Online Machine Learning

Simone Filice
filice.simone @gmail.com

University of Roma Tor Vergata

Motivations

Common ML algorithms simultaneously exploit a
whole dataset. This process, referred as batch
learning, is not practical when:

New data naturally arise over the time: exploiting new data
means building from scratch a new model = usually not
feasible!

The dataset is too large to be efficiently exploited: memory
and computational problems!

The concept we need to learn changes over the time: batch
learning provide a static solution that will surely degrade as
time goes by

Online Machine Learning

Incremental Learning Paradigm:
Every time a new example is available, the learned
hypothesis is updated

Inherent Appealing Characteristics:

The model does not need to be re-generated from
scratch when new data is available

Capability of tracking a Shifting Concept

Faster training process if compared to batch learners

(e.g. SVM)

Overview

Linear Online Learning Algorithms

Kernelized Online Learning Algorithms

Online Learning on a Budget

Overview
N

0 Linear Online Learning Algorithms

11 Kernelized Online Learning Algorithms

71 Online Learning on a Budget

Perceptron

1 Perceptron is a simple discriminati

Instances are feature vectors x' € R

Classification function is an hyperplane in R : f(x") =w'-x' + b

"n.';lrl

. Margin

Margin

Var,

ve classifier
with label y € [—1, +1]

Support Vectors
L T LT T
e .

Margin

Var,

o Compact notation: w = {b,w',w’,,

Var,

. W,d}, X = {1,x’1,x,2,...

Batch Perceptron

IDEA : adjust the hyperplane until no training errors are
done (input data must be linearly separable)

Batch perceptron learning procedure:
Start with w; =0

do
errors=false
For all t=1.T
Receive a new sample x;
Compute y = w; - x;
if y-y, < B¢ then wiyq =ywe + apyexy with ap >0
errors=true
else
Wip1 = We
while(errors)

return wryq

Online Learning Perceptron

IDEA : adjust the hyperplane after each classification (W, =
weight vector at time t) and never stop learning

Online perceptron learning procedure:

Start with w; =0

For all t=1..
Receive a new sample x;
Compute y =w; " x;
Receive a feedback y;

i'F y - yt < ﬁt then Wt+1 -]/tWt + atytxt With Olt > 0
else w1 =w,;

endfor

Shifting Perceptron

IDEA: weak dependance from the past in order to obtain a tracking
ability

Shifting Perceptron learning procedure (Cavallanti et al 2006):
Start with w; =0 , k=0
For all t=1..

Receive a new sample x;

Compute y = sign(w; - x;)

Receive a feedback y;

if y #y, then
]

Ak = m with 12>0
Wepr = (1= 4w + A yexy
k=k+1

else w1 =w;
endfor

Online Linear Passive Aggressive /3

IDEA: Every time a new example (X,,) is available the current
classification function is modified as less as possible to
correctly classify the new example

Passive Aggressive learning procedure (Crammer et al 2006):
Start with w; =0 , k=0
For all t=1..

Receive a new sample x;

Compute y = sign(w; - x;)

Receive a feedback y;

Measure a classification loss (divergence between y; and y)
Modify the model to get zero loss, preserving what was
learned from previous examples

Online Linear Passive Aggressive (/3
=

1 Loss measure:

Hinge loss: 1(w; (x,y,)) = max(0; 1 — y,(w - x,))

-1 Model variation:
2
Wi — wel

-1 Passive Aggressive Optimization Problem:

Wi = argminwlllw —w¢||* such that I(w; (x;,y,)) =0
2

1 Closed form solution:

_ _ lwgxp,ye)
Wi = Wy +7:V:X; Where 7, = Wltlx"ﬁzyt
t

Online Linear Passive Aggressive /3

The previous formulation is a hard margin version that has a problem:

a single outlier could produce a high hyperplane shifting, making the model
forget the previous learning

