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Let £ be a discrete stochastic variable with a finite range
Q¢ = {x1,...,xm } and let p; = p(x;) be the corresponding
probabilities.

How much information is there in knowing the outcome of &?
Or equivalently:
How much uncertainty arises if the outcome & is unknown?

This is the information needed to specify which of the x; has
occurred. The problem is writing &.

Let us assume further that we only have a small set of symbols
A ={ay:k=1,...D}, thatis a coding alphabet.



Information Theory

Thus each x; will be represented by a string over A.
Let us assume that & is uniformly distributed, i.e.
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Information Theory

Thus each x; will be represented by a string over A.
Let us assume that & is uniformly distributed, i.e.

pi=4  Vi=1,..,M,

and that the coding alphabet is exactly A = {0,1}.
Thus, each x; will be represented by a binary number. To use N
binary digits to specify which x; actually occurred means:

N:2N-1 «p <N

Thus we need N = [log, M| digits.
So what if the distribution is nonuniform, i.e., if the p;s are not
all equal?
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The basic assumption is that p; will introduce equally much
uncertainty regardless of the rest of the probabilities p; with
JFL

We can thus reduce the problem to the case where all outcomes
have probability p;. In this case, there are l = M, possible
outcomes. l

Example: if p; ~ 1 then M, =~ 1.
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Information Theory

How much uncertainty does a possible outcome with
probability introduce?

We can thus reduce the problem to the case where all outcomes
have probability p;. In this case, there are - = M, possible
outcomes. l

For a binary coding alphabet, we thus need

log, M), = log, 1%- = —log, pi

binary digits to specify that the outcome was x;.
Thus, the uncertainty introduced by p; is in the general case

—log, p;
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taken to be the expectation value of the number of digits
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Entropy

Uncertainty of &
The uncertainty introduced by the random variable & will be
taken to be the expectation value of the number of digits

required to specify its outcome.
This is the expectation value of —log, P(&), i.e.

E[—log, P(§)] =} —pilog, pi

l



Entropy

Entropy

The entropy H|[E] of & is precisely the amount of uncertainty
introduced by the random variable & and it is more often
referred to a natural logarithm In(.), so that

M

H[E]=E[-Inp(§)]= ) —pl)lnp(x) =) —pilnp;

x,EQ& l

Entropy

Example 1: Dado
In the Dado example, Vi =1, ..., 6, it follows that p; = %.

HIE = E[-np(§)] = ¥ ~plx)Inp(x) =6 L In6 = 1,792
neﬂé



Entropy

Example 1: Dado
In the Dado example, Vi =1, ..., 6, it follows that p; = %.

HIE = E[-np(§)] = ¥ ~plx)Inp(x) =6 L In6 = 1,792
x,-EQi

Example 2: Dado Perdente
A loosing Die: p; = 1.00, and Vi =2,...,6, p; = 0.

H[El=E[-np(§)]= ) —p(x)lnp(x)=1In1=0

xiGQé
Entropy
Consequence
Given a distribution p; (i=1,,...,M) for a discrete random

variable & then for any other distribution ¢; (i=1,,...,M)
over the same sample space € it follows that:

M M
H[E]=—) pilnp; < =) pilng;
I i

where equality holds iff the two distribution are the same, i.e.
Vi:1,...,M Pi = (i
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H[g,n]= ZZP XiyYj lnp(x,,yj)

i=1j=1

Joint-Entropy

Given two random variable & and 7:

Joint-Entropy
the joint entropy of £ and 1 is defined as:

L

H[S,n] = ZZP xi,yj) Inp(xi, y;) =

i=1j=1

H[n,&]
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Conditional Entropy
the conditional entropy H|E|n| of & and 7 is defined as:
M
H[&M] = Zp Z xl’y] Inp xlb’])

j:l :

L M
= =YY p(xi,y)Inp(xily;)
j=li=1

Conditional and joint entropy

Conditional and Joint Entropy

The conditional and joint entropies are related just like the
conditional and joint probabilities:

H[S,n]=H[n]+H[E|n]
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Conditional and Joint Entropy

The conditional and joint entropies are related just like the
conditional and joint probabilities:

H[g,n]=H[n]+H[S|n]

Conveyed Information

The information conveyed by 1, denoted I[£|n], is the
reduction in entropy of £ by finding out the outcome of 1. This

is defined by:
I[8In] = H[c] - H[S|n]
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Conditional and joint entropy

Conditional and Joint Entropy

H[¢,n] = H[n]+H[E|n]
1[§|n] =H[n]—-H[c|n]

Consequences

Note that:

I5[n] = H[S]-H[S|n]=H[c]—-(H[S,n]-H[n]) =
= H[C]+H[n]-H[c,n]=H[c|+H|
= Hn|+H[S]-H[n,§]=H[n]-Hn|g] =
= Inlc]

Mutual Information

Given two random variable £ and 7:

Mutual Information

the mutual information between £ and 1 is defined as:

MI[E,n] = Elln——

= L Jemy)n fé(x

() ELQE )
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Mutual Information measures the amount of information about
a random variable £ an observer receives when the outcome of

a random variable 7) 1s available.

P()

P(£ —x)

Source

P(n7]9)

P(n7=y)

Channel

v



Mutual Information

Mutual Information measures the amount of information about
a random variable £ an observer receives when the outcome of
a random variable 1 is available.

