Performance Evaluation of Machine Learning Systems

> Simone Filice filice.simone@gmail.com

University of Roma Tor Vergata

Web Mining e Retrieval 2013/2014

Motivations

□ Is a ML system performing properly?

Among a set of different algorithms/models, which one is performing better on a given task?

What can I do to improve my system?

Performance Evaluation Metrics

- Classifier Evaluation Metrics
- Information Retrieval Systems Evaluation Metrics

Tuning and Evaluation Methods

□ Error Diagnostics

Performance Evaluation Metrics

Classifier Evaluation Metrics

Information Retrieval Systems Evaluation Metrics

Tuning and Evaluation Methods

Error Diagnostics

Classifier Evaluation: Confusion Matrix

		PREDICTED VALUE		
		Class A	Class B	Class C
ACTUAL VALUE	Class A	38	12	0
	Class B	5	43	2
	Class C	6	0	44

 $accuracy = \frac{\#correct\ classifications}{\#classifications} = \frac{38 + 43 + 44}{150} = 83.33\%$ $error\ rate = \frac{\#incorrect\ classifications}{\#classifications} = \frac{12 + 5 + 2 + 6}{150} = 16.67\%$

Evaluation with skewed data

 Accuracy is not a suitable metric for task with imbalanced classes (for instance a spam detector)

		PREDICTED VALUE		
.UE		Spam	Non-Spam	
ACTUAL VALUE	Spam	0	10	
ΑCTU	Non-Spam	0	9990	

$$accuracy = \frac{\#correct\ classifications}{\#classifications} = \frac{9990}{10000} = 99.9\%$$

Single Class Metrics

		PREDICTED VALUE		
ACTUAL VALUE		Class C	Not Class C	
	Class C	ТР	FN	
		True Positive	False Negative	
	Not Class C	FP	TN	
		False Positive	True Negative	

$$precision = \frac{TP}{TP + FP}$$
$$TP$$

what percentage of instances the classifier labeled as positive are actually positive?

$$recall = \frac{TP}{TP + FN}$$

what percentage of positive instances did the classifier label as positive?

 $F1 = \frac{2 \times precision \times recall}{precision + recall}$

F-measure is the harmonic mean of precision and recall

Performance Evaluation Metrics

- Classifier Evaluation Metrics
- Information Retrieval System Evaluation Metrics

Tuning and Evaluation Methods

Error Diagnostics

Challenging in Evaluating IR Models

The output provided by an Information Retrieval System is not simply correct or wrong

□ Ideally we need to estimate user happiness

Happiness is elusive to measure
Most common proxy: *relevance* of search results

Challenging in Evaluating IR Models

- Effectiveness depends on the relevance of retrieved documents
- Relevance is hard to model. It should be a continuous function and not a binary value
- Relevance is:
 - Subjective: depends on the user's point of view
 - Contextual: depends on the current user's needs
 - Cognitive: is perceived and experienced by the user
 - Dynamic: changes over the time

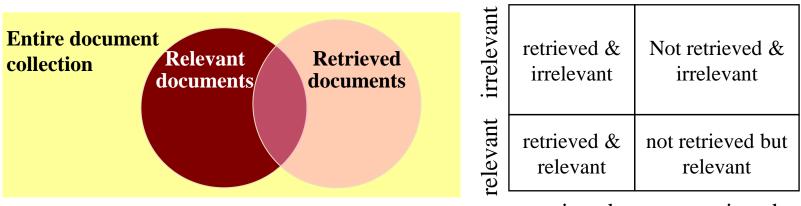
Challenging in Evaluating IR Models

- A search engine is effective if it is able to provide documents that addresses user information need
- The information need is translated into a query
- Relevance is assessed relative to the information need not the query
- E.g., <u>Information need</u>: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
- Query: wine red white heart attack effective
- Evaluate whether the doc addresses the information need, not whether it has these words

Evaluating IR Systems

- Tests directly involving users are the most reliable way to evaluate an IR system
 - A/B testing
 - Surveys...
- Offline tests are necessary to minimize the cost of the evaluation. Human Labeled Corpora (Gold Standard):
 - A benchmark document collection
 - A benchmark suite of queries
 - A usually binary assessment of either Relevant or Nonrelevant for each query and each document

