, Cof | X_1, X_2, X_3) = P(Tea | X_1, X_2) P(Cof | X_2, X_3) =$ (for the simplified model of the coffee machine)

 $= P(Tea|X_1)P(Cof|X_2)$

and (for the Markov constraint) $P(X_1, X_2, X_3) = P(X_1)P(X_2|X_1)P(X_3|X_2)$

The simplified model is concerned with only the following transition chains (CP, CP, CP) (CP, TP, CP) (CP, CP, TP) (CP, TP, TP)

so that the following probability is given

 $P(Tea, Cof) =$

 $P(Tea|CP)P(Cof|CP)P(CP)P(CP|CP)P(CP|CP)$ states: (CP,CP,CP)) $P(Tea|CP)P(Cof|TP)P(CP)P(TP|CP)P(CP|TP)$ states: (CP, TP, CP)) $P(Tea|CP)P(Cof|CP)P(CP)P(CP|CP)P(TP|CP)$ states: (CP, CP, TP)) $P(Tea|CP)P(Cof|TP)P(CP)P(TP|CP)P(TP|TP) =$ states: (CP, TP, TP))

 $= 0.15 * 0.65 * 1 * 0.5 * 0.5 +$

- $+$ 0.15 $*$ 0.2 $*$ 1 $*$ 0.5 $*$ 0.3 +
- $+$ 0.15 $*$ 0.65 $*$ 1 $*$ 0.5 $*$ 0.5 +
- $+$ 0.15 $*$ 0.2 $*$ 1.0 $*$ 0.5 $*$ 0.7 $=$
- $= 0.024375 + 0.0045 + 0.024375 + 0.0105 =$

 $= 0.06375$

Solution to the problem 3 (decoding)

In the general case, a sequence of n symbols $O = (o_1, ..., o_n)$ out from any sequence of $n + 1$ transitions $X = (p_1, ..., p_{n+1})$ can be predicted by the following probability:

$$
P(O) = \sum_{p_1,\dots,p_{n+1}} P(O|X)P(X) =
$$

= $\sum_{p_1,\dots,p_{n+1}} P(CP) \prod_{t=1}^n P(O_t|p_t, p_{t+1})P(p_{t+1}|p_t)$

Modeling linguistic tasks of Stochastic Processes

Outline

- Available mathematical frameworks
- Questions for Stochastic models
- Modeling POS tagging via HMM

Mathematical Methods for HMM

The complexity of training and decoding can be limited by the use of optimization techniques

- Parameter estimation via entropy minimization (EM)
- Tagging and Decoding via dynamic programming $(O(n))$

A relevant issue is the availablity of source data so that supervised training can (or cannot) be applied

Given a sequence of morphemes $w_1, ..., w_n$ with ambiguous syntactic descriptions (i.e.part-of-speech) tag, derive the sequence of n POS tags $t_1, ..., t_n$ that maximizes the following probability:

$$
P(w_1,...,w_n,t_1,...,t_n)
$$

that is $(t_1, ..., t_n) = argmax_{pos_1, ..., pos_n}P(w_1, ..., w_n, pos_1, ..., pos_n)$

Note that this is equivalent to the following:

$$
(t_1, ..., t_n) = argmax_{pos_1, ..., pos_n} P(pos_1, ..., pos_n | w_1, ..., w_n)
$$

as:
$$
\frac{P(w_1,...,w_n, pos_1,...,pos_n)}{P(w_1,...,w_n)} = P(pos_1,...,pos_n|w_1,...,w_n)
$$

and $P(w_1, ..., w_n)$ is the same for all the sequencies $(pos_1, ..., pos_n)$.

How to map a POS tagging problem into a HMM.

The following problem

$$
(t_1, ..., t_n) = argmax_{pos_1, ..., pos_n} P(pos_1, ..., pos_n | w_1, ..., w_n)
$$

can be also written (Bayes law) as:

 $(t_1, ..., t_n) = argmax_{pos_1, ..., pos_n}P(w_1, ..., w_n|pos_1, ..., pos_n)P(pos_1, ..., pos_n)$

The HMM Model of POS tagging:

- HMM States are mapped into POS tags (t_i) , so that $P(t_1, ..., t_n) = P(t_1)P(t_2|t_1)...P(t_n|t_{n-1})$
- HMM Output symbols are words, so that $P(w_1, ..., w_n | t_1, ..., t_n) = \prod_{i=1}^n P(w_i | t_i)$
- Transitions represent moves from one word to another

Note that the Markov assumption is used

- to model probability of a tag in position i (i.e. t_i) only by means of the preceeding part-of-speech (i.e. t_{i-1})
- to model probabilities of words (i.e. w_i) based only on the tag (t_i) appearing in that position (i) .