P(¢ —x) P(17=y)

Y

P(<) P(77] )

Source Channel

How much information about the source output x; does an
observer gain by knowing the channel output y;?

Mutual Information

Mutual Information measures the amount of information about
a random variable & an observer receives when the outcome of
a random variable 1) is known, in fact:
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MIE,n] = H[S|-H[S|n]=




Mutual Information

Mutual Information measures the amount of information about
a random variable £ an observer receives when the outcome of
a random variable 1) is known, in fact:

Mutual Information

MIE,n] = H[S|-H[S|n]=

Jie ) (x:y)
= ’ 1
<x,y>ezg<¢,mf Em I ) 0)

Mutual Information

MI and H
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Mutual Information

MI and H

MIE,n] = H[E] - H[E|n]
H[S,n]=H[n,¢]
H[c,n]=H[n]+H[E|n], H[c|n] = H[S,n]—H[n]

Symmetry

Note that mutual information is symmetric in £ and 7, that is
MI[G,n] = MI[n,g], as

H[G]—H[c|n] = H[S]+H[n] - H[§,n] =H[n|—-H[n|c]

Pointwise Mutual Information

Another way to look to mutual information is about the
individual values (i.e. outcomes) § = x; and n = y;.
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Another way to look to mutual information is about the
individual values (i.e. outcomes) § = x; and n = y;.
Pointwise Mutual Information

Given the two random variable & and 7: the pointwise mutual
information between & = x; and 1 = y; is defined as:

Jiem) (X0 j)
Je (xi) - ()

MI[xi,yj] = fig ) (xi,y;) In

Pointwise Mutual Information

Another way to look to mutual information is about the
individual values (i.e. outcomes) § = x; and n = y;.
Pointwise Mutual Information

Given the two random variable & and 7: the pointwise mutual
information between & = x; and 1 = y; is defined as:

Jien) (xi,7) P(xi,y;)

MIx;, yi] =f(& ) (xi, ;) In = P(x;,yj)In

Je (xi) - fn (v7) P(x;) - P(y;)



Pointwise Mutual Information

Pointwise Mutual Information (pmi)

MIx;,yj] = P(xi,yj) In P(I;SCI..’;J&)W)

Pointwise Mutual Information

Pointwise Mutual Information (pmi)

MI|x;,yj] = P(xi,yj) In P(I;SC%’;]&)W)

Use of the pmi

If MI[x;,y;] >> 0, there is a strong correlation between x; and y;

If MI[x;,y;] << 0, there is a strong negative correlation.
When MI|x;,y;] ~ 0 the two outcomes are almost independent.



Perplexity

Perplexity
The perplexity of a random variable & is the exponential of its
entropy, 1.e.
Perplg] = ¢!
Perplexity
Perplexity
The perplexity of a random variable & is the exponential of its
entropy, 1.e.
Perp[¢] = ]
Example

Predicting the next w of a sequence of n words wy € Dict:

P(gn — W‘én—l — Wn—laén—2 — Wn—27---7€1 — Wl)

What is Perp[(&p, ..., &1)]?
OSS: In case of a uniform distribution P(&, = w|...) =

Dict]
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Cross-entropy

If we have two distributions (collections of probabilities) p(x)
and g(x) on Q¢, then the cross entropy of p with respect to q is

given by:
Z p(x)Ing(x
xeﬂg

Cross-entropy

Cross-entropy

If we have two distributions (collections of probabilities) p(x)
and g(x) on Q¢, then the cross entropy of p with respect to q is

given by:
Z p(x)Ing(x
xeﬂg

Minimality

=— ) p(x)ng(x)>— ) p(x)np(x) Vg
XE.Q.& XEQ&

implies that the cross entropy of a distribution g w.r.t. another
distribution p is minimal when ¢ is identical to p.



Cross-entropy as a Norm

Cross-entropy

Hplg)=— Y p(x)Ing(x)

xEﬂé

Cross-entropy as a Norm

Cross-entropy

Zp )Ing(x)

XEQé

Relative Entropy (or Kullback-Leibler distance)

Dlpllg) = Y p(x = Hylq] — H[p]

xegé Q(X)
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Relative Entropy (or Kullback-Leibler distance)

Dlpllg)= ) p(x = Hp|q] — H|p]

xegé CI(‘X)

KL distance: properties

Dipllg] 20 vq

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

Dipllg = ¥ pn P — g Hpp

xegé CI(.X)

KL distance: properties

Dipllg] =0 vq

Dipllqg] =0 iff g=p
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Relative Entropy (or Kullback-Leibler distance)
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Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

Dipllg = ¥ p)in? = 1) - Hip)

XG.Q.é q(x)

KL distance as a norm?
Unfortunately, as

DIp||q] # Dlq||p]

the KL distance is not a valid metric in the classical terms. It is
a measure of the dissimilarity between p and gq.
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Norm

What makes a function a norm? Any binary mapping m
between a set of objects D x D and the real numbes is a norm
iff:

Axioms

» (Positive) m(X,Y) >0 VX,Y € D whereas
mX,Y)=0—-X=Y.

> (Simmetry) m(X,Y) =m(Y,X) VX, Y €D

» (Triangle inequality)
m(X,Y)<m(X,Z)+m(Z,Y) vX,Y.ZeD

Euclidean Norm

: (p(x) —q(x))?
©)

xefd
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