
Online Machine Learning

Web Mining e Retrieval 2013/2014

Simone Filice

filice.simone@gmail.com

University of Roma Tor Vergata

Motivations

 Common ML algorithms simultaneously exploit a

whole dataset. This process, referred as batch

learning, is not practical when:

 New data naturally arise over the time: exploiting new data

means building from scratch a new model  usually not

feasible!

 The dataset is too large to be efficiently exploited: memory

and computational problems!

 The concept we need to learn changes over the time: batch

learning provide a static solution that will surely degrade as

time goes by

Online Machine Learning

 Incremental Learning Paradigm:

 Every time a new example is available, the learned

hypothesis is updated

 Inherent Appealing Characteristics:

 The model does not need to be re-generated from

scratch when new data is available

 Capability of tracking a Shifting Concept

 Faster training process if compared to batch learners

(e.g. SVM)

Overview

 Linear Online Learning Algorithms

 Kernelized Online Learning Algorithms

 Online Learning on a Budget

Overview

 Linear Online Learning Algorithms

 Kernelized Online Learning Algorithms

 Online Learning on a Budget

Perceptron

 Perceptron is a simple discriminative classifier

 Instances are feature vectors 𝒙′ ∈ ℝ𝑑 with label 𝑦 ∈ −1, +1

 Classification function is an hyperplane in ℝ𝑑 : 𝑓 𝒙′ = 𝒘′ ∙ 𝒙′ + 𝑏

 Compact notation: 𝒘 = *𝑏,𝑤′1, 𝑤
′
2,…, 𝑤′𝑑+, 𝒙 = *1, 𝑥

′
1, 𝑥
′
2,…, 𝑥′𝑑+

Batch Perceptron

 IDEA : adjust the hyperplane until no training errors are
done (input data must be linearly separable)

 Batch perceptron learning procedure:
Start with 𝒘1 = 0

do

 errors=false

 For all t=1…T

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝒘𝑡 ∙ 𝒙𝒕

 if 𝑦 ∙ 𝑦𝑡 < 𝛽𝑡 then 𝒘𝑡+1 = 𝛾𝑡𝒘𝑡 + 𝛼𝑡𝑦𝑡𝒙𝑡 with 𝛼𝑡 > 0
 errors=true

 else

 𝒘𝑡+1 = 𝒘𝑡

while(errors)

return 𝒘𝑇+1

Online Learning Perceptron

 IDEA : adjust the hyperplane after each classification (𝒘𝑡 =

weight vector at time t) and never stop learning

 Online perceptron learning procedure:

Start with 𝒘1 = 0

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝒘𝑡 ∙ 𝒙𝒕

 Receive a feedback 𝑦𝑡

 if 𝑦 ∙ 𝑦𝑡 < 𝛽𝑡 then 𝒘𝑡+1 = 𝛾𝑡𝒘𝑡 + 𝛼𝑡𝑦𝑡𝒙𝑡 with 𝛼𝑡 > 0
 else 𝒘𝑡+1 = 𝒘𝑡

endfor

Shifting Perceptron

 IDEA: weak dependance from the past in order to obtain a tracking
ability

 Shifting Perceptron learning procedure (Cavallanti et al 2006):
Start with 𝒘1 = 0 , k=0

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = sign(𝒘𝑡 ∙ 𝒙𝒕)

 Receive a feedback 𝑦𝑡

 if 𝑦 ≠ 𝑦𝑡 then

 𝜆𝑘 =
𝜆

𝜆+𝑘
 with 𝜆 > 0

 𝒘𝑡+1 = 1 − 𝜆𝑘 𝒘𝑡 + 𝜆𝑘𝑦𝑡𝒙𝑡

 k=k+1

 else 𝒘𝑡+1 = 𝒘𝑡

endfor

Online Linear Passive Aggressive (1/3)

 IDEA: Every time a new example ‹xt , yt› is available the current
classification function is modified as less as possible to
correctly classify the new example

 Passive Aggressive learning procedure (Crammer et al 2006):
Start with 𝒘1 = 0 , k=0

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = sign(𝒘𝑡 ∙ 𝒙𝒕)

 Receive a feedback 𝑦𝑡

 Measure a classification loss (divergence between 𝑦𝑡 and 𝑦)
 Modify the model to get zero loss, preserving what was
 learned from previous examples

Online Linear Passive Aggressive (2/3)

 Loss measure:

Hinge loss: 𝑙 𝒘; 𝒙𝑡 , 𝑦𝑡 = max 0; 1 − 𝑦𝑡 𝒘 ∙ 𝒙𝑡

 Model variation:

𝒘𝑡+1 −𝒘𝑡
2

 Passive Aggressive Optimization Problem:

𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 such that 𝑙 𝒘; 𝒙𝑡 , 𝑦𝑡 = 0

 Closed form solution:

𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡 where 𝜏𝑡 =
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡
2

Online Linear Passive Aggressive (3/3)