The final equation is thus:

 $(t_1, ..., t_n) = argmax_{t_1, ..., t_n} P(t_1, ..., t_n | w_1, ..., w_n) = \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$

Fundamental Questions for HMM in POS tagging

1. Given a sample of the output sequences and a space of possible models how to find out the best model, that is the model that best explains the data:

how to estimate parameters?

- 2. Given a model and an observable output sequence O (i.e. words), how to determine the sequence of states $(t_1, ..., t_n)$ such that it is the best explanation of the observation O : Statistical Inference
- 3. Given a model what is the probability of an output sequence, O : Decoding Problem.

Fundamental Questions for HMM in POS tagging

- 1. Baum-Welch (or Forward-Backward algorithm), that is a special case of Expectation Maximization estimation. Weakly supervised or even unsupervised. Problems: Local minima can be reached when initial data are poor.
- 2. Viterbi Algorithm for evaluating $P(W|O)$. Linear in the sequence length.
- 3. Not relevant for POS tagging, where $(w_1, ..., w_n)$ are always known. Trellis and dynamic programming technique.

Advantages for adopting HMM in POS tagging

- An elegant and well founded theory
- Training algorithms:
	- Estimation via EM (Baum-Welch)
	- Unsupervised (or possibly weakly supervised)
- Fast Inference algorithms: Viterbi algorithm Linear wrt the sequence length $(O(n))$
- Sound methods for comparing different models and estimations (e.g. cross-entropy)

HMM and POS tagging: Parameter Estimation

Supervised methods in tagged data sets:

• Output proofs:
$$
P(w_i|p^j) = \frac{C(w_i, p^j)}{C(p^j)}
$$

• Transition probes:
$$
P(p^i|p^j) = \frac{C(p^i \text{ follows } p^j)}{C(p^j)}
$$

• Smoothing:
$$
P(w_i|p^j) = \frac{C(w_i, p^j) + 1}{C(p^j) + K^i}
$$

HMM and POS tagging: Parameter Estimation

Unsupervised (few tagged data available):

- With a dictionary: $P(w_i|p^j)$ are early estimated from D , while $P(p^i|p^j)$ are randomly assigned
- With equivalence classes u_L , (Kupiec92): $P(w^i|p^L) =$ 1 $\frac{1}{|L|} C(u^L)$ $\overline{ }$ u_L $\overline{C(u^{L'})}$ $|L'|$

For example, if $L =$ {noun, verb} then $u_L =$ {cross, drive, }

Other Approaches to POS tagging

• Church (1988): $\overline{\Pi}$ ³ $\ddot{e}_{i=n}^3 P(w_i|t_i)P(t_{i-2}|t_{i-1},t_i)$ (backward) Estimation from tagged corpus (Brown) No HMM training Perfromances: > 95%

- De Rose (1988): \Box ⁿ $\sum\limits_{i=1}^n P(w_i|t_i)P(t_{i-1}|t_i)$ (forward) Estimation from tagged corpus (Brown) No HMM training Performance: 95%
- Merialdo et al.,(1992), ML estimation vs. Viterbi training Propose an incremental approach: small tagging and then Viterbi training

 \bullet $\prod_{i=1}^{n}$ $\sum\limits_{i=1}^n P(w_i|t_i) P(t_{i+1}|t_i,w_i)$???

