
Natural Language Parsing

Web Mining e Retrieval 2013/2014

Simone Filice

filice.simone@gmail.com

University of Roma Tor Vergata

Material extracted from lectures of Collins and Nivre

Problem Definition

 PARSING: Breaking down a text into its component parts of

speech (according to a formal grammar) with an explanation

of the form, function, and syntactic relationship of each part

 INPUT: Boeing is located in Seattle

 OUTPUT:

C
O

N
S
TI

T
U

E
N

T

PA
R
S
E
 T

R
EE

An Example Applications

 In Machine Translation each language has its own word

ordering rules

 English word order is: subject-verb-object

 Japanes word order is subject-object-verb

 Examples:

 English: IBM bought Lotus

 Japanese: IBM Lotus bought

 English: Sources said that IBM bought Lotus yesterday

 Japanese: Sources yesterday IBM Lotus bought that said

Overview

 Context Free Grammars

 Ambiguity Problem

 Probabilistic Context Free Grammars

 CYK parsing algorithm

 Weakness of PCFG

 Lexicalized Context Free Grammars

 Evaluation of parsing algorithms

 Statistical Dependency Parsing

Overview

 Context Free Grammars

 Ambiguity Problem

 Probabilistic Context Free Grammars

 CYK parsing algorithm

 Weakness of PCFG

 Lexicalized Context Free Grammars

 Evaluation of parsing algorithms

 Statistical Dependency Parsing

Context Free Grammars (CFG)

 Formal Definition: a context free grammar

(CFG) is a 4-tuple G=(N, , R, S) where:

N is a set of non-terminal symbols

 is a set of terminal symbols

R is a set of rules of the form 𝑋 → 𝑌1𝑌2 ⋯𝑌𝑛 for

𝑛 ≥ 0, 𝑋 ∈ 𝑁, 𝑌𝑖 ∈ (𝑁 ∪ Σ)

𝑆 ∈ 𝑁 is a distinguished start symbol

A Simple CFG for English

Left-Most Derivations

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where:

 𝑠1 = 𝑆

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a

rule in R

Left-Most Derivations

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where:

 𝑠1 = 𝑆

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a

rule in R

 Example: [S]

Left-Most Derivations

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where:

 𝑠1 = 𝑆

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a

rule in R

 Example: [S],[NP VP]

Left-Most Derivations

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where:

 𝑠1 = 𝑆

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a

rule in R

 Example: [S],[NP VP], [D N VP]

Left-Most Derivations

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where:

 𝑠1 = 𝑆

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a

rule in R

 Example: [S],[NP VP], [D N VP],[the N VP]

Left-Most Derivations

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where:

 𝑠1 = 𝑆

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a

rule in R

 Example: [S],[NP VP], [D N VP],[the N VP],

 [the man VP]

Left-Most Derivations

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where:

 𝑠1 = 𝑆

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a

rule in R

 Example: [S],[NP VP], [D N VP],[the N VP],

 [the man VP],[the man Vi]

Left-Most Derivations

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where:

 𝑠1 = 𝑆

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a

rule in R

 Example: [S],[NP VP], [D N VP],[the N VP],

 [the man VP],[the man Vi],

 [the man sleeps]

Properties of a CFG

 A Context-free Grammar G defines a set of derivations

 A word 𝑠 ∈ Σ∗ is in the language defined by G if there is at

least one derivation that yields s

 Each string in the language generated by the CFG may have

more than one derivation (ambiguity problem)

Overview

 Context Free Grammars

 Ambiguity Problem

 Probabilistic Context Free Grammars

 CYK parsing algorithm

 Weakness of PCFG

 Lexicalized Context Free Grammars

 Evaluation of parsing algorithms

 Statistical Dependency Parsing

Ambiguity Problem

INPUT: The man saw the dog with the telescope

POSSIBLE OUTPUTS:

Ambiguity Problem

Overview

 Context Free Grammars

 Ambiguity Problem

 Probabilistic Context Free Grammars

 CYK parsing algorithm

 Weakness of PCFG

 Lexicalized Context Free Grammars

 Evaluation of parsing algorithms

 Statistical Dependency Parsing

Solving Ambiguity Problem

 Given a sentence s, and a formal grammar G, there can be

many derivations that yield s

 Let 𝒯𝐺(𝑠) be the set of possible derivations that yield s

 Defining a probability distribuition p(t) over all the possible

derivations t ∈ 𝒯𝐺(𝑠) we are able to disambiguate the parsing

problem selecting the most probable parse tree:

𝑡∗ = argmax
𝑡∈𝒯𝐺(𝑠)

𝑝(𝑡)

Probabilistic Context-Free Grammars

(PCFG)

Deriving PCFG From a Corpus

 Given a set of example trees (a treebank), the underlying

CFG can simply be all rules seen in the corpus

 Maximum-likelihood estimation of the probability parameters

𝑞(𝛼 → 𝛽) :

𝑞𝑀𝐿 𝛼 → 𝛽 =
𝑐𝑜𝑢𝑛𝑡 𝛼 → 𝛽

𝑐𝑜𝑢𝑛𝑡(𝛼)

where the counts are taken from a training set of example

trees

Overview

 Context Free Grammars

 Ambiguity Problem

 Probabilistic Context Free Grammars

 CYK parsing algorithm

 Weakness of PCFG

 Lexicalized Context Free Grammars

 Evaluation of parsing algorithms

 Statistical Dependency Parsing

Chomsky Normal Form

 a Context-Free Grammar G=(N, , R, S) in

Chomsky Normal Form is as follow:

N is a set of non-terminal symbols

 is a set of terminal symbols

R is a set of rules which take one of two forms:

𝑋 → 𝑌1𝑌2 for 𝑋 ∈ 𝑁 and 𝑌1, 𝑌2 ∈ 𝑁

𝑋 → 𝑌 for 𝑋 ∈ 𝑁 and 𝑌 ∈ Σ

𝑆 ∈ 𝑁 is a distinguished start symbol

Cocke-Younger-Kasami Algorithm

 Notation:

 n=number of words in the sentence

𝑤𝑖=i-th word in the sentence (i.e. 𝑠 = 𝑤1 …𝑤𝑛)

 𝒯(𝑖, 𝑗, 𝑋) for 𝑋 ∈ 𝑁 and 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 is the set of all

possible parse trees for words 𝑤𝑖 …𝑤𝑗 such that X is at

the root of the tree

𝜋 𝑖, 𝑗, 𝑋 = max
𝑡∈𝒯 𝑖,𝑗,𝑋

𝑝(𝑡) i.e. 𝜋 𝑖, 𝑗, 𝑋 is the highest

score for any parse tree in 𝒯(𝑖, 𝑗, 𝑋)

 𝜋 1, 𝑛, 𝑆 = max
𝑡∈𝒯𝐺 𝑠

𝑝(𝑡)

Cocke-Younger-Kasami Algorithm

 Dynamic programmic parsing algorithm for PCFG in

Chomsky Normal Form

 Bottom up approach in which 𝜋 𝑖, 𝑗, 𝑋 are recursively

evaluated:

 Base case (𝑖 = 𝑗):

𝜋 𝑖, 𝑖, 𝑋 =
𝑞 𝑋 → 𝑥𝑖 𝑖𝑓 𝑋 → 𝑥𝑖 ∈ 𝑅
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Recursive case (𝑖 < 𝑗):
𝜋 𝑖, 𝑗, 𝑋 = max

𝑋→𝑌𝑍∈𝑅
𝑖≤𝑘≤ (𝑗−1)

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍

Cocke-Younger-Kasami Algorithm

𝜋 𝑖, 𝑗, 𝑋 = max
𝑋→𝑌𝑍∈𝑅

𝑖≤𝑘≤ (𝑗−1)

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍

X

Y Z

𝑤𝑖 𝑤𝑘 𝑤𝑘+1 𝑤𝑗 … …

Cocke-Younger-Kasami Algorithm

 Input: a sentence 𝑠 = 𝑤1 …𝑤𝑛 a PCFG G=(N, , R, S, q)

 Initialization:

For all 𝑖 ∈ {1…𝑛}, for all 𝑋 ∈ 𝑁

𝜋 𝑖, 𝑖, 𝑋 =
𝑞 𝑋 → 𝑥𝑖 𝑖𝑓 𝑋 → 𝑥𝑖 ∈ 𝑅
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Algorithm:

 For 𝑙 = 1… 𝑛 − 1

 For 𝑖 = 1… 𝑛 − 𝑙

 Set 𝑗 = 𝑖 + 𝑙
 For all 𝑋 ∈ 𝑁 calculate

𝜋 𝑖, 𝑗, 𝑋 = max
𝑋→𝑌𝑍∈𝑅

𝑖≤𝑘≤ (𝑗−1)

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍

And store

𝑏𝑝 𝑖, 𝑗, 𝑋 = argmax
𝑋→𝑌𝑍∈𝑅

𝑖≤𝑘≤ (𝑗−1)

