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Outline:

• Stochastic Processes and Methods

• POS tagging as a stochastic process

• Probabilistic Approaches to Syntactic Analysis

– CF grammar-based approaches (e.g. PCFG)

– Other Approaches (lexicalized or dependency based)

• Further Relevant Issues



The role of Quantitative Approaches

Weighted grammars are models of the degree of grammaticality able to

deal with disambiguation:

1. S -> NP V

2. S -> NP

3. NP -> PN

4. NP -> N

5. NP -> Adj N

6. N -> imposta

7. V -> imposta

8. Adj -> Pesante

9. PN -> Pesante

...
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The role of Quantitative Approaches

Weighted grammars are models of the degree of grammaticality able to

deal with disambiguation:

1. S -> NP V .7

2. S -> NP .3

3. NP -> PN .1

4. NP -> N .6

5. NP -> Adj N .4

6. N -> imposta .6

7. V -> imposta .4

8. Adj -> Pesante .8

9. PN -> Pesante .2

...
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The role of Quantitative Approaches

Weighted grammars are models of the degree of grammaticality able to
deal with disambiguation:

1. S -> NP V .7

2. S -> NP .3

3. NP -> PN .1

4. NP -> N .6

5. NP -> Adj N .3

6. N -> imposta .6

7. V -> imposta .4

8. Adj -> Pesante .8

9. PN -> Pesante .2

...

prob(((Pesante)PN (imposta)V )S )= (.7 * .1 * .2 * .4) = 0.0084

prob(((Pesante)Adj (imposta)N)S )= (.3 * .3 * .8 * .6) = 0.0432



Structural Disambiguation
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Derivation Trees for a structurally ambiguous sentence.



Structural Disambiguation (cont’d)
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Derivation Trees for a second structurally ambiguous sentence.



Structural Disambiguation (cont’d)
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p(portare,in,pelle) << p(borsa,in,pelle)

p(borsa,in,mano) << p(portare,in,mano)

Disambiguation of structural ambiguity



Error tolerance

NP

N PP

P

di da regalo

“vendita di articoli da regalo”
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articoli
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“vendita articoli regalo”

??

vendita

An example of ungrammatical but meaningful sentence.



Error tolerance (cont’d)
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Modeling of ungrammatical phenomena



Probability and Language Modeling

• Aims

– to extend existing models with predictive and disambiguation capa-

bilities

– to offer theoretically well founded inductive methods

– to develop (not-so) quantitative models of linguistic phenomena

• Methods and Resources:

– Methematical theories (e.g. Markov models)

– Systematic testing/evaluation frameworks

– Extended repositories of language use instances

– Traditional linguistic resources (e.g. ”models” like dictionaries)



Probability and the Empiricist Renaissance (2)

• Differences

– amount of knowledge available a priori

– target: competence vs. performance

– methods: deduction vs. induction

• The role of probability in NLP is also related to:

– difficulties in categorial statements in language study (e.g. gram-

maticality or syntactic categorization)

– the cognitive nature of language understanding

– the role of uncertainty



Probability and Language Modeling

• Signals are abstracted via symbols not known in advance

• Emitted signals belong to an alphabet A

• Time is discrete: each time point corresponds to an emitted signal

• Sequences of symbols (w1, . . . , wn) correspond to sequences of time

points (1, . . . , n)

…, wi8,   wi7,    wi6,    wi5,    wi4,    wi3,   wi2,    wi1

…,     8,            7,         6,          5,           4,          3,           2,           1



Probability and Language Modeling

• A random variable X can be introduced so that

– It assumes values wi in the alfabet A

– Probability is used to describe the uncertainty on the emitted signal

p(X = wi) wi ∈ A



Probability and Language Modeling

• A random variable X can be introduced so that

– X assumes values in A at each step i, i.e. Xi = wj

– probability is p(Xi = wj)

• Constraints:

– Total probability is for each step:

∑
j p(Xi = wj) = 1 ∀i

…, wi8,   wi7,    wi6,    wi5,    wi4,    wi3,   wi2,    wi1

…,     8,            7,         6,          5,           4,          3,           2,           1



