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Motivations 

 Common ML algorithms simultaneously exploit a 

whole dataset. This process, referred as batch 

learning, is not practical when: 

 New data naturally arise over the time: exploiting new data 

means building from scratch a new model  usually not 

feasible! 

 The dataset is too large to be efficiently exploited: memory 

and computational problems! 

 The concept we need to learn changes over the time: batch 

learning provide a static solution that will surely degrade as 

time goes by 

 

 



Online Machine Learning 

 Incremental Learning Paradigm:  

 Every time a new example is available, the learned 

hypothesis is updated  

 Inherent Appealing Characteristics: 

 The model does not need to be re-generated from 

scratch when new data is available 

 Capability of tracking a Shifting Concept 

 Faster training process if compared to batch learners 

(e.g. SVM) 
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Perceptron 

 Perceptron is a simple discriminative classifier 

 Instances are feature vectors 𝒙′ ∈ ℝ𝑑  with label 𝑦 ∈ −1, +1   

 Classification function is an hyperplane in ℝ𝑑  : 𝑓 𝒙′ = 𝒘′ ∙ 𝒙′ + 𝑏 

 

 

 

 

 

 

 

 

 

 

 Compact notation: 𝒘 = *𝑏,𝑤′1, 𝑤
′
2,…, 𝑤′𝑑+, 𝒙 = *1, 𝑥

′
1, 𝑥
′
2,…, 𝑥′𝑑+ 

 

 



Batch Perceptron 

 IDEA : adjust the hyperplane until no training errors are 
done (input data must be linearly separable) 

 Batch perceptron learning procedure: 
Start with 𝒘1 = 0   

do 

 errors=false 

 For all t=1…T 

    Receive a new sample 𝒙𝒕  

    Compute 𝑦 = 𝒘𝑡 ∙ 𝒙𝒕  

    if 𝑦 ∙ 𝑦𝑡 < 𝛽𝑡 then 𝒘𝑡+1 = 𝛾𝑡𝒘𝑡 + 𝛼𝑡𝑦𝑡𝒙𝑡   with 𝛼𝑡 > 0          
       errors=true 

         else 

                       𝒘𝑡+1 = 𝒘𝑡   

while(errors) 

return 𝒘𝑇+1 



Online Learning Perceptron 

 IDEA : adjust the hyperplane after each classification (𝒘𝑡 = 

weight vector at time t) and never stop learning 

 

 Online perceptron learning procedure: 

Start with 𝒘1 = 0   

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute 𝑦 = 𝒘𝑡 ∙ 𝒙𝒕  

 Receive a feedback 𝑦𝑡 

 if 𝑦 ∙ 𝑦𝑡 < 𝛽𝑡 then 𝒘𝑡+1 = 𝛾𝑡𝒘𝑡 + 𝛼𝑡𝑦𝑡𝒙𝑡   with 𝛼𝑡 > 0  
 else      𝒘𝑡+1 = 𝒘𝑡   

endfor 



Shifting Perceptron 

 IDEA: weak dependance from the past in order to obtain a tracking 
ability 

 

 

 Shifting Perceptron learning procedure (Cavallanti et al 2006): 
Start with 𝒘1 = 0  , k=0 

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute 𝑦 = sign(𝒘𝑡 ∙ 𝒙𝒕)  

 Receive a feedback 𝑦𝑡 

 if 𝑦 ≠ 𝑦𝑡 then  

  𝜆𝑘 =
𝜆

𝜆+𝑘
   with   𝜆 > 0 

  𝒘𝑡+1 = 1 − 𝜆𝑘 𝒘𝑡 + 𝜆𝑘𝑦𝑡𝒙𝑡   

  k=k+1 

 else      𝒘𝑡+1 = 𝒘𝑡   

endfor 



Online Linear Passive Aggressive (1/3) 

 IDEA: Every time a new example ‹xt , yt› is available the current 
classification function is modified as less as possible to 
correctly classify the new example 

 

 Passive Aggressive learning procedure (Crammer et al 2006): 
Start with 𝒘1 = 0  , k=0 

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute 𝑦 = sign(𝒘𝑡 ∙ 𝒙𝒕)  

 Receive a feedback 𝑦𝑡 

 Measure a classification loss (divergence between 𝑦𝑡 and 𝑦) 
 Modify the model to get zero loss, preserving what was 
 learned from previous examples 

  



Online Linear Passive Aggressive (2/3) 

 Loss measure:  

Hinge loss: 𝑙 𝒘; 𝒙𝑡 , 𝑦𝑡 = max 0; 1 − 𝑦𝑡 𝒘 ∙ 𝒙𝑡  

 

 Model variation:  

𝒘𝑡+1 −𝒘𝑡  
2
 

 

 Passive Aggressive Optimization Problem: 

𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐  such that 𝑙 𝒘; 𝒙𝑡 , 𝑦𝑡 = 0 

 

 Closed form solution: 

𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡  where 𝜏𝑡 =
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡
2  

 



Online Linear Passive Aggressive (3/3) 

 The previous formulation is a hard margin version that has a problem:  

 a single outlier could produce a high hyperplane shifting, making the model 
forget the previous learning  

 Soft version solution:  

 control the algorithm aggressiveness through a parameter C 

 

  PA-I formulation: 

 𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉  s.t. 𝑙 𝒘; 𝒙𝑡, 𝑦𝑡 ≤ 𝜉 with 𝜉 ≥ 0 

 𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡  where 𝜏𝑡 = min 𝐶;
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡
2  

 

  PA-II model: 

 𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉2 s.t. 𝑙 𝒘; 𝒙𝑡, 𝑦𝑡 ≤ 𝜉 with 𝜉 ≥ 0 

 𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡  where 𝜏𝑡 =
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡 2+
1

2
𝐶
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Data Separability 

 Training data could not be separable 

 Possible solutions: 

 Use a more complex classification function  Risk of overfitting! 

 Define a new set of feature that makes the problem linearly separable 

 

 

 

 

 

 

 

 Project the current examples in a space in which they are separable… 

 

 

 

 

 

 

 

 

 



Kernel Methods 

 Training data can be projected in a space in which they are more easily 

separable 

 

 

 

 

 

 

 

 

 Kernel Trick: any kernel function K performs the dot product in the kernel 

space without explicitly project the input vectors in that space 

 Structured data (tree, graph, high order tensor…) can be exploited 

 

 

 

 

 

 

 

 



Kernelized Passive Aggressive 

 In kernelized Online Learning algorithms a new support vector is added every time 

a misclassification occurs 

 LINEAR VERSION KERNELIZED VERSION 

Classification function 

𝑓𝑡 𝒙 = 𝒘𝑡
𝑇𝒙 𝑓𝑡 𝑥 = 𝛼𝑖𝑘(𝑥, 𝑥𝑖)

𝑖∈𝑆

 

Optimization Problem (PA-I) 

𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉   

Such that  1 − 𝑦𝑡f𝑡 𝒙𝑡 ≤ 𝜉, 𝜉 ≥ 0 

𝑓𝑡+1(𝑥) = argminf
1

2
𝑓(𝑥) − 𝑓𝑡(𝑥)

2
ℋ
+ 𝐶𝜉   

Such that  1 − 𝑦𝑡𝑓𝑡 𝑥𝑡 ≤ 𝜉, 𝜉 ≥ 0 

Closed form solution 

𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡  

where 𝜏𝑡 = min 𝐶;
max (0,1−𝑦𝑡𝑓𝑡 𝒙𝑡 )

𝒙𝑡 2
 

𝑓𝑡+1(𝑥) = f𝑡(𝑥) + α𝑡𝑘(𝑥, 𝑥𝑡)  

where α𝑡 = 𝑦𝑡 ∙ min 𝐶;
max (0,1−𝑦𝑡𝑓𝑡 𝑥𝑡 )

𝑥𝑡 2ℋ
 



Linear Vs Kernel Based Learning  

LINEAR VERSION KERNELIZED VERSION 

Classification function 

explicit hyperlplane in the original space 

 Only linear functions can be learnt 

implicit hyperplane in the RKHS 

 Non linear functions can be learnt 

Example form 

 Only feature vectors can be exploited  Structured representations can be exploited 

Computational complexity 

 A classification is a single dot product 
 A classification involves |S| kernel 

computations 

Memory usage 

 Only a the explicit hyperplane must be 

stored 

 All the support vectors and their weights 

must be stored 
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Learning on a Budget 

 In kernelized online learning algorithm the set of support 
vectors can grow without limits 

 Possible solution: Limit the number of support vector, defining 
a budget B  

 This solution has the following advantages: 

 The memory occupation is upperbounded by B support vectors 

 

 Each classification needs at most B kernel computations 

 

 In shifting concept tasks, budget algorithms can outperform non-
budget counterparts because they are faster in adapting 

 



Limit the number of Support Vectors 

 

 In order to respect the budget B, different policies can be formulated: 

 Stop learning when budget is exceeded: Stoptron 

 Delete a random support vector: Randomized Perceptron 

 Delete the more redundant support vector: Fixed Budget Conscious Perceptron 

 Delete the oldest support vector: Least recent Budget Perceptron and Forgetron  

 Modify the Support Vectors weights in order to adapt the classification 

hypothesis to the new sample: Projectron 

 Online Passive-Aggressive on a Budget 



Stoptron 

 

 Baseline of the online learning on a budget algorithms: Fix a budget B and 

stop learning when the number of support vectors is equal to B 

 Stoptron algorithm (Orabona et al 2008): 

Start with S = ∅  

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute  𝑦 =  𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡 )𝑖∈𝑆  

