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Information Theory

Let ξ be a discrete stochastic variable with a finite range
Ωξ = {x1, ...,xM} and let pi = p(xi) be the corresponding
probabilities.

How much information is there in knowing the outcome of ξ ?

Or equivalently:

How much uncertainty arises if the outcome ξ is unknown?

This is the information needed to specify which of the xi has
occurred. The problem is writing ξ .
Let us assume further that we only have a small set of symbols
A = {ak : k = 1, ...D}, that is a coding alphabet.
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Information Theory

Thus each xi will be represented by a string over A.
Let us assume that ξ is uniformly distributed, i.e.

pi = 1
M ∀i = 1, ...,M,

and that the coding alphabet is exactly A = {0,1}.

Thus, each xi will be represented by a binary number. To use N
binary digits to specify which xi actually occurred means:

N : 2N−1 < M ≤ 2N

Thus we need N = dlog2 Me digits.
So what if the distribution is nonuniform, i.e., if the pis are not
all equal?
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Information Theory

How much uncertainty does a possible outcome with
probability introduce?

The basic assumption is that pi will introduce equally much
uncertainty regardless of the rest of the probabilities pj with
j 6= i.
We can thus reduce the problem to the case where all outcomes
have probability pi. In this case, there are 1

pi
= Mpi possible

outcomes.
Example: if pi ≈ 1 then Mpi ≈ 1.
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Entropy

Uncertainty of ξ

The uncertainty introduced by the random variable ξ will be
taken to be the expectation value of the number of digits
required to specify its outcome.

This is the expectation value of − log2 P(ξ ), i.e.

E[− log2 P(ξ )] = ∑
i
−pi log2 pi
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Entropy

Entropy
The entropy H[ξ ] of ξ is precisely the amount of uncertainty
introduced by the random variable ξ and it is more often
referred to a natural logarithm ln(.), so that

H[ξ ] = E[− lnp(ξ )] = ∑
xi∈Ωξ

−p(xi) lnp(xi) =
M

∑
i
−pi lnpi

Entropy

Example 1: Dado
In the Dado example, ∀i = 1, ...,6, it follows that pi = 1

6 .

H[ξ ] = E[− lnp(ξ )] = ∑
xi∈Ωξ

−p(xi) lnp(xi) = 6 · 1
6

ln6 = 1,792

Example 2: Dado Perdente
A loosing Die: p1 = 1.00, and ∀i = 2, ...,6, pi = 0.

H[ξ ] = E[− lnp(ξ )] = ∑
xi∈Ωξ

−p(xi) lnp(xi) = 1ln1 = 0
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Consequence
Given a distribution pi (i = 1, , ...,M) for a discrete random
variable ξ then for any other distribution qi (i = 1, , ...,M)
over the same sample space Ωξ it follows that:

H[ξ ] =−
M

∑
i

pi lnpi ≤−
M

∑
i

pi lnqi

where equality holds iff the two distribution are the same, i.e.
∀i = 1, ...,M pi = qi
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the joint entropy of ξ and η is defined as:
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∑
i=1

L

∑
j=1

p(xi,yj) lnp(xi,yj)

= H[η ,ξ ]
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Conditional Entropy
the conditional entropy H[ξ |η ] of ξ and η is defined as:

H[ξ |η ] = −
L

∑
j=1

p(yj)
M

∑
i=1

p(xi|yj) lnp(xi|yj) =

= −
L

∑
j=1

M

∑
i=1

p(xi,yj) lnp(xi|yj)

Conditional and joint entropy

Conditional and Joint Entropy
The conditional and joint entropies are related just like the
conditional and joint probabilities:

H[ξ ,η ] = H[η ]+H[ξ |η ]

Conveyed Information
The information conveyed by η , denoted I[ξ |η ], is the
reduction in entropy of ξ by finding out the outcome of η . This
is defined by:

I[ξ |η ] = H[ξ ]−H[ξ |η ]
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Given two random variable ξ and η :

Mutual Information
the mutual information between ξ and η is defined as:

MI[ξ ,η ] = E[ln
P(ξ ,η)

P(ξ ) ·P(η)
] =

= ∑
(x,y)∈Ω(ξ ,η)

f(ξ ,η)(x,y) ln
f(ξ ,η)(x,y)
fξ (x) · fη(y)



Mutual Information

Mutual Information measures the amount of information about
a random variable ξ an observer receives when the outcome of
a random variable η is available.