Probability and Language Modeling

• Notice that time points can be represented as states of the emitting

source

• An output wi can be considered as emitted in a given state Xi by the

source, and given a certain history

…, wi8,   wi7,    wi6,    wi5,    wi4,    wi3,   wi2,    wi1

…,     8,            7,         6,          5,           4,          3,           2,           1



Probability and Language Modeling

• Formally:

– P (Xi = wj) =

= P (Xi = wj|Xi−1 = wj−1, Xi−2 = wj−2, . . . , X1 = w1)

…, wi8,   wi7,    wi6,    wi5,    wi4,    wi3,   wi2,    wi1

…,     8,            7,         6,          5,           4,          3,           2,           1



Probability and Language Modeling

• What’s in a state

– preceding words ⇒ n-gram models

…,    dog,              black,            the
…,           3,                           2,                           1

• p(the, black, dog) = p(dog|the, black) . . .



Probability and Language Modeling

• What’s in a state

– preceding words ⇒ n-gram models

…,    dog,              black,            the
…,           3,                           2,                           1

• p(the, black, dog) = p(dog|the, black)p(black|the)p(the)



Probability and Language Modeling

• What’s in a state

– preceding POS tags ⇒ stochastic taggers

…,    dog,              black,            the

POS2 = Adj,  POS1 = Det

dog

• p(theDT , blackADJ , dogN) = p(dogN |theDT , blackADJ) . . .



Probability and Language Modeling

• What’s in a state

– preceding parses ⇒ stochastic grammars

…,    dog,              black,            the
…,           3,                           2,                           1

dog

NP

NP                      Det

N           ADJ                            

• p((theDet, (blackADJ , dogN)NP )NP ) = p(dogN |((theDet), (blackADJ , ))) . . .



Probability and Language Modeling (2)

• Expressivity

– The predictivity of a statistical device can be very good explanatory

model of the source information

– Simpler and Systematic Induction

– Simpler and Augmented Description (e.g. grammatical preference)

– Optimized Coverage (better on more important phenomena)

• Integrating Linguistic Description

– Start with poor assumptions and approximate as much as possible

what is known (evaluate performance only)

– Bias the statistical model since the beginning

and check the results on a linguistic ground



Probability and Language Modeling (3)

Performances

• Faster Processing

• Faster Design

• Linguistic Adequacy

– Acceptance

– Psychological Plausibility

– Explanatory power

• Tools for further analysis of Linguistic Data



Markov Models

Suppose X1, X2, ..., XT form a sequence of random variables taking values

in a countable set W = p1, p2, ..., pN (State space).

• Limited Horizon Property:

P (Xt+1 = pk|X1, ..., Xt) = P (Xt+1 = k|Xt)

• Time invariant:

P (Xt+1 = pk|Xt = pl) = P (X2 = pk|X1 = pl) ∀t(> 1)

It follows that the sequence of X1, X2, ..., XT is a Markov chain.



Representation of a Markov Chain

Matrix Representation:

• A (transition) matrix A:

aij = P (Xt+1 = pj|Xt = pi)

Note that ∀i, j aij ≥ 0 and ∀i ∑
j aij = 1

• Initial State description (i.e. probabilities of initial states):

πi = P (X1 = pi)

Note that
∑n

j=1 πij = 1.



Representation of a Markov Chain

Graphical Representation (i.e. Automata)

• States as nodes with names

• Transitions from states i-th and j-th as arcs labelled by conditional

probabilities P (Xt+1 = pj|Xt = pi)

Note that 0 probability arcs are omitted from the graph.



Representation of a Markov Chain

• Graphical Representation

P (X1 = p1) = 1 ← StartState

P (Xk = p3|Xk−1 = p2) = 0.7 ∀k

P (Xk = p4|Xk−1 = p1) = 0 ∀k

p1

p2

p3

p4

0.2

0.8

0.7

0.3

1.0

Start State



A Simple Example of Hidden Markov Model

Crazy Coffee Machine

• Two states: Tea Preferring (TP ), Coffee Preferring (CP )

• Switch from one state to another randomly

• Simple (or visible) Markov model:
Iff the machine output Tea in TP AND Coffee in CP

What we need is a description of the random event of switching from one
state to another. More formally we need for each time step n and couple
of states pi and pj to determine following conditional probabilities:

P (Xn+1 = pj|Xn = pi)

where pt is one of the two states TP, CP.