Soft version solution:

control the algorithm aggressiveness through a parameter C

PA-| formulation:
Wil = argminW% lw— w2+ CE s.t. L(w; (x,y,)) < & with £ >0
: L(we;(x¢,9t))
:> Weii1 = Wi + Ttytxt Where T = IMIN {C, u’ﬁTxﬁzyt}
PA-Il model:
Wil = argminw% lw —w,||? + C&2 s.t. I(w; (xt,yt)) <éwithé=0

— _ lwe(xeeye))
:> Wip1 = Wi + Tt Ve Xt where Tt = ||xt||—2+lC
2

Overview
N

01 Linear Online Learning Algorithms

0 Kernelized Online Learning Algorithms

71 Online Learning on a Budget

Data Separability

Training data could not be separable

Possible solutions:

Use a more complex classification function = Risk of overfitting!

Define a new set of feature that makes the problem linearly separable

Project the current examples in a space in which they are separable...

Kernel Methods
-

o1 Training data can be projected in a space in which they are more easily
separable

P(X) P(X)

1 Kernel Trick: any kernel function K performs the dot product in the kernel
space without explicitly project the input vectors in that space

0 Structured data (tree, graph, high order tensor...) can be exploited

Kernelized Passive Aggressive
N

71 In kernelized Online Learning algorithms a new support vector is added every time

a misclassification occurs

LINEAR VERSION KERNELIZED VERSION
IES
. 1 .1
Wepy = argming s [lw — well* + C§ fe+1(x) = argming- [|f (x) = fr(OII%5, + €&
SUCh ThCﬂ' 1 - ytft(xt) S f, f 2 O SUCh ThCﬂ' 1 - ytft(xt) S 6, g 2 0
Wt+1 = Wt + Ttytxt ft+1(x) = ft(x) + atk(x' xt)

I - max(0,1-y¢ ft(x¢)) v sl -max(0,1-y¢fr(xt))

where T, = min {C, e } where o = y; * min {C, el }

Linear Vs Kernel Based Learning

LINEAR VERSION

KERNELIZED VERSION

explicit hyperlplane in the original space
@ Only linear functions can be learnt

implicit hyperplane in the RKHS
© Non linear functions can be learnt

@ Only feature vectors can be exploited

© Structured representations can be exploited

© A classification is a single dot product

@ A classification involves | S| kernel
computations

© Only a the explicit hyperplane must be
stored

@ All the support vectors and their weights
must be stored

Overview
N

01 Linear Online Learning Algorithms

11 Kernelized Online Learning Algorithms

0 Online Learning on a Budget

Learning on a Budget

In kernelized online learning algorithm the set of support
vectors can grow without limits

Possible solution: Limit the number of support vector, defining
a budget B

This solution has the following advantages:

The memory occupation is upperbounded by B support vectors
Each classification needs at most B kernel computations

In shifting concept tasks, budget algorithms can outperform non-
budget counterparts because they are faster in adapting

Limit the number of Support Vectors

In order to respect the budget B, different policies can be formulated:

Stop learning when budget is exceeded: Stoptron

Delete a random support vector: Randomized Perceptron

Delete the more redundant support vector: Fixed Budget Conscious Perceptron
Delete the oldest support vector: Least recent Budget Perceptron and Forgetron

Modify the Support Vectors weights in order to adapt the classification

hypothesis to the new sample: Projectron

Online Passive-Aggressive on a Budget

Stoptron

Baseline of the online learning on a budget algorithms: Fix a budget B and
stop learning when the number of support vectors is equal to B

Stoptron algorithm (Orabona et al 2008):

Start with S=20
For all t=1..
Receive a new sample x;
Compute y = FyesaiyiK (x;,%,)
Receive a feedback y;
if yy;<pB and |S| < B then
S=Su{t}
ar=1
endif

endfor

Randomized Perceptron

Simplest deleting policy: when the budget B is exceeded remove a random
support vector

Randomized Perceptron algorithm (Cavallanti et al 2007):
Start with S=0
For all t=1..

