DATABASES: TEMI AVANZATI

Roberto Basili Corso di Basi di Dati e Conoscenza a.a. 2013-14

Outline

Motivations for the second emisemester

- Main topics
 - From RDMS to deductive DBs
 - Deduction, Inference and Programming
 - Knowledge Representation
 - Multimedia DBs
 - Management of Unstructured Data
- Projects of the Course

- Database = a piece of software to handle data:
 - store,
 - maintain, and
 - query
- Most ideal system situation-dependent
 - data type: simple / semi-structured / complex / ...
 - types of queries: simple lookup / analytical / ...
 - type of usage: multi-user / single-user / distributed / ...
 - •

- Relational databases are tuned towards:
 - simple data, highy structured
 - simple, ad-hoc queries
 - multiple users
- Other models are more suitable for other types of data
 - Object-Oriented,
 - Deductive,
 - Semi-Structured Databases,
 - Data warehouses

- Study different data models
 - Advantages, disadvantages
 - What is important at the conceptual level?
 - What's underneath?
 - Technology
 - Social needs

- First emisemester:
 - Relational database model
- Motivations:
 - why they should be extended
 - Which further conceptual notions are required
 - How they interact with the existing core notions (e.g. SQL interpretation)
- Student should be then able to:
 - Frame DB technology in a wider perspective
 - Join groups dealing with more specific technologies (e.g. Semantic Web)

Organization

Two lesons per week ...

- Wed 11:30 → 13:30 Aula 9 NED
 - lessons
 - opportunity to practice, ask questions
- Gio 9:00 → 11:30 Aula 4 PP
 - New topics
 - Solve exercises

Practical Organization

Important information

http://ai-nlp.info.uniroma2.it/basili/didattica/DKBs1/

basili@info.uniroma2.it

Practical Organization

- Course material: Books
 - Brachman e Levesque: "Knowledge representation and reasoning", Morgan Kaufmann, Cap. 2,3,4,10. ISBN 1-55860-932-6.
 - Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory, Implementation, and Applications. Cap. 1, 2, 10. Cambridge University Press, New York, NY, USA.
 - V. S. Subrahmanian. 1998. Principles of Multimedia Database Systems. Part I, II. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- Tech Reports, Papers e Slides distribuited through the Web site

Course Topics

- Limitations of the relational model
- Knowledge Representation and Reasoning
- Deductive databases
- Further Adanced Topics
 - Object-Oriented Databases
 - Data Warehousing & OLAP
 - Semi-Structured data
- Multimedia DBs

Project

- Pick one of the topics:
 - deductive databases / rule-based systems
 - object-oriented databases
 - Multimedia and semi-structured databases
- Formulate your own project
 - illustrating the different course concepts
 - agree upon it with the responsible
 - show you mastered the technology

Limitations of the relational model

- Not every query can be expressed
 - Transitive closure cannot be expressed in Relational Algebra
 - Give all cities reachable from Antwerp by plane
 - Give all smallest components of a part
 - Give all decendants of person X
 - Not even if you're very smart ...
 - proof
 - Extension to other relational query languages

- Motivation is two-fold:
 - add deductive capabilities to databases; the database contains:
 - facts (intensional relations)
 - rules to generate derived facts (extensional relations)

Database is knowledge base

- Extend the querying
 - datalog allows for recursion

- Datalog as engine of deductive databases
 - similarities with Prolog
 - has facts and rules
 - rules define -possibly recursive- views
- Semantics not always clear
 - safety
 - negation
 - recursion

```
g(a,b). g(b,c). g(a,d).

reach(X,X) := g(X,Y).

reach(X,Y) := g(X,Y).

reach(X,Z) := reach(X,Y), reach(Y,Z).

node(X) := g(X,Y).

node(Y) := g(X,Y).

unreach(X,Y) := node(X), node(Y), node(Y), node(X,Y).
```