A Simple Example of Hidden Markov Model

Crazy Coffee Machine

Assume, for example, the following state transition model:

TP CP
TP 0.70 0.30
CP 0.50 0.50

and let CP be the starting state (i.e. πCP = 1, πTP = 0).

Potential Use:

• Which is the probability at time step 3 to be in state TP

• Which is the probability at time step n to be in state TP

• Which is the probability of the following sequence in output
(Coffee, Tea, Coffee)



Crazy Coffee Machine

• Graphical Representation

TP CP

0.5

0.3

0.5

Start State

0.7



Crazy Coffee Machine

Solutions:

• P (X3 = TP ) = (given by (CP, CP, TP ) and (CP, TP, TP ))

= P (X1 = CP ) ∗ P (X2 = CP |X1 = CP ) ∗ P (X3 = TP |X1 = CP, X2 = CP )+
+ P (X1 = CP ) ∗ P (X2 = TP |X1 = CP ) ∗ P (X3 = TP |X1 = CP, X2 = TP ) =

= P (CP )P (CP |CP )P (TP |CP, CP ) + P (CP )P (TP |CP )P (TP |CP, TP ) =
= P (CP )P (CP |CP )P (TP |CP ) + P (CP )P (TP |CP )P (TP |TP ) =
= 1 ∗ 0.50 ∗ 0.50 + 1 ∗ 0.50 ∗ 0.70 = 0.25 + 0.35 = 0.60

• In the general case,
P (Xn = TP ) =∑

CP,p2,p3,...,TP P (X1 = CP )P (X2 = p2|X1 = CP )P (X3 = p3|X1 = CP, X2 = p2) ∗ ... ∗
P (Xn = TP |X1 = CP, X2 = p2, ..., Xn−1 = pn−1) =
=

∑
CP,p2,p3,...,TP P (CP )P (p2|CP )P (p3|p2) ∗ ... ∗ P (TP |pn−1) =

=
∑

CP,p2,p3,...,TP P (CP ) ∗∏n−1
t=1 P (pt+1|pt) =

=
∑

p1,...,pn
P (p1) ∗

∏n−1
t=1 P (pt+1|pt)

• P (Cof, Tea, Cof) =
= P (Cof) ∗ P (Tea|Cof) ∗ P (Cof |Tea) = 1 ∗ 0.5 ∗ 0.3 = 0.15



A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine

• Hidden Markov model: If the machine output Tea, Coffee or Capuc-

cino independently from CP and TP .

What we need is a description of the random event of output(ting) a drink.



Crazy Coffee Machine

A description of the random event of output(ting) a drink.

More formally we need (for each time step n and for each kind of output

O = {Tea, Cof, Cap}), the following conditional probabilities:

P (On = k|Xn = pi, Xn+1 = pj)

where k is one of the values Tea, Coffee or Capuccino.

This matrix is called the output matrix of the machine (or of its Hidden

markov Model).



A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine

Given the following output probability for the machine

Tea Coffee Capuccino
TP 0.8 0.2 0.0
CP 0.15 0.65 0.2

and let CP be the starting state (i.e. πCP = 1, πTP = 0).

• Find the following probabilities of output from the machine

1. (Cappuccino, Coffee) given that the state sequence is (CP, TP, TP )

2. (Tea, Coffee) for any state sequence

3. a generic output O = (o1, ..., on) for any state sequence



A Simple Example of Hidden Markov Model (2)

Solution for the problem 1

• For the given state sequence X = (CP, TP, TP )
P (O1 = Cap, O2 = Cof, X1 = CP, X2 = TP, X3 = TP ) =
P (O1 = Cap, O2 = Cof |X1 = CP, X2 = TP, X3 = TP )P (X1 = CP, X2 = TP, X3 =
TP )) =
P (Cap, Cof |CP, TP, TP )P (CP, TP, TP ))

Now:
P (Cap, Cof |CP, TP, TP ) is the probability of output Cap, Cof during transitions from
CP to TP and TP to TP

and

P (CP, TP, TP ) is the probability of the transition chain.