Receive a new sample x;

Compute y = X;csa;ViK(x;, x¢)

Receive a feedback y;

if yye <p
if |S| =B
select randomly s€S, S=S5\{s}
endif
S=SuU{t} ar=1
endif

endfor

Forgetron

Deleting policy: Every time a new support vector is added, the weights of
the others are reduced. Thus SVs lose weight with aging and removing the
older SV should assure a minimum impact to the classification function.

Forgetron algorithm (Dekel et al 2008):
Start with S=¢
For all t=1..

Receive a new sample x;

Compute y =X,csa;yiK(x;x¢)

Receive a feedback y;

if yye <P

if |S| =B
S=S\min{S} //the oldest Support vector is removed

endif

S=Su{t} ay=1, a;=¢,a; Vie S\ {t} //adding a new Sv and shrinking
endif

endfor

Passive Aggressive Algorithms
oh d Budge’r (1/2)

When |S| = B, to respect the budget B, the PA optimization
problem is modified as follows (Wang et al 2010):

1
fre1(x) = argmine = |If () — feOl?,, + €€
Such that: 1 —y,fi(x;) <& &E=0 (old constraints)
f=f— ark(x,) + XievBik(x;) (new constraint)

SV elimination weight modi fication

Where V is the set of the indices of support vectors whose
weights can be modified and r is the support vector to be
removed.

Passive Aggressive Algorithms
oh d Budge’r (2/2)

Given a r to be deleted, the optimization problem can be solved
and the optimal weight modifications [; for a given r can be
computed

A brute force approach is performed in order to chose ™ (the best r
is the one that minimizes the objective function) and the
corresponding ;"

B optimization problems must be solved every time a new SV must be
added (when the budget is reached)

The computational complexity of a single optimization problem depends on
| V| (i.e. the number of SV whose weights can be modified)

Three proposal for V:
BPA-simple: V={t}
BPA-projecting: V=SU{t}\{r}
BPA-Nearest-Neighbor: V={t}UNN{r}

Online Learning Algorithm Comparison

DATASET USED:

Adult: determine whether a person makes over 50K a year using census
attributes (2 classes, 21K samples, 123 features)

Banana: An artificial data set where instances belongs to several clusters
with a banana shape (2 classes, 4.3K samples, 2 feature)

Checkerboard: An artificial dataset where instances of two classes are
distributed like a checkerboard (2 classes, 10K samples, 2 features)

NCheckerboard: noisy version of checkerboard dataset (15% of the
samples are bad classified)

Covertype Data Set: Predicting forest cover type from cartographic
variables only (Elevation, Distance to hydrology...) (7 classes, 10K samples,
41 features)

Phoneme: phoneme recognition (11 classes, 10K samples, 41 features)

USPD: optical character recognition dataset. (10 classes, 7.3 K samples,
256 features)

Online Learning Algorithm Comparison

DATASET USED:

Adult: determine whether a person makes over 50K a year using census
attributes (2 classes, 21K samples, 123 features)

Banana: An artificial data set where instances belongs to several clusters
with a banana shape (2 classes, 4.3K samples, 2 feature)

Checkerboard: An artificial dataset where instances of two classes are
distributed like a checkerboard (2 classes, 10K samples, 2 features)

NCheckerboard: noisy version of checkerboard dataset (15% of the
samples are bad classified)

Covertype Data Set: Predicting forest cover type from cartographic
variables only (Elevation, Distance to hydrology...) (7 classes, 10K samples,
41 features)

Phoneme: phoneme recognition (11 classes, 10K samples, 41 features)

USPD: optical character recognition dataset. (10 classes, 7.3 K samples,
256 features)