Evaluating IR Systems



retrieved

not retrieved

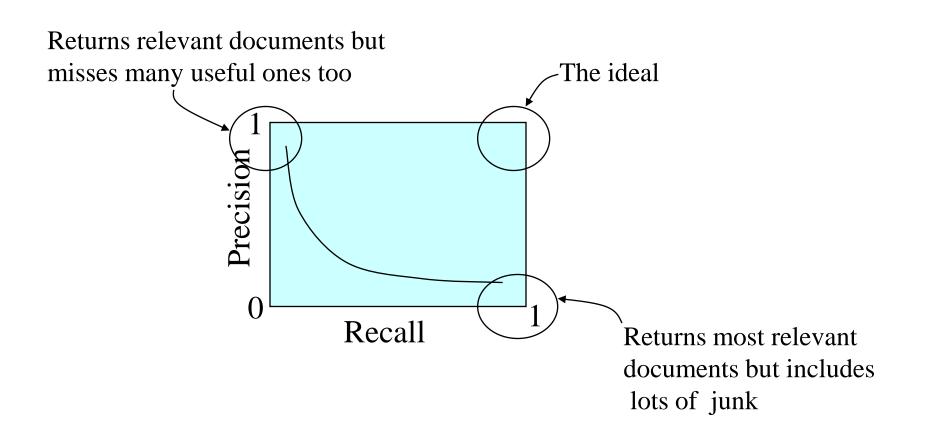
 $recall = \frac{Number of relevant documents retrieved}{Total number of relevant documents}$ $precision = \frac{Number of relevant documents retrieved}{Total number of documents retrieved}$

What about accuracy???

Trade-off between Precision and Recall

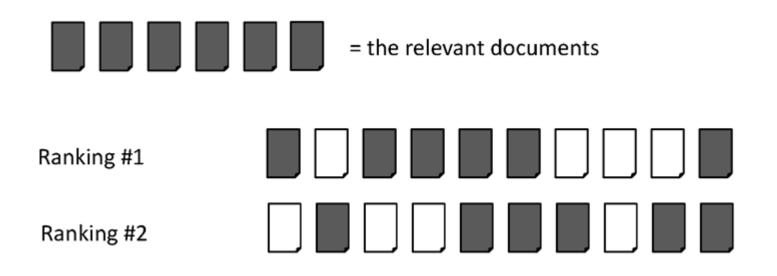
- You can get high recall (but low precision) by retrieving all docs for all queries!
- Recall is a non-decreasing function of the number of docs retrieved
- In a good system, precision decreases as either the number of docs retrieved or recall increases
 - This is not a theorem, but a result with strong empirical confirmation

Trade-off between Precision and Recall



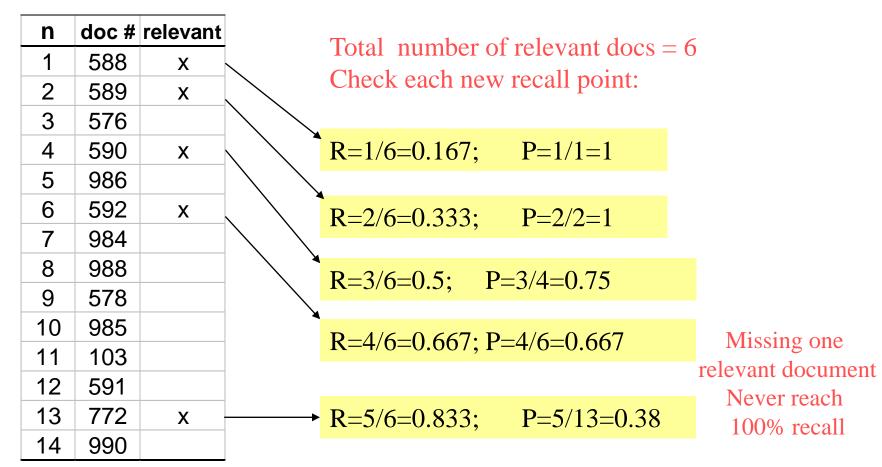
Evaluating ranked results

- IR systems usually outputs the retrieved documents in a ranked list
 - A proper evaluating should mainly consider elements in the top of the list



Recall/Precision Points

Compute a recall/precision pair for each position in the ranked list that contains a relevant document.