Therefore,
= P (Cap|CP, TP )P (Cof |TP, TP ) =(in our simplified model)
= P (Cap|CP )P (Cof |TP ) = 0.2 ∗ 0.2 = 0.04



A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2

In general, for any sequence of three states X = (X1, X2, X3)
P (Tea, Cof |X1, X2, X3) =
P (Tea, Cof) = (as sequences are a partition for the sample space)
=

∑
X1,X2,X3

P (Tea, Cof |X1, X2, X3)P (X1, X2, X3)

where

P (Tea, Cof |X1, X2, X3) = P (Tea|X1, X2)P (Cof |X2, X3) =
(for the simplified model of the coffee machine )

= P (Tea|X1)P (Cof |X2)

and (for the Markov constraint) P (X1, X2, X3) = P (X1)P (X2|X1)P (X3|X2)

The simplified model is concerned with only the following transition chains
(CP, CP, CP )
(CP, TP, CP )
(CP, CP, TP )
(CP, TP, TP )

so that the following probability is given



P (Tea, Cof) =
P (Tea|CP )P (Cof |CP )P (CP )P (CP |CP )P (CP |CP )+ states: (CP,CP,CP))
P (Tea|CP )P (Cof |TP )P (CP )P (TP |CP )P (CP |TP )+ states: (CP,TP,CP))
P (Tea|CP )P (Cof |CP )P (CP )P (CP |CP )P (TP |CP )+ states: (CP,CP,TP))
P (Tea|CP )P (Cof |TP )P (CP )P (TP |CP )P (TP |TP ) = states: (CP,TP,TP))

= 0.15 ∗ 0.65 ∗ 1 ∗ 0.5 ∗ 0.5+

+ 0.15 ∗ 0.2 ∗ 1 ∗ 0.5 ∗ 0.3+

+ 0.15 ∗ 0.65 ∗ 1 ∗ 0.5 ∗ 0.5+

+ 0.15 ∗ 0.2 ∗ 1.0 ∗ 0.5 ∗ 0.7 =

= 0.024375 + 0.0045 + 0.024375 + 0.0105 =

= 0.06375



A Simple Example of Hidden Markov Model (2)

Solution to the problem 3 (decoding)

In the general case, a sequence of n symbols O = (o1, ..., on) out from any

sequence of n + 1 transitions X = (p1, ..., pn+1)

can be predicted by the following probability:

P (O) =
∑

p1,...,pn+1
P (O|X)P (X) =

=
∑

p1,...,pn+1
P (CP )

∏n
t=1 P (Ot|pt, pt+1)P (pt+1|pt)



Modeling linguistic tasks of Stochastic Processes

Outline

• Available mathematical frameworks

• Questions for Stochastic models

• Modeling POS tagging via HMM



Mathematical Methods for HMM

The complexity of training and decoding can be limited by the use of

optimization techniques

• Parameter estimation via entropy minimization (EM)

• Tagging and Decoding via dynamic programming (O(n))

A relevant issue is the availablity of source data so that supervised training

can (or cannot) be applied



HMM and POS tagging

Given a sequence of morphemes w1, ..., wn with ambiguous syntactic de-

scriptions (i.e.part-of-speech) tag, derive the sequence of n POS tags

t1, ..., tn that maximizes the following probability:

P (w1, ..., wn, t1, ..., tn)

that is

(t1, ..., tn) = argmaxpos1,...,posnP (w1, ..., wn, pos1, ..., posn)

Note that this is equivalent to the following:

(t1, ..., tn) = argmaxpos1,...,posnP (pos1, ..., posn|w1, ..., wn)

as: P (w1,...,wn,pos1,...,posn)
P (w1,...,wn)

= P (pos1, ..., posn|w1, ..., wn)

and P (w1, ..., wn) is the same for all the sequencies (pos1, ..., posn).



HMM and POS tagging

How to map a POS tagging problem into a HMM.