 The previous formulation is a hard margin version that has a problem:

 a single outlier could produce a high hyperplane shifting, making the model
forget the previous learning

 Soft version solution:

 control the algorithm aggressiveness through a parameter C

 PA-I formulation:

 𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉 s.t. 𝑙 𝒘; 𝒙𝑡, 𝑦𝑡 ≤ 𝜉 with 𝜉 ≥ 0

 𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡 where 𝜏𝑡 = min 𝐶;
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡
2

 PA-II model:

 𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉2 s.t. 𝑙 𝒘; 𝒙𝑡, 𝑦𝑡 ≤ 𝜉 with 𝜉 ≥ 0

 𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡 where 𝜏𝑡 =
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡 2+
1

2
𝐶

Overview

 Linear Online Learning Algorithms

 Kernelized Online Learning Algorithms

 Online Learning on a Budget

Data Separability

 Training data could not be separable

 Possible solutions:

 Use a more complex classification function  Risk of overfitting!

 Define a new set of feature that makes the problem linearly separable

 Project the current examples in a space in which they are separable…

Kernel Methods

 Training data can be projected in a space in which they are more easily

separable

 Kernel Trick: any kernel function K performs the dot product in the kernel

space without explicitly project the input vectors in that space

 Structured data (tree, graph, high order tensor…) can be exploited

Kernelized Passive Aggressive

 In kernelized Online Learning algorithms a new support vector is added every time

a misclassification occurs

 LINEAR VERSION KERNELIZED VERSION

Classification function

𝑓𝑡 𝒙 = 𝒘𝑡
𝑇𝒙 𝑓𝑡 𝑥 = 𝛼𝑖𝑘(𝑥, 𝑥𝑖)

𝑖∈𝑆

Optimization Problem (PA-I)

𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉

Such that 1 − 𝑦𝑡f𝑡 𝒙𝑡 ≤ 𝜉, 𝜉 ≥ 0

𝑓𝑡+1(𝑥) = argminf
1

2
𝑓(𝑥) − 𝑓𝑡(𝑥)

2
ℋ
+ 𝐶𝜉

Such that 1 − 𝑦𝑡𝑓𝑡 𝑥𝑡 ≤ 𝜉, 𝜉 ≥ 0

Closed form solution

𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡

where 𝜏𝑡 = min 𝐶;
max (0,1−𝑦𝑡𝑓𝑡 𝒙𝑡)

𝒙𝑡 2

𝑓𝑡+1(𝑥) = f𝑡(𝑥) + α𝑡𝑘(𝑥, 𝑥𝑡)

where α𝑡 = 𝑦𝑡 ∙ min 𝐶;
max (0,1−𝑦𝑡𝑓𝑡 𝑥𝑡)

𝑥𝑡 2ℋ

Linear Vs Kernel Based Learning

LINEAR VERSION KERNELIZED VERSION

Classification function

explicit hyperlplane in the original space

 Only linear functions can be learnt

implicit hyperplane in the RKHS

 Non linear functions can be learnt

Example form

 Only feature vectors can be exploited  Structured representations can be exploited

Computational complexity

 A classification is a single dot product
 A classification involves |S| kernel

computations

Memory usage

 Only a the explicit hyperplane must be

stored

 All the support vectors and their weights

must be stored

Overview

 Linear Online Learning Algorithms

 Kernelized Online Learning Algorithms

 Online Learning on a Budget

Learning on a Budget

 In kernelized online learning algorithm the set of support
vectors can grow without limits

 Possible solution: Limit the number of support vector, defining
a budget B

 This solution has the following advantages:

 The memory occupation is upperbounded by B support vectors

 Each classification needs at most B kernel computations

 In shifting concept tasks, budget algorithms can outperform non-
budget counterparts because they are faster in adapting

Limit the number of Support Vectors

 In order to respect the budget B, different policies can be formulated:

 Stop learning when budget is exceeded: Stoptron

 Delete a random support vector: Randomized Perceptron

 Delete the more redundant support vector: Fixed Budget Conscious Perceptron

 Delete the oldest support vector: Least recent Budget Perceptron and Forgetron

 Modify the Support Vectors weights in order to adapt the classification

hypothesis to the new sample: Projectron

 Online Passive-Aggressive on a Budget

Stoptron

 Baseline of the online learning on a budget algorithms: Fix a budget B and

stop learning when the number of support vectors is equal to B

 Stoptron algorithm (Orabona et al 2008):

Start with S = ∅

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡)𝑖∈𝑆

 Receive a feedback 𝑦𝑡

 if 𝑦𝑦𝑡 < 𝛽 and 𝑆 < 𝐵 then

 𝑆 = 𝑆 ∪ 𝑡

 𝛼𝑡= 1

 endif

endfor

Randomized Perceptron

 Simplest deleting policy: when the budget B is exceeded remove a random

support vector

 Randomized Perceptron algorithm (Cavallanti et al 2007):

Start with S = ∅

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡)𝑖∈𝑆

 Receive a feedback 𝑦𝑡

 if 𝑦𝑦𝑡 < 𝛽

 if 𝑆 = 𝐵

 select randomly 𝑠 ∈ 𝑆, 𝑆 = 𝑆 ∖ 𝑠

 endif

 𝑆 = 𝑆 ∪ *𝑡+ 𝛼𝑡= 1

 endif

endfor

Forgetron

 Deleting policy: Every time a new support vector is added, the weights of

the others are reduced. Thus SVs lose weight with aging and removing the

older SV should assure a minimum impact to the classification function.