Results

using a RBF kernel

[Time Algs Adult Banana Checkerb NCheckerb over oneme vg
21K %123 43K x2 10K %2 10K x2 10K x54 10K <41 7.3K x256
75% 55% 50% 50% 51% 50% 52%
Memory-unbounded online algorithms
cptrn .2+02 874415 3206 83.4+0.7 76.0+04 78.9+06 4.6+0.1 85
(#SV) (4.5K) (0.6K) (0.5K) (2.8K) (2.8K) (2.4K) (0.4K)
O(N) PA 83.6t0.2 89.1+0.7 97.210.1 95.8+10 Bl.6t02 826109 96.7t0a 895
p (#8V) (15K) (2K) (2.6K) (5.9K) (9.9K) (7.2K) (4.5K)
PAR 84.1+01 89.3+07 97.5:01 96.2+0s 82.7103 83.7+07 96.7+01 90.0
(#8V) (4.4K) (1.5K) (2.6K) (3.3K) (9.8K) (6.5K) (4.5K)
- Budgeted online algorithms (B=100) ~
Stptrn 76.5+2.0 86.7+21 87.3%09 75.4+43 64.2+1.7 67.6+27 89.1+12 781
Rand 76.2+36 84.14+26 B5.6x12 69.4+29 61.3+32 65.0+44 87.1109 755
Fogtrn 72.846.1 82.8+24 86.1%1.0 68.2+35 60.8+2.7 65.6+1.2 86.2+21 746
o(B) PA+4+Rnd 7T8.4+1.0 84.942.1 83.3+1.4 75.1+36 63.1415 64.0+39 86.2+11 764
BPA-S 82.4+01 89.4+13 90.0x08 87.4+0.7 68.6+19 67.4+30 89.6+13 821
BPAX.S 82.4+01 89.5+1.7 90.0+10 88.2+1.2 69.3+18 67.0+32 893+12 822
BPA-NN 82.8+0.4 89.6+1.4 94.0%12 90.2+1.3 69.1+18 74.3x0.7 90.8x09 844
BPAR NN 83.1+00 89.8+1. 94.2+0.9 92.3+0.5 70.3+08 T4.6+08 90.8+06 85.0
O(B*) Pjtrn+4+ 80.1+0.1 89.5+11 95.4+07 88.1+0.7 68.7+1.0 T4.6+x0.7 89.2+07 837
oY) BPA-P 83.0+0.2 89.6+1.1 95.4107 91.7+0.8 74314 T75.2+1.0 92.8+07 86.0
BPA-PH 84.0+00 89.6+08 95.2+0s8 94.1+0.9 75.0x10 T74.9+06 92.6+07 865
- Budgeted online algorithms (B=200) } -
Stptrn 78.7+1.8 85.6+1.5 92.8+1.1 76.0+3.1 65.5+23 T0.5+2.6 92.3+0.7 80.2
Rand 76.4+28 83.6+20 90313 74.5+2.1 62.4+24 673125 89.8+1a1 T78
Fogtrn 729+68 85.0+13 90.9+1.7 72.2+4.4 62.1+28 68.0+23 9031090 773
o(B) PA+Rnd 80.1+2.4 86.T+19 87.0x13 78.3+18 64.2+27 68.7+43 88.81+0s8 T79.1
BPA-S 82.7+02 89.5+0.7 93.4+05 80.7+0.9 T1.7+1.7 Tl.3+23 926109 844
BPAK.S 83.1+01 89.5+09 93.9+06 90.8+0.8 T1.T+12 T71.6+22 921406 84.7
BPA-NN 83.1+04 89.6+1.1 95.5%04 91.7+1.3 72.7+10 T5.8+10 928106 859
BPAR.NN 83.3+04 89.5+1.4 952+05 03.3+06 72.7+14 T72+1.7 94.0+04 865
o(B*) Pjtrn4+ 82.9+0.1 89.5+12 95.8+05 92.5+1.0 75.1+20 T75.2+06 93.2+06 86.3
o8 BPA-P 83.8:00 80.7+07 95.9:06 02.8:+07 76.0:1.3 78.0+03 94.8103 87.3
BPAR.P 84.6+00 90.3+15 95.6+1.2 94.5+1.1 76.3+10 7T7.6+06 94.8+03 877

Summary

Online learning methods can:
Incrementally learn from new samples
Dinamically adapt to problem variations

Reduce the computational cost of building a new model

Online learning methods can be used with kernels but
they suffer from the “curse of kernelization”:

The number of support vectors can grow without bounds

Several number of budgeted solutions have been
proposed