The following problem

(t1, ..., tn) = argmaxpos1,...,posnP (pos1, ..., posn|w1, ..., wn)

can be also written (Bayes law) as:

(t1, ..., tn) = argmaxpos1,...,posnP (w1, ..., wn|pos1, ..., posn)P (pos1, ..., posn)



HMM and POS tagging

The HMM Model of POS tagging:

• HMM States are mapped into POS tags (ti), so that
P (t1, ..., tn) = P (t1)P (t2|t1)...P (tn|tn−1)

• HMM Output symbols are words, so that
P (w1, ..., wn|t1, ..., tn) =

∏n
i=1 P (wi|ti)

• Transitions represent moves from one word to another

Note that the Markov assumption is used

• to model probability of a tag in position i (i.e. ti) only by means of
the preceeding part-of-speech (i.e. ti−1)

• to model probabilities of words (i.e. wi) based only on the tag (ti)
appearing in that position (i).



HMM and POS tagging

The final equation is thus:

(t1, ..., tn) = argmaxt1,...,tnP (t1, ..., tn|w1, ..., wn) =
∏n

i=1 P (wi|ti)P (ti|ti−1)



Fundamental Questions for HMM in POS tagging

1. Given a sample of the output sequences and a space of possible models

how to find out the best model, that is the model that best explains

the data:

how to estimate parameters?

2. Given a model and an observable output sequence O (i.e. words), how

to determine the sequence of states (t1, ..., tn) such that it is the best

explanation of the observation O:

Statistical Inference

3. Given a model what is the probability of an output sequence, O:

Decoding Problem.



Fundamental Questions for HMM in POS tagging

• 1. Baum-Welch (or Forward-Backward algorithm), that is a special

case of Expectation Maximization estimation.

Weakly supervised or even unsupervised.

Problems: Local minima can be reached when initial data are poor.

• 2. Viterbi Algorithm for evaluating P (W |O).

Linear in the sequence length.

• 3. Not relevant for POS tagging, where (w1, ..., wn) are always known.

Trellis and dynamic programming technique.



HMM and POS tagging

Advantages for adopting HMM in POS tagging

• An elegant and well founded theory

• Training algorithms:

– Estimation via EM (Baum-Welch)

– Unsupervised (or possibly weakly supervised)

• Fast Inference algorithms: Viterbi algorithm

Linear wrt the sequence length (O(n))

• Sound methods for comparing different models and estimations

(e.g. cross-entropy)



HMM and POS tagging: Parameter Estimation

Supervised methods in tagged data sets:

• Output probs: P (wi|pj) = C(wi,p
j)

C(pj)

• Transition probs: P (pi|pj) = C(pi follows pj)
C(pj)

• Smoothing: P (wi|pj) = C(wi,p
j)+1

C(pj)+Ki



HMM and POS tagging: Parameter Estimation

Unsupervised (few tagged data available):

• With a dictionary: P (wi|pj) are early estimated from D,

while P (pi|pj) are randomly assigned

• With equivalence classes uL, (Kupiec92):

P (wi|pL) =
1
|L|C(uL)

∑
uL′

C(uL′)
|L′|

For example, if L ={noun, verb} then uL = {cross, drive, }



Other Approaches to POS tagging

• Church (1988):∏3
i=n P (wi|ti)P (ti−2|ti−1, ti) (backward)

Estimation from tagged corpus (Brown)

No HMM training

Perfromances: > 95%

• De Rose (1988):∏n
i=1 P (wi|ti)P (ti−1|ti) (forward)

Estimation from tagged corpus (Brown)

No HMM training Performance: 95%

• Merialdo et al.,(1992), ML estimation vs. Viterbi training

Propose an incremental approach: small tagging and then Viterbi train-

ing



• ∏n
i=1 P (wi|ti)P (ti+1|ti, wi) ???