Averaging over Queries

- A precision-recall graph for one query isn't a very sensible thing to look at
 - You need to average performance over a whole bunch of queries
- □ Some standard recall levels r_i are set. Typically:

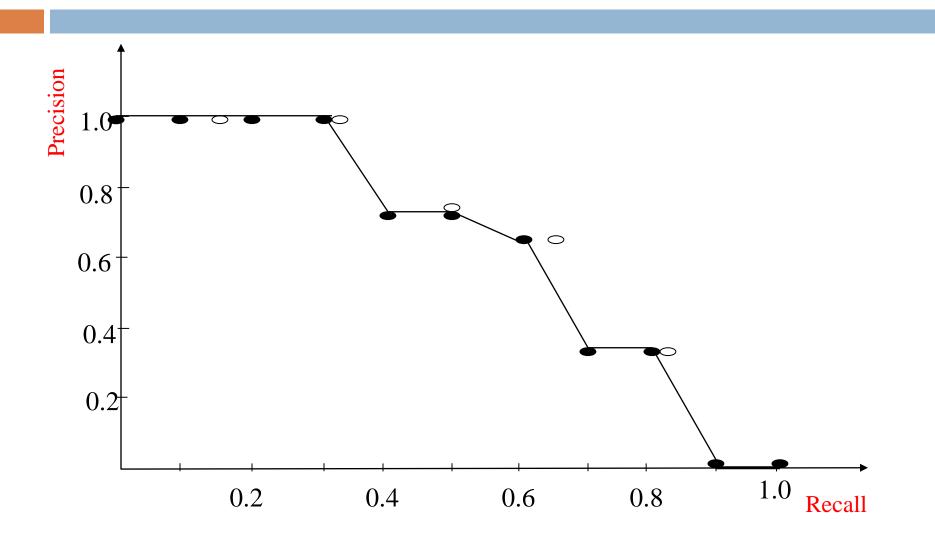
 $r_0 = 0.0, r_1 = 0.1, ..., r_{10} = 1.0$ (11-point interpolated average precision)

For each query the precision corresponding to each standard recall levels are estimated via interpolation:

$$P_{interp}(r_j) = \max_{r \ge r_j} P(r)$$

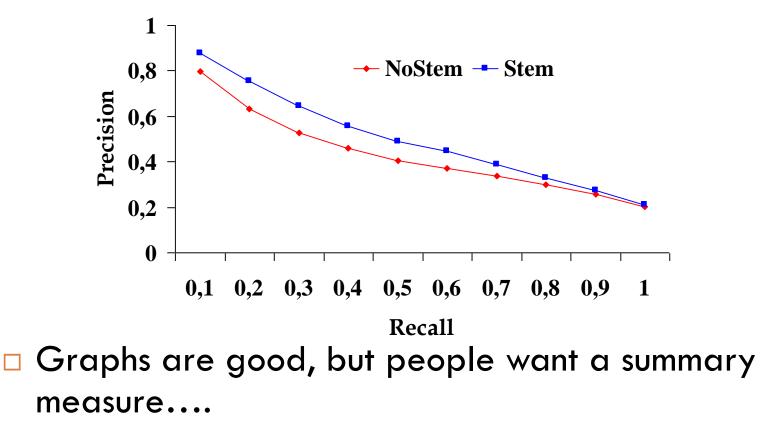
Plot average precision/recall curves to evaluate overall system performance on a document/query corpus.