 Receive a feedback 𝑦𝑡 

 if  𝑦𝑦𝑡 < 𝛽  and 𝑆 < 𝐵  then  

   𝑆 = 𝑆 ∪ 𝑡  

   𝛼𝑡= 1 

 endif 

endfor 

   



Randomized Perceptron 

 Simplest deleting policy: when the budget B is exceeded remove a random 

support vector 

 Randomized Perceptron algorithm (Cavallanti et al 2007): 

Start with S = ∅  

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute  𝑦 =  𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡 )𝑖∈𝑆  

 Receive a feedback 𝑦𝑡 

 if  𝑦𝑦𝑡 < 𝛽 

     if 𝑆 = 𝐵   

  select randomly 𝑠 ∈ 𝑆, 𝑆 = 𝑆 ∖ 𝑠   

     endif 

     𝑆 = 𝑆 ∪ *𝑡+   𝛼𝑡= 1 

 endif 

endfor 

   



Forgetron 

 Deleting policy: Every time a new support vector is added, the weights of 

the others are reduced. Thus SVs lose weight with aging and removing the 

older SV should assure a minimum impact to the classification function. 

 Forgetron algorithm (Dekel et al 2008): 

Start with S = ∅  

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute  𝑦 =  𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡 )𝑖∈𝑆  

 Receive a feedback 𝑦𝑡 

 if  𝑦𝑦𝑡 < 𝛽 

          if 𝑆 = 𝐵   

  𝑆=𝑆∖𝑚𝑖𝑛{𝑆} //the oldest Support vector is removed 

     endif 

     𝑆 = 𝑆 ∪ *𝑡+   𝛼𝑡= 1, 𝛼𝑖 = 𝜙𝑡𝛼𝑖 ∀𝑖 ∈ 𝑆 ∖ *𝑡+ //adding a new Sv and shrinking 

 endif 

endfor 

   



Passive Aggressive Algorithms  

on a Budget (1/2) 

 When 𝑆 = 𝐵 , to respect the budget B, the PA optimization 

problem is modified as follows (Wang et al 2010): 

 

𝑓𝑡+1(𝑥) = argminf
1

2
𝑓(𝑥) − 𝑓𝑡(𝑥)

2
ℋ
+ 𝐶𝜉 

Such that:  1 − 𝑦𝑡𝑓𝑡 𝑥𝑡 ≤ 𝜉, 𝜉 ≥ 0        (old constraints) 

 𝑓 = 𝑓𝑡 − 𝛼𝑟𝑘(𝑥𝑟 ,∙)
𝑆𝑉 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

+  𝛽𝑖𝑘 𝑥𝑖 ,∙𝑖∈𝑉

𝑤𝑒𝑖𝑔𝑕𝑡 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

(new constraint) 

 

Where V is the set of the indices of support vectors whose 

weights can be modified and r is the support vector to be 

removed.  



Passive Aggressive Algorithms  

on a Budget (2/2) 

 Given a r to be deleted, the optimization problem can be solved 

and the optimal weight modifications 𝛽𝑖  for a given r can be 

computed 

 A brute force approach is performed in order to chose 𝑟∗ (the best r 

is the one that minimizes the objective function) and the 

corresponding 𝛽𝑖
∗
 

 B optimization problems must be solved every time a new SV must be 

added (when the budget is reached) 

 The computational complexity of a single optimization problem depends on 

|V| (i.e. the number of SV whose weights can be modified) 

 Three proposal for V: 

 BPA-simple: 𝑉={𝑡}   

 BPA-projecting: 𝑉=𝑆∪{𝑡}∖{𝑟}  

 BPA-Nearest-Neighbor: 𝑉={𝑡}∪𝑁𝑁{𝑟} 



Online Learning Algorithm Comparison 

 DATASET USED: 

 Adult: determine whether a person makes over 50K a year using census 
attributes (2 classes, 21K samples, 123 features) 

 Banana: An artificial data set where instances belongs to several clusters 
with a banana shape (2 classes, 4.3K samples, 2 feature) 

 Checkerboard: An artificial dataset where instances of two classes are 
distributed like a checkerboard (2 classes, 10K samples, 2 features) 

 NCheckerboard: noisy version of checkerboard dataset (15% of the 
samples are bad classified) 

 Covertype Data Set: Predicting forest cover type from cartographic 
variables only (Elevation, Distance to hydrology…) (7 classes, 10K samples, 
41 features) 

 Phoneme: phoneme recognition (11 classes, 10K samples, 41 features) 

 USPD: optical character recognition dataset. (10 classes, 7.3 K samples, 
256 features) 
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Results using a RBF kernel 



Summary 

 Online learning methods can: 

 Incrementally learn from new samples 

 Dinamically adapt to problem variations 

 Reduce the computational cost of building a new model 

 

 Online learning methods can be used with kernels but 
they suffer from the “curse of kernelization”: 

 The number of support vectors can grow without bounds 

 

 Several number of budgeted solutions have been 
proposed 

 