Statistical Parsing

Outline:

• Parsing and Statistical modeling

• Some Parsing Models

– Probabistic Context-Free Grammars

– Left-Corner Grammars (LCG)

– Dependency-based assumptions

• Systems



Parsing and Statistical modeling

Main Issues in statistical modeling of grammatical recognition:

• Modelling the structure vs. the language

• How context can be taken into account

• Modelling the structure vs. the derivation

• Which Parsing vs. the Model



Probabilistic Context-Free Grammars, PCFG

Basic Steps:

• Start from a CF grammar

• Attach probability to the rules

• Tune (i.e. adjust them) against training data (e.g. a treebank)



Probabilistic Context-Free Grammars, PCFG

• Syntactic sugar

– Nrl → Γ ⇒ P (Nrl → Γ)

– P (s) =
∑

t P (t), where t are parse trees for s

w1, w2, …, wr-1, wr, ………..………, wl, wl+1, …, wn

Nrl



Probabilistic Context-Free Grammars, PCFG

Main assumptions

• Total probability of each continuation, i.e.

∀i ∑
j P (N i → Γj) = 1

• Context Independence

– Place Invariance, ∀k P (Nj
k(k+const) → Γ) is the same

– Context-freeness, ∀r, l P (Nj
rl → Γ) is

independent from w1, .., wr−1 and wl+1, ..., wn

• Derivation (or Anchestor) Independence, i.e.

∀k P (Nj
rl → Γ) is independent from any anchestor node outside N

j
rl



PCFG

Main Questions:

• How to develop the best model from observable data (Training)

• Which is the best parse for a sentence

• Which training data?



Probabilistic Context-Free Grammars, PCFG

• Probabilities of trees
– P (t) = P (1S13 →1 NP3

12V P33,1 NP12 → the man,3 V P33 → snores) =

= P (1α)P (1δ|1α)P (3ϕ|1α,1 δ) =

= P (1α)P (1δ)P (3ϕ) =

= P (S → NPV P )P (NP → the man)P (V P → snores)

the                         man          snores

1δ

1S

1NP 3VP

1α

3ϕ



PCFG Training

Supervised case: Treebanks are used.

• Simple ML estimation by counting subtrees

• Basic problems are low counts for some structures

and local maxima

• When the target grammatical model is different (e.g. dependency

based), rewriting is required before counting



PCFG Training

Unsupervised: Given a grammar G, and a set of sentences (parsed but not

validated)

• The best model is the one maximizing the probability of useful struc-

tures in observable data set

• Parameters are adjusted via EM algorithms

• Ranking data according to small training data (Pereira and Schabes

1992)



Approaches different from PCFG

• Lexicalized extensions (e.g. LCFG or PLTAG)

• Derivation-based approaches (Left Corner probabilistic parsing):

same structure may receive different probability assignments



Statistical Lexicalized Parsing

In (Collins 96) a dependency-based statistical parser is proposed:

• It adopts chunks (Abney,1991) for complex NPs

• Probabilities are assigned to head-modifier dependencies,

(R, < hj, tj >, < hk, tk >)

• Dependency relationships are considered independent

• Supervised training is allowed from the treebank



Results

Performances of different Probabilistic Parsers

(Sentences with ≤ 40 words)

%LR %LP CB % 0 CB

Charniak (1996) 80.4 78.8
Collins (1996) 85.8 86.3 1.14 59.9
Charniak (1997) 87.5 87.4 1.00 62.1
Collins (1997) 88.1 88.6 0.91 66.5



Further Issues in statistical grammatical recognition

• Syntactic Disambiguation

– PP-attachment

– Subcategorization frames Induction and Use

• Semantic Disambiguation

• Word Clustering for better estimation (e.g. data sparseness)



Disambiguation of Prepositional Phrase attachment

Purely probabilstic model (Hindle and Rooths, 1991, 1993)

• VP NP PP sequences (i.e. verb and noun attachment)

• bi-gram probabilties P (prep|noun) and P (prep|verb) are compared

(via χ2 test)

• Smoothing low counts is applied for sparse data problems



Disambiguation of Prepositional Phrase attachment

An hybrid model (Basili et al, 1993, 1995):

• Multiple attachment sites in a dependency framework

• Semantic classes for words are available

• semantic tri-gram probabilities, i.e. P (prep,Γ|noun) and P (prep,Γ|verb),

are compared

• Smoothing is not required as Γ are classes and low counts are less

effective



Bibliographic References

• HMM models

• Corpus-driven POS tagging
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⇒ see the handsout!