How much information about the source output xi does an
observer gain by knowing the channel output yj?
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MI and H
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Note that mutual information is symmetric in ξ and η , that is
MI[ξ ,η ] = MI[η ,ξ ], as
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f(ξ ,η)(xi,yj)
fξ (xi) · fη(yj)

= P(xi,yj) ln
P(xi,yj)

P(xi) ·P(yj)



Pointwise Mutual Information

Another way to look to mutual information is about the
individual values (i.e. outcomes) ξ = xi and η = yj.

Pointwise Mutual Information
Given the two random variable ξ and η : the pointwise mutual
information between ξ = xi and η = yj is defined as:

MI[xi,yj] = f(ξ ,η)(xi,yj) ln
f(ξ ,η)(xi,yj)
fξ (xi) · fη(yj)

= P(xi,yj) ln
P(xi,yj)

P(xi) ·P(yj)

Pointwise Mutual Information

Another way to look to mutual information is about the
individual values (i.e. outcomes) ξ = xi and η = yj.

Pointwise Mutual Information
Given the two random variable ξ and η : the pointwise mutual
information between ξ = xi and η = yj is defined as:

MI[xi,yj] = f(ξ ,η)(xi,yj) ln
f(ξ ,η)(xi,yj)
fξ (xi) · fη(yj)

= P(xi,yj) ln
P(xi,yj)

P(xi) ·P(yj)



Pointwise Mutual Information

Pointwise Mutual Information (pmi)

MI[xi,yj] = P(xi,yj) ln
P(xi,yj)

P(xi) ·P(yj)

Use of the pmi
If MI[xi,yj] >> 0, there is a strong correlation between xi and yj
If MI[xi,yj] << 0, there is a strong negative correlation.
When MI[xi,yj]≈ 0 the two outcomes are almost independent.
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Perplexity

Perplexity
The perplexity of a random variable ξ is the exponential of its
entropy, i.e.

Perp[ξ ] = eH[ξ ]

Example
Predicting the next w of a sequence of n words wk ∈ Dict:

P(ξn = w|ξn−1 = wn−1,ξn−2 = wn−2, ...,ξ1 = w1)

What is Perp[(ξn, ...,ξ1)]?
OSS: In case of a uniform distribution P(ξn = w|...) = 1

|Dict| ...
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Cross-entropy
If we have two distributions (collections of probabilities) p(x)
and q(x) on Ωξ , then the cross entropy of p with respect to q is
given by:

Hp[q] =− ∑
x∈Ωξ

p(x) lnq(x)

Minimality

Hp[q] =− ∑
x∈Ωξ

p(x) lnq(x)≥− ∑
x∈Ωξ

p(x) lnp(x) ∀q

implies that the cross entropy of a distribution q w.r.t. another
distribution p is minimal when q is identical to p.
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Relative Entropy (or Kullback-Leibler distance)

D[p||q] = ∑
x∈Ωξ

p(x) ln
p(x)
q(x)

= Hp[q]−H[p]
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KL distance: properties
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D[p||q] = 0 iff q = p
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D[p||q] 6= D[q||p]

the KL distance is not a valid metric in the classical terms. It is
a measure of the dissimilarity between p and q.
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Norm
What makes a function a norm?

Any binary mapping m
between a set of objects D×D and the real numbes is a norm
iff:

Axioms
I (Positive) m(X,Y)≥ 0 ∀X,Y ∈ D whereas

m(X,Y) = 0→ X = Y .
I (Simmetry) m(X,Y) = m(Y,X) ∀X,Y ∈ D
I (Triangle inequality)

m(X,Y)≤ m(X,Z)+m(Z,Y) ∀X,Y,Z ∈ D

Euclidean Norm

2

√
∑

x∈Ω(ξ )
(p(x)−q(x))2
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