Natural Language Parsing

Simone Filice filice.simone@gmail.com University of Roma Tor Vergata

Material extracted from lectures of Collins and Nivre

Web Mining e Retrieval 2013/2014

Problem Definition

- PARSING: Breaking down a text into its component parts of speech (according to a formal grammar) with an explanation of the form, function, and syntactic relationship of each part
- □ INPUT: Boeing is located in Seattle

An Example Applications

- In Machine Translation each language has its own word ordering rules
 - English word order is: subject-verb-object
 - Japanes word order is subject-object-verb
- Examples:
 - English: IBM bought Lotus
 - Japanese: IBM Lotus bought
 - English: Sources said that IBM bought Lotus yesterday
 - Japanese: Sources yesterday IBM Lotus bought that said

- Context Free Grammars
 - Ambiguity Problem
- Probabilistic Context Free Grammars
 - CYK parsing algorithm
 - Weakness of PCFG
- Lexicalized Context Free Grammars
- Evaluation of parsing algorithms
- Statistical Dependency Parsing

Context Free Grammars

Ambiguity Problem

Probabilistic Context Free Grammars

- CYK parsing algorithm
- Weakness of PCFG
- Lexicalized Context Free Grammars
- Evaluation of parsing algorithms
- Statistical Dependency Parsing

Context Free Grammars (CFG)

- □ Formal Definition: a context free grammar (CFG) is a 4-tuple $G=(N, \Sigma, R, S)$ where:
 - $\square N$ is a set of non-terminal symbols
 - $\square \Sigma$ is a set of terminal symbols
 - R is a set of rules of the form $X \to Y_1 Y_2 \cdots Y_n$ for $n \ge 0, X \in N, Y_i \in (N \cup \Sigma)$
 - $\square S \in N$ is a distinguished start symbol

A Simple CFG for English

$$N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$$

 $S = S$
 $\Sigma = \{sleeps, sowe man, we man, telescope, the w$

 $\Sigma = \{$ sleeps, saw, man, woman, telescope, the, with, in $\}$

	С		ND	VD		Vi	\rightarrow	sleeps
	5	\rightarrow	NP	٧٢		Vt	\rightarrow	saw
	VP	\rightarrow	Vi		-		,	5411
	VP	_	\/+	ND		ININ	\rightarrow	man
Ð	VI	-7	VL			NN	\rightarrow	woman
R =	VP	\rightarrow	VP	PP		NINI		+
	NP	_	DT	NN		ININ	\rightarrow	telescope
						DT	\rightarrow	the
	NP	\rightarrow	NP	PP	-			101
	DD		IN	ND		IIN	\rightarrow	with
		7	IIN			IN	\rightarrow	in

× /·

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

- \square A left-most derivation is a sequence of strings $S_1 \dots S_n$, where:
 - $\bullet \ s_1 = S$
 - $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
 - Each s_i for i = 2 ... n is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R

- \square A left-most derivation is a sequence of strings $S_1 \dots S_n$, where:
 - $\square \ s_1 = S$
 - $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
 - Each s_i for i = 2 ... n is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R

S

Example: [S]

 \square A left-most derivation is a sequence of strings $S_1 \dots S_n$, where:

- $\bullet \ s_1 = S$
- □ $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
- Each s_i for $i = 2 \dots n$ is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R
- Example: [S],[NP VP]

- \square A left-most derivation is a sequence of strings $S_1 \dots S_n$, where:
 - $\bullet \ s_1 = S$
 - $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
 - Each s_i for i = 2 ... n is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R
- Example: [S],[NP VP], [D N VP]

- \square A left-most derivation is a sequence of strings $S_1 \dots S_n$, where:
 - $\bullet \ s_1 = S$
 - $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
 - Each s_i for i = 2 ... n is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R
- Example: [S],[NP VP], [D N VP],[the N VP]

- \square A left-most derivation is a sequence of strings $S_1 \dots S_n$, where:
 - $\square \ s_1 = S$
 - $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
 - Each s_i for i = 2 ... n is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R
- Example: [S],[NP VP], [D N VP],[the N VP], [the man VP]