- Relevant topics :
 - How are relational (i.e. extensional) DBs used to support recursive computation
 - How to handle negation and recursion in the same program
 - How to efficiently evaluate Datalog queries

- Many applications require the storage and manipulation of complex data
 - design databases
 - geometric databases
 - •
- Object-Oriented programming languages manipulate complex objects
 - classes, methods, inheritance, polymorphism

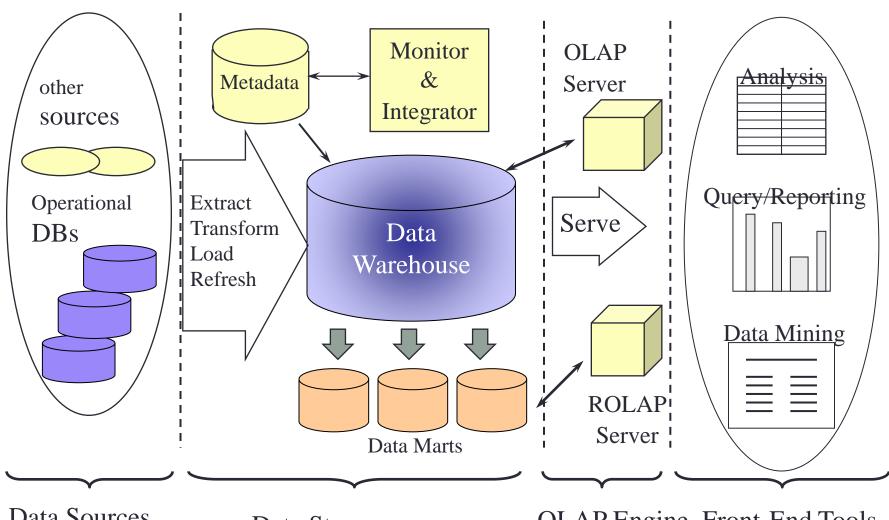
- Very simple example:
 - Class book
 - set of authors
 - title
 - set of keywords

Extremely simple to model in OO language Hard in relational database!

- In many applications persistency of the data is nevertheless required
 - protection against system failure
 - consistency of the data
- Mapping: object in OO language → tuples of atomic values in relational database is often problematic

Either we ignore the multivalued dependencies

Title	Author	Keyword
Database System Concepts	Silberschatz	Database
Database System Concepts	Korth	Database
Database System Concepts	Sudarshan	Database
Database System Concepts	Silberschatz	Storage
Database System Concepts	Korth	Storage
Database System Concepts	Sudarshan	Storage


This table is in 3NF, BCNF

Or we go to 4NF

Title	Author	
Database System Concepts	Silberschatz	
Database System Concepts	Korth	
Database System Concepts	Sudarshan	

Title	Keyword
Database System Concepts	Database
Database System Concepts	Storage

- Basically OODB = persistent OO programming language
 - Very important concept
 - rather uninteresting scientifically

Data Sources

Data Storage

OLAP Engine Front-End Tools

Transaction processing

- Operational setting
- Up-to-date = critical
- Simple data
- Simple queries; only « touch » a small part of the database

Flight reservations

- ticket sales
- do not sell a seat twice
- reservation, date, name
- Give flight details of X
 List flights to Y

Decision support

- Off-line setting
- « Historical » data
- Summarized data
- Integrate different databases
- Statistical queries

Flight company

- Evaluate ROI flights
- Flights of last year
- # passengers per carrier for destination X
- Passengers, fuel costs, maintenance info
- Average % of seats sold/month/destination

- Relevant topics :
 - Conceptual models for decision support
 - Database explosion problem
 - Efficient implementation strategies
 - indexing, view materialization

Summary

- Relational model has limitations
 - simple queries
 - simple data
- OODBs allow complex data types
- Deductive databases, datalog complex queries
- Somewhere in-between: datawarehouses and OLAP
 - special requirements, special datastructures