Interpolating a Recall/Precision Curve



Compare two or more Systems

The curve closest to the upper right-hand corner of the graph indicates the best performance



Ranking metrics

Precision at fixed retrieval level

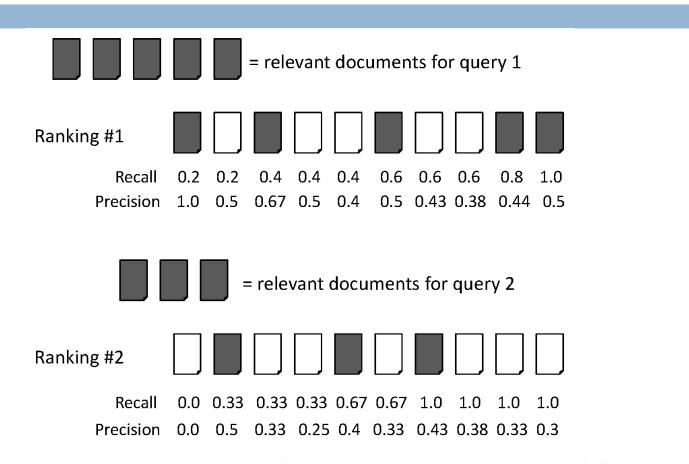
- Precision-at-k (P@k): Precision of top k results
- Perhaps appropriate for most of web search: all people want are good matches on the first one or two result pages

Mean Average Precision (MAP)

$$MAP(Q) = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{|R_q|} \sum_{d \in R_q} P @ k_{q,d}$$

Q = set of queries Rq=set of relevant documents for the query q $K_{q,d}$ =ranking of the document d retrieved throught the query q

Mean Average Precision



average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53

Performance Evaluation Metrics

- Classifier Evaluation Metrics
- Information Retrieval Systems Evaluation Metrics

Tuning and Evaluation Methods

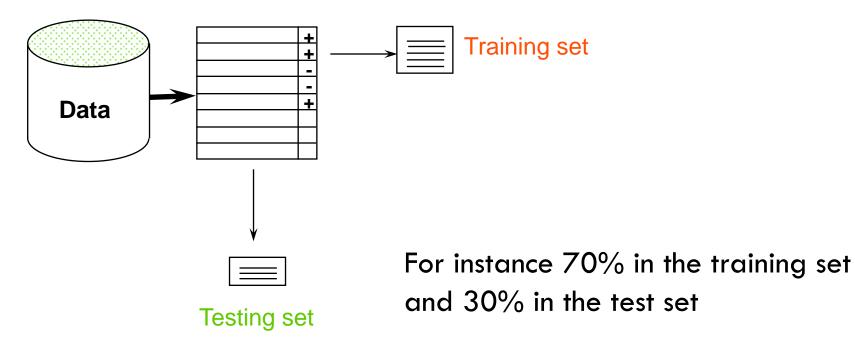
Error Diagnostics

Testing Data

- To obtain a reliable estimation, test data must be instances not used during the training step
 - Error on the training data is not a good indicator of performance on future data, because new data will probably not be **exactly** the same as the training data!
 - Overfitting fitting the training data too precisely usually leads to poor results on new data
 - We want to evaluate how predictive the model we learned is, and not its memorization capability