- \square A left-most derivation is a sequence of strings $S_1 \dots S_n$, where:
 - $\square \ s_1 = S$
 - $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
 - Each s_i for i = 2 ... n is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R
- Example: [S],[NP VP], [D N VP],[the N VP], [the man VP],[the man Vi]

- \square A left-most derivation is a sequence of strings $S_1 \dots S_n$, where:
 - $\bullet \ s_1 = S$
 - $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
 - Each s_i for i = 2 ... n is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R
- Example: [S],[NP VP], [D N VP],[the N VP], [the man VP],[the man Vi], [the man sleeps]

Properties of a CFG

A Context-free Grammar G defines a set of derivations

- □ A word $s \in \Sigma^*$ is in the language defined by G if there is at least one derivation that yields s
- Each string in the language generated by the CFG may have more than one derivation (*ambiguity problem*)

- Context Free Grammars
 Ambiguity Problem
- Probabilistic Context Free Grammars
 - CYK parsing algorithm
 - Weakness of PCFG
- Lexicalized Context Free Grammars
- Evaluation of parsing algorithms
- Statistical Dependency Parsing

Ambiguity Problem

INPUT: The man saw the dog with the telescope

Ambiguity Problem

INPUT:

She announced a program to promote safety in trucks and vans

∜

POSSIBLE OUTPUTS:

And there are more...

- Context Free Grammars
 Ambiguity Problem
 Probabilistic Context Free Grammars
 CYK parsing algorithm
 Weakness of PCFG
- Lexicalized Context Free Grammars
- Evaluation of parsing algorithms
- Statistical Dependency Parsing

Solving Ambiguity Problem

- Given a sentence s, and a formal grammar G, there can be many derivations that yield s
- \Box Let $\mathcal{T}_G(s)$ be the set of possible derivations that yield s
- Defining a probability distribuition p(t) over all the possible derivations $t \in T_G(s)$ we are able to disambiguate the parsing problem selecting the most probable parse tree:

$$t^* = \operatorname*{argmax}_{t \in \mathcal{T}_G(s)} p(t)$$

Probabilistic Context-Free Grammars (PCFG)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \ldots, \alpha_n \to \beta_n$$

is $p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$ where $q(\alpha \to \beta)$ is the probability for rule $\alpha \to \beta$.

Deriving PCFG From a Corpus

Given a set of example trees (a treebank), the underlying
 CFG can simply be all rules seen in the corpus

□ Maximum-likelihood estimation of the probability parameters $q(\alpha \rightarrow \beta)$:

$$q_{ML}(\alpha \to \beta) = \frac{count(\alpha \to \beta)}{count(\alpha)}$$

where the counts are taken from a training set of example trees

- Context Free Grammars
 Ambiguity Problem
 Probabilistic Context Free Grammars
 CYK parsing algorithm
 Weakness of PCFG
 Lexicalized Context Free Grammars
- Evaluation of parsing algorithms
- Statistical Dependency Parsing

Chomsky Normal Form

□ a Context-Free Grammar G=(N, ∑, R, S) in Chomsky Normal Form is as follow:

 $\square N$ is a set of non-terminal symbols

 $\blacksquare \varSigma$ is a set of terminal symbols

 $\square R$ is a set of rules which take one of two forms:

$$X \rightarrow Y_1 Y_2$$
 for $X \in N$ and $Y_1, Y_2 \in N$

 $\blacksquare X \to Y \text{ for } X \in N \text{ and } Y \in \Sigma$

 $\square S \in N$ is a distinguished start symbol

Notation:

- n=number of words in the sentence
- $\square w_i = i$ -th word in the sentence (i.e. $s = w_1 \dots w_n$)
- $\mathcal{T}(i, j, X)$ for $X \in N$ and $1 \le i \le j \le n$ is the set of all possible parse trees for words $w_i \dots w_j$ such that X is at the root of the tree
- $\square \pi(i, j, X) = \max_{t \in \mathcal{T}(i, j, X)} p(t) \text{ i.e. } \pi(i, j, X) \text{ is the highest}$ score for any parse tree in $\mathcal{T}(i, j, X)$

$$\square \pi(1, n, S) = \max_{t \in \mathcal{T}_G(s)} p(t)$$

- Dynamic programmic parsing algorithm for PCFG in Chomsky Normal Form
- □ Bottom up approach in which $\pi(i, j, X)$ are recursively evaluated:

Base case (i = j): $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$ Recursive case (i < j): $\pi(i, j, X) = \max_{\substack{X \to YZ \in R \\ i \le k \le (j-1)}} \left(q(X \to YZ) \times \pi(i, k, Y) \times \pi(k+1, j, Z) \right)$

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R \\ i \le k \le (j-1)}} \left(q(X \to YZ) \times \pi(i,k,Y) \times \pi(k+1,j,Z) \right)$$

- Input: a sentence $s = w_1 \dots w_n$ a PCFG G=(N, Σ , R, S, q)
- Initialization:

For all
$$i \in \{1 \dots n\}$$
, for all $X \in N$

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

□ Algorithm:

For l = 1 ... (n − 1)
For i = 1 ... (n − l)
Set j = i + l
For all X ∈ N calculate
$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R \\ i \le k \le (j-1)}} (q(X \to YZ) \times \pi(i, k, Y) \times \pi(k + 1, j, Z))$$

And store

$$bp(i, j, X) = \underset{\substack{X \to YZ \in R \\ i \le k \le (j-1)}}{\operatorname{argmax}} \left(q(X \to YZ) \times \pi(i, k, Y) \times \pi(k+1, j, Z) \right)$$

• Output: bp(1, n, S)

- Context Free Grammars
 Ambiguity Problem
 Probabilistic Context Free Grammars
 CYK parsing algorithm
 Weakness of PCFG
 Lexicalized Context Free Grammars
- Evaluation of parsing algorithms
- Statistical Dependency Parsing

Weakness of PCFG

□ Lack of sensitivity to lexical information: excluding the pre-terminal nodes (i.e. the Part-Of-Speeches) the probabilities $q(\alpha \rightarrow \beta)$ are completely independent of the words

Attachment decision is completely indipendent of the words

Weakness of PCFG

- □ Lack of sensitivity to structural preferences: the probabilities $q(\alpha \rightarrow \beta)$ focus only on α and β ignoring the overall tree structure
- For instance the sentence John was believed to have been shot by Bill can have at least two interpretations:
 - Bill does the shooting (the PP by Bill attaches to the verb shot)
 - Bill believes in John (the PP by Bill attaches to the verb believe)
- Both interpretations have the same rules and then identical probability
- Closer attachment should be preferred as a corpus analysis can demonstrate

- Context Free Grammars
 Ambiguity Problem
 Probabilistic Context Free Grammars
 CYK parsing algorithm
 Weakness of PCFG
- Lexicalized Context Free Grammars
- Evaluation of parsing algorithms
- Statistical Dependency Parsing

Lexicalization of a Treebank

Idea: propagate the lexical information of the leaves (the words) through the entire tree

- According to some euristics, in each context-free rule a child is selected as head of the rule
 - □ $S \rightarrow NP \vee P$ (VP is the head)
 - $\Box \quad \forall P \rightarrow \forall t \ NP \qquad (\forall t \ is \ the \ head)$
 - $\square \text{ NP} \rightarrow \text{DT} \text{ NN} \text{ NN} \qquad (\text{the last NN is the head})$
- In a recursive bottom-up approach each constituent receives its headword from its head child

Adding Headwords to Trees

Lexicalized Context-Free Grammars in Chomsky Normal Form

- □ a Lexicalized Context-Free Grammar G=(N, ∑, R, S) in Chomsky Normal Form is as follow:
 - N is a set of non-terminal symbols
 - $\square \Sigma$ is a set of terminal symbols

 $\square R$ is a set of rules which take one of three forms:

- $\blacksquare X(h) \rightarrow_1 Y_1(h)Y_2(w) \text{ for } X \in N; \ Y_1, Y_2 \in N; \ h, w \in \Sigma$
- $X(h) \rightarrow_2 Y_1(w)Y_2(h) \text{ for } X \in N; Y_1, Y_2 \in N; h, w \in \Sigma$
- $\blacksquare X(h) \to h \text{ for } X \in N \text{ and } h \in \Sigma$

 $\square S \in N$ is a distinguished start symbol

Lexicalized Context-Free Grammars

The CYK algorithm is still valid but its q parameters have a different form:

• An example of parameter in a PCFG: $q(S \rightarrow NP VP)$

■ An example of parameter in a Lexicalized PCFG: $q(S(saw) \rightarrow_2 NP(man) VP(saw))$

Parameter Estimation in Lexicalized PCFGs (Charniak 1997)

■ First step: decompose a parameter into a product of two terms $q(S(saw) \rightarrow_2 NP(man)VP(saw))$ $= q(S \rightarrow_2 NPVP|S, saw) \times q(man|S \rightarrow_2 NPVP, saw)$

Second Step: use smoothed estimation for the two term estimates

$$q(S \rightarrow_2 NP VP|S, saw) = \lambda_1 \times q_{ML}(S \rightarrow_2 NP VP|S, saw) + (1 - \lambda_1) \times q_{ML}(S \rightarrow_2 NP VP|S)$$

 $\begin{array}{l} q(man|S \rightarrow_2 NP VP, saw) \\ = \lambda_2 \times q_{ML}(man|S \rightarrow_2 NP VP, saw) + \lambda_3 \times q_{ML}(man|S \rightarrow_2 NP VP) \\ + \lambda_4 \times q_{ML}(man|NP) \end{array}$

- Context Free Grammars
 Ambiguity Problem
 Probabilistic Context Free Grammars
 CYK parsing algorithm
 Weakness of PCFG
 Lexicalized Context Free Grammars
- Evaluation of parsing algorithms
- Statistical Dependency Parsing

Evaluation: Representing Trees as Constituents

Label	Start Point	End Point
NP	1	2
NP	4	5
VP	3	5
S	1	5

Evaluation: Precision and Recall

Gold standard

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

Label	Start Point	End Point
NP	1	2
NP	Д	5
1.11	-	5
PP	6	8
NP	7	8
		0
VP	3	8
S	1	Q
5	T	0

Parse output

- \Box G = number of constituents in gold standard = 7
- \square P = number of constituents in parse output = 6
- \Box C = number of correct constituents = 6

$$Recall = \frac{C}{G} = \frac{6}{7} \qquad Precision = \frac{C}{P} = \frac{6}{6}$$

Some Results

- Training data: 40,000 sentences from the Penn Wall Street Journal treebank. Testing: around 2,400 sentences from the Penn Wall Street Journal treebank
- □ Results for a PCFG: 70.6% Recall, 74.8% Precision
- □ Magerman (1994): 84.0% Recall, 84.3% Precision
- Results for a lexicalized PCFG: 88.1% recall, 88.3% precision (from Collins (1997, 2003))
- More recent results: 90.7% Recall/91.4% Precision (Carreras et al., 2008); 91.7% Recall, 92.0% Precision (Petrov 2010); 91.2% Recall, 91.8% Precision (Charniak and Johnson, 2005)

- Context Free Grammars
 Ambiguity Problem
 Probabilistic Context Free Grammars
 CYK parsing algorithm
 Weakness of PCFG
 Lexicalized Context Free Grammars
- Evaluation of parsing algorithms
- Statistical Dependency Parsing

Dependency Parse Trees

- Dependency syntax postulates that syntactic structure consists of lexical items linked by binary asymmetric relations ("arrows") called dependencies
- The arrow connects a head with a modifier and are typed with the name of the grammatical relations

Dependency Parse Trees

Transition-Based Dependency Parsing

🗆 Idea:

- Define a transition system for dependency parsing
- Learn a model for scoring possible transitions
- Parse by searching for the optimal transition sequence