 Forgetron algorithm (Dekel et al 2008):

Start with S = ∅

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡)𝑖∈𝑆

 Receive a feedback 𝑦𝑡

 if 𝑦𝑦𝑡 < 𝛽

 if 𝑆 = 𝐵

 𝑆=𝑆∖𝑚𝑖𝑛{𝑆} //the oldest Support vector is removed

 endif

 𝑆 = 𝑆 ∪ *𝑡+ 𝛼𝑡= 1, 𝛼𝑖 = 𝜙𝑡𝛼𝑖 ∀𝑖 ∈ 𝑆 ∖ *𝑡+ //adding a new Sv and shrinking

 endif

endfor

Passive Aggressive Algorithms

on a Budget (1/2)

 When 𝑆 = 𝐵 , to respect the budget B, the PA optimization

problem is modified as follows (Wang et al 2010):

𝑓𝑡+1(𝑥) = argminf
1

2
𝑓(𝑥) − 𝑓𝑡(𝑥)

2
ℋ
+ 𝐶𝜉

Such that: 1 − 𝑦𝑡𝑓𝑡 𝑥𝑡 ≤ 𝜉, 𝜉 ≥ 0 (old constraints)

 𝑓 = 𝑓𝑡 − 𝛼𝑟𝑘(𝑥𝑟 ,∙)
𝑆𝑉 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

+ 𝛽𝑖𝑘 𝑥𝑖 ,∙𝑖∈𝑉

𝑤𝑒𝑖𝑔𝑕𝑡 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

(new constraint)

Where V is the set of the indices of support vectors whose

weights can be modified and r is the support vector to be

removed.

Passive Aggressive Algorithms

on a Budget (2/2)

 Given a r to be deleted, the optimization problem can be solved

and the optimal weight modifications 𝛽𝑖 for a given r can be

computed

 A brute force approach is performed in order to chose 𝑟∗ (the best r

is the one that minimizes the objective function) and the

corresponding 𝛽𝑖
∗

 B optimization problems must be solved every time a new SV must be

added (when the budget is reached)

 The computational complexity of a single optimization problem depends on

|V| (i.e. the number of SV whose weights can be modified)

 Three proposal for V:

 BPA-simple: 𝑉={𝑡}

 BPA-projecting: 𝑉=𝑆∪{𝑡}∖{𝑟}

 BPA-Nearest-Neighbor: 𝑉={𝑡}∪𝑁𝑁{𝑟}

Online Learning Algorithm Comparison

 DATASET USED:

 Adult: determine whether a person makes over 50K a year using census
attributes (2 classes, 21K samples, 123 features)

 Banana: An artificial data set where instances belongs to several clusters
with a banana shape (2 classes, 4.3K samples, 2 feature)

 Checkerboard: An artificial dataset where instances of two classes are
distributed like a checkerboard (2 classes, 10K samples, 2 features)

 NCheckerboard: noisy version of checkerboard dataset (15% of the
samples are bad classified)

 Covertype Data Set: Predicting forest cover type from cartographic
variables only (Elevation, Distance to hydrology…) (7 classes, 10K samples,
41 features)

 Phoneme: phoneme recognition (11 classes, 10K samples, 41 features)

 USPD: optical character recognition dataset. (10 classes, 7.3 K samples,
256 features)

Online Learning Algorithm Comparison

 DATASET USED:

 Adult: determine whether a person makes over 50K a year using census
attributes (2 classes, 21K samples, 123 features)

 Banana: An artificial data set where instances belongs to several clusters
with a banana shape (2 classes, 4.3K samples, 2 feature)

 Checkerboard: An artificial dataset where instances of two classes are
distributed like a checkerboard (2 classes, 10K samples, 2 features)

 NCheckerboard: noisy version of checkerboard dataset (15% of the
samples are bad classified)

 Covertype Data Set: Predicting forest cover type from cartographic
variables only (Elevation, Distance to hydrology…) (7 classes, 10K samples,
41 features)

 Phoneme: phoneme recognition (11 classes, 10K samples, 41 features)

 USPD: optical character recognition dataset. (10 classes, 7.3 K samples,
256 features)

Results using a RBF kernel

Summary

 Online learning methods can:

 Incrementally learn from new samples

 Dinamically adapt to problem variations

 Reduce the computational cost of building a new model

 Online learning methods can be used with kernels but
they suffer from the “curse of kernelization”:

 The number of support vectors can grow without bounds

 Several number of budgeted solutions have been
proposed