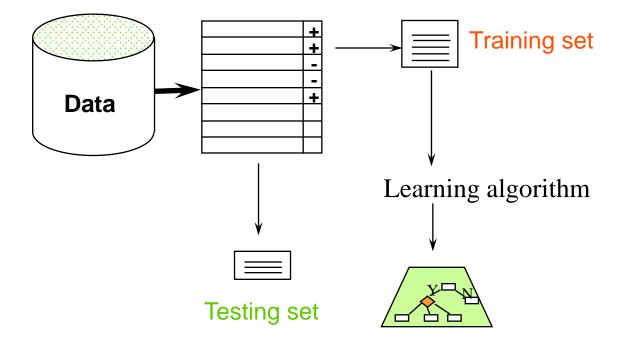
Step 1: dataset splitting

Results Known



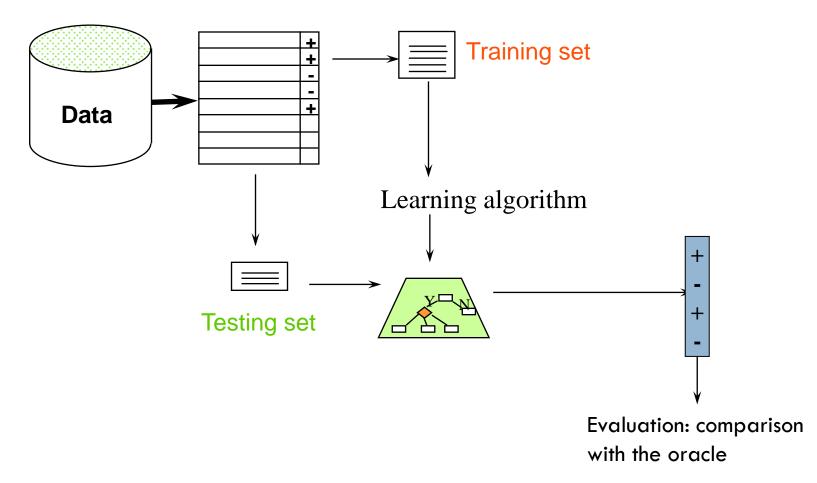
Step 2: learning phase

Results Known



Step 3: testing the model

Results Known

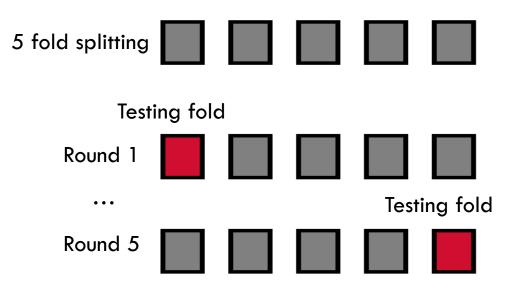


Evaluation on Few Data

- When data is scarce (totally or for a single class), a single evaluation process could not be enough representative
 - The testing set could contain too few instances to produce a reliable result
- The evaluation process must be repeated with different splitting

N-Fold Cross Validation

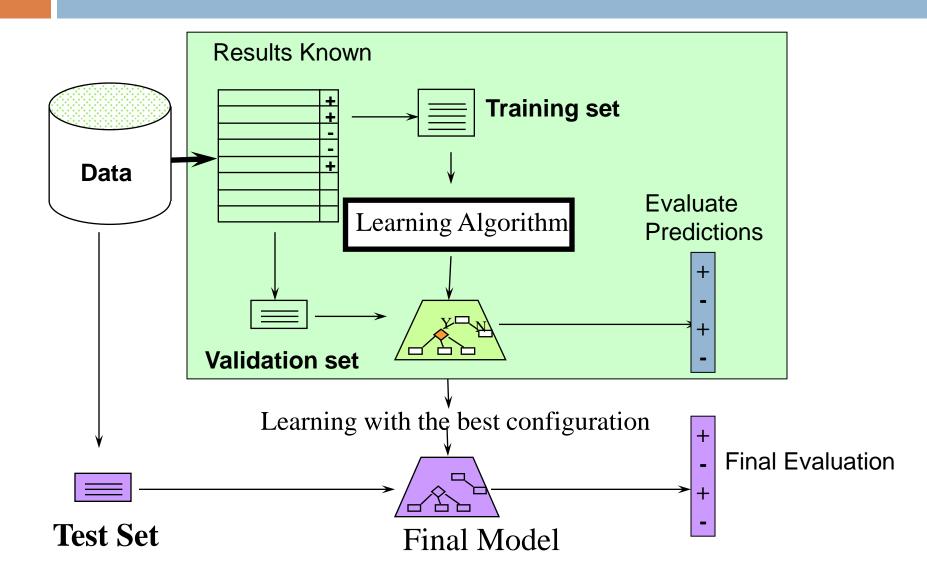
- Data is split into n subsets of equal size
- Each subset in turn is used for testing and the remainders n-1 for training
- The metrics estimated in each round are averaged



Tuning a Classifier

- Most of ML algorithms depends on some parameters (example k in KNN)
- The best configuration must be choosen after a proper tuning stage:
 - A set of configurations must be established (for instance k=1,2,5,10,15,20,30,50)
 - Each configuration must be evaluated on a validation (or tuning) set