Statistical Parsing

Outline:

- Parsing and Statistical modeling
- Some Parsing Models
	- Probabistic Context-Free Grammars
	- Left-Corner Grammars (LCG)
	- Dependency-based assumptions
- Systems

Parsing and Statistical modeling

Main Issues in statistical modeling of grammatical recognition:

- Modelling the structure vs. the language
- How context can be taken into account
- Modelling the structure vs. the derivation
- Which Parsing vs. the Model

Basic Steps:

- Start from a CF grammar
- Attach probability to the rules
- Tune (i.e. adjust them) against training data (e.g. a treebank)

• Syntactic sugar

$$
- N_{rl} \rightarrow \Gamma \Rightarrow P(N_{rl} \rightarrow \Gamma)
$$

 $-P(s) = \sum_t P(t)$, where t are parse trees for s

Main assumptions

• Total probability of each continuation, i.e.

 $\forall i$ $\sum_j P(N^i\rightarrow \Gamma^j)=1$

- Context Independence
	- $-$ Place Invariance, $\forall k \quad P(N_{k(k+const)}^{j}) \rightarrow \Gamma)$ is the same
	- Context-freeness, $\forall r,l \quad P(N_{rl}^j \rightarrow \Gamma)$ is independent from $w_1, ..., w_{r-1}$ and $w_{l+1}, ..., w_n$
- Derivation (or Anchestor) Independence, i.e. $\forall k \quad P(N_{rl}^j \rightarrow \Gamma)$ is independent from any anchestor node outside N_r^j rl

PCFG

Main Questions:

- How to develop the best model from observable data (Training)
- Which is the best parse for a sentence
- Which training data?

• Probabilities of trees
\n
$$
- P(t) = P({}^{1}S_{13} \rightarrow {}^{1}NP_{12}^{3}VP_{33}, {}^{1}NP_{12} \rightarrow the \ man, {}^{3}VP_{33} \rightarrow snores)
$$
\n
$$
= P({}^{1}\alpha)P({}^{1}\delta|{}^{1}\alpha)P({}^{3}\varphi|{}^{1}\alpha, {}^{1}\delta)
$$
\n
$$
= P({}^{1}\alpha)P({}^{1}\delta)P({}^{3}\varphi)
$$
\n
$$
= P(S -
$$

PCFG Training

Supervised case: Treebanks are used.

- Simple ML estimation by counting subtrees
- Basic problems are low counts for some structures and local maxima
- When the target grammatical model is different (e.g. dependency based), rewriting is required before counting

PCFG Training

Unsupervised: Given a grammar G , and a set of sentences (parsed but not validated)

- The best model is the one maximizing the probability of useful structures in observable data set
- Parameters are adjusted via EM algorithms
- $Ranking$ data according to small training data (Pereira and Schabes 1992)

Approaches different from PCFG

- Lexicalized extensions (e.g. LCFG or PLTAG)
- Derivation-based approaches (Left Corner probabilistic parsing): same structure may receive different probability assignments

Statistical Lexicalized Parsing

In (Collins 96) a dependency-based statistical parser is proposed:

- It adopts chunks (Abney,1991) for complex NPs
- Probabilities are assigned to head-modifier dependencies, $(R, ,)$
- Dependency relationships are considered independent
- Supervised training is allowed from the treebank

Results

Performances of different Probabilistic Parsers (Sentences with ≤ 40 words)

%LR %LP CB % 0 CB

Further Issues in statistical grammatical recognition

- Syntactic Disambiguation
	- PP-attachment
	- Subcategorization frames Induction and Use
- Semantic Disambiguation
- Word Clustering for better estimation (e.g. data sparseness)

Disambiguation of Prepositional Phrase attachment

Purely probabilstic model (Hindle and Rooths, 1991, 1993)

- VP NP PP sequences (i.e. verb and noun attachment)
- bi-gram probabilties $P(prep|noun)$ and $P(prep|verb)$ are compared (via χ^2 test)
- Smoothing low counts is applied for sparse data problems

Disambiguation of Prepositional Phrase attachment

An hybrid model (Basili et al, 1993, 1995):

- Multiple attachment sites in a dependency framework
- Semantic classes for words are available
- semantic tri-gram probabilities, i.e. $P(prep, \Gamma|noun)$ and $P(prep, \Gamma|verb)$, are compared
- Smoothing is not required as Γ are classes and low counts are less effective

Bibliographic References

- HMM models
- Corpus-driven POS tagging
- PCFGs
- Statistical Parsing
- Corpus-driven Lexical and Grammatical Acquisition

 \Rightarrow see the *handsout!*