Advantages:

- Highly efficient parsing with low complexity
- Rich history-based feature models for disambiguation

Transition System: Configurations

Notation:

- Arc (w_i, l, w_j) connects head w_i to modifier w_j with label l
- **D** Node w_0 (labeled ROOT) is the unique root of the tree
- A configuration is a triple c=(S,Q,A) where:
 - S is a stack $[..., w_i]_S$ of partially processed nodes
 - Q is a queue $[w_j, ...]_o$ of remaining input nodes
 - A is a set of labeled arcs (w_i, l, w_j)
- Initialization:
 - $\square ([w_0]_S, [w_1, ..., w_n]_Q, \{\})$
- Termination:
 - $\square ([w_0]_S, []_Q, A)$

Transition System: Transitions

Three possible transitions:

Left-Arc(I)
$$\frac{([\dots, w_i, w_j]_S, Q, A)}{([\dots, w_j]_S, Q, A \cup \{(w_j, I, w_i)\})} [i \neq 0]$$

Right-Arc(I)
$$\frac{([\dots, w_i, w_j]_S, Q, A)}{([\dots, w_i]_S, Q, A \cup \{(w_i, I, w_j)\})}$$

Shift
$$\frac{([\dots]_S, [w_i, \dots]_Q, A)}{([\dots, w_i]_S, [\dots]_Q, A)}$$

[ROOT]_S [Economic, news, had, little, effect, on, financial, markets, .]_Q

ROOT Economic news had little effect on financial markets ,

[ROOT, Economic]_S [news, had, little, effect, on, financial, markets, .]_Q

ROOT Economic news had little effect on financial markets ,

[ROOT, Economic, news]_S [had, little, effect, on, financial, markets, .]_Q

ROOT Economic news had little effect on financial markets

[ROOT, news]_S [had, little, effect, on, financial, markets, .]_Q

[ROOT, news, had]_S [little, effect, on, financial, markets, .]_Q

[ROOT, had]_S [little, effect, on, financial, markets, .]_Q

[ROOT, had, little]_S [effect, on, financial, markets, .]_Q

[ROOT, had, little, effect]_S [on, financial, markets, .]_Q

[ROOT, had, effect]_S [on, financial, markets, .]_Q

[ROOT, had, effect, on]_S [financial, markets, .]_Q

[ROOT, had, effect, on, financial]_S [markets, .]_Q

[ROOT, had, effect, on, financial, markets]_S [.]_Q

[ROOT, had, effect, on, markets]_S [.]_Q

[**ROOT**, had, effect, on]_S $[.]_Q$

[ROOT, had, effect]_S [.]_Q

[ROOT, had]_S $[.]_Q$

[ROOT, had, .]_S []_Q

Selecting the Next Transition

- The next transition can be selected using a classifier (MaltParser): Next transition = $\underset{t}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(c, t)$
- \Box f(c, t) = Historic-based feature representation:
 - Features over input tokens relative to S and Q
 - Features over the (partial) dependency tree defined by A
 - Features over the (partial) transition sequence
- \square w = weight vector learned from treebank data:
 - Reconstruct oracle transition sequence for Each sentence
 - Contruct training dataset $D = \{(c, t) | o(c) = t\}$
 - Maximize accuracy of local predictions

Evaluation of Dependency Parsing

- Labeled Attachment Score(LAS) = the percentage of tokens, excluding punctuation, that are assigned both the correct head and the correct dependency label
- Unlabeled Attachment Score(UAS) = the percentage of tokens, excluding punctuation, that are assigned the correct head

References

Michael Collins:

- Notes on PCFGs: <u>http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/pcfgs.pdf</u>
- Notes on Lexicalized PCFGs <u>http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf</u>
- Joakim Nivre, Johan Hall and Jens Nilsson. MaltParser: A Data-Driven Parser-Generator for Dependency Parsing. In Proc. of LREC 2006
- Ryan McDonald and Joakim Nivre. Characterizing the Errors of Data-Driven Dependency Parsing Models. In Proc. of EMNLP 2007