Complete ML Process



Performance Evaluation Metrics

- Classifier Evaluation Metrics
- Information Retrieval Systems Evaluation Metrics

Tuning and Evaluation Methods

Error Diagnostics

Error Diagnostics

- Error Diagnostics helps in identifying what problem is affecting an ML systems that performs poorly
- Understanding the problem is useful in coming up with promising solutions for improving the system

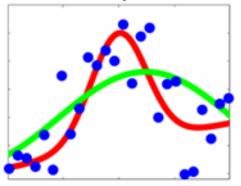
Two opposite issues:
Bias Problem
Variance Problem

Bias Versus Variance

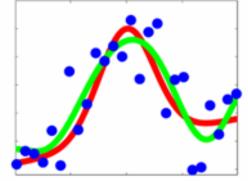
Example in Regression

BIAS PROBLEM:

Learned function with too simple model

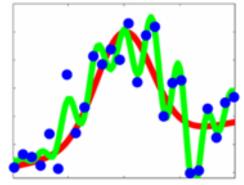


Learned function with appropriate model



VARIANCE PROBLEM:

Learned function with too complex model



Diagnosing Bias vs Variance

🗆 Bias

Underfitting: the model is not enough expressive to fit the complexity of the underlying concept to be learned

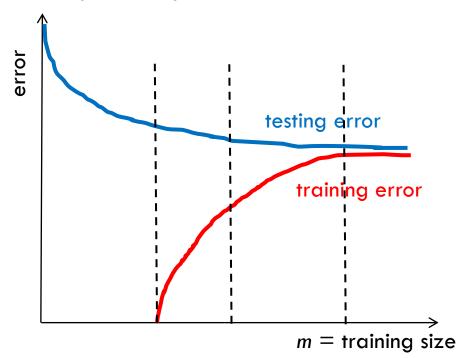
A high error is observed both in training and testing

Variance

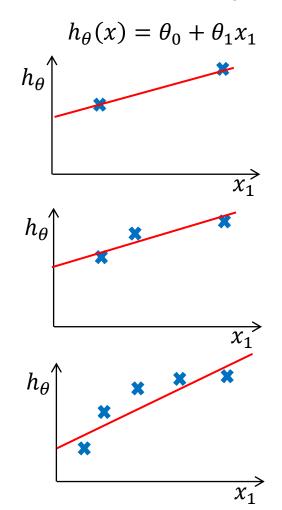
- Overfitting: the model perfectly fits training data but is too complex (example: an extremely deep decision tree) and does not generalize well on new data
- A high difference between the training error and the testing error

Diagnosing High Bias via Learning Curve

Example in regression: we want to fit a 2D data distribution with a straight line

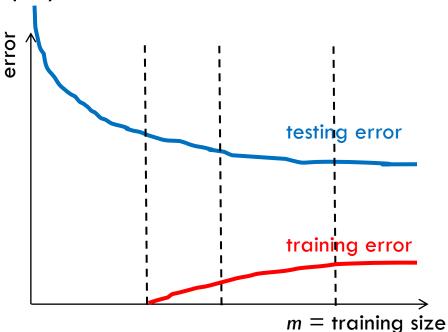


After a certain value of m, the learning process saturates and the testing error becomes similar to the training error \rightarrow getting more example will not help too much



Diagnosing High Variance via Learning Curve

Example in regression: we want to fit a 2D data distribution with 10-th degree polynomial function $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_{10} x_1^{10}$



A large gap between the training error and the testing error is observed. The saturation point is still not reached \rightarrow new examples should help

$$h_{\theta}$$

 χ_1

Solutions for Bias and Variance

🗆 Bias

- Add new informative features
- Use a more sophisticated algorithm (or the same algorithm with a more complex parameterization)

Variance

- Add new examples
- Remove irrelevant and noisy features
- Use a less complicated parameterization (example simpler polynomial function in regression)

- The effectiveness of ML or IR systems can be assessed with different evaluation metrics
 - we saw just the most popular, but a lot of other metrics exist!!!
- □ A reliable evaluation should follow some guideline
- An error diagnostics is useful for understanding how improving the system performance