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍

 Output: 𝑏𝑝 1, 𝑛, 𝑆

Overview

 Context Free Grammars

 Ambiguity Problem

 Probabilistic Context Free Grammars

 CYK parsing algorithm

 Weakness of PCFG

 Lexicalized Context Free Grammars

 Evaluation of parsing algorithms

 Statistical Dependency Parsing

Weakness of PCFG

 Lack of sensitivity to lexical information: excluding the pre-terminal

nodes (i.e. the Part-Of-Speeches) the probabilities 𝑞 𝛼 → 𝛽 are completely

independent of the words

Chosen if:

𝑞 𝑁𝑃 → 𝑁𝑃 𝑃𝑃 ≤ 𝑞(𝑉𝑃 → 𝑉𝑃 𝑃𝑃)
Chosen if:

𝑞 𝑁𝑃 → 𝑁𝑃 𝑃𝑃 > 𝑞(𝑉𝑃 → 𝑉𝑃 𝑃𝑃)

Attachment decision is completely indipendent of the words

Weakness of PCFG

 Lack of sensitivity to structural preferences: the probabilities

𝑞 𝛼 → 𝛽 focus only on 𝛼 and 𝛽 ignoring the overall tree structure

 For instance the sentence John was believed to have been shot

by Bill can have at least two interpretations:

 Bill does the shooting (the PP by Bill attaches to the verb shot)

 Bill believes in John (the PP by Bill attaches to the verb believe)

 Both interpretations have the same rules and then identical probability

 Closer attachment should be preferred as a corpus analysis can

demonstrate

Overview

 Context Free Grammars

 Ambiguity Problem

 Probabilistic Context Free Grammars

 CYK parsing algorithm

 Weakness of PCFG

 Lexicalized Context Free Grammars

 Evaluation of parsing algorithms

 Statistical Dependency Parsing

Lexicalization of a Treebank

 Idea: propagate the lexical information of the leaves (the

words) through the entire tree

 According to some euristics, in each context-free rule a child is

selected as head of the rule

 S NP VP (VP is the head)

 VP Vt NP (Vt is the head)

 NP DT NN NN (the last NN is the head)

 In a recursive bottom-up approach each constitient receives its

headword from its head child

Adding Headwords to Trees

Lexicalized Context-Free Grammars in

Chomsky Normal Form

 a Lexicalized Context-Free Grammar G=(N, , R, S)

in Chomsky Normal Form is as follow:

N is a set of non-terminal symbols

 is a set of terminal symbols

R is a set of rules which take one of three forms:

𝑋(ℎ) →1 𝑌1(ℎ)𝑌2(𝑤) for 𝑋 ∈ 𝑁; 𝑌1, 𝑌2 ∈ 𝑁; ℎ,𝑤 ∈ Σ

𝑋(ℎ) →2 𝑌1(𝑤)𝑌2(ℎ) for 𝑋 ∈ 𝑁; 𝑌1, 𝑌2 ∈ 𝑁; ℎ, 𝑤 ∈ Σ

𝑋(ℎ) → ℎ for 𝑋 ∈ 𝑁 and ℎ ∈ Σ

𝑆 ∈ 𝑁 is a distinguished start symbol

Lexicalized Context-Free Grammars

 The CYK algorithm is still valid but its q parameters

have a different form:

An example of parameter in a PCFG:

𝑞(𝑆 → 𝑁𝑃 𝑉𝑃)

An example of parameter in a Lexicalized PCFG:

𝑞(𝑆(𝑠𝑎𝑤) →2 𝑁𝑃(𝑚𝑎𝑛) 𝑉𝑃(𝑠𝑎𝑤))

Parameter Estimation in Lexicalized

PCFGs (Charniak 1997)

 First step: decompose a parameter into a product of two terms

𝑞 𝑆 𝑠𝑎𝑤 →2 𝑁𝑃 𝑚𝑎𝑛 𝑉𝑃 𝑠𝑎𝑤
= 𝑞(𝑆 →2 𝑁𝑃 𝑉𝑃|𝑆, 𝑠𝑎𝑤) × 𝑞(𝑚𝑎𝑛|𝑆 →2 𝑁𝑃 𝑉𝑃, 𝑠𝑎𝑤)

 Second Step: use smoothed estimation for the two term estimates

𝑞 𝑆 →2 𝑁𝑃 𝑉𝑃 𝑆, 𝑠𝑎𝑤
= 𝜆1 × 𝑞𝑀𝐿 𝑆 →2 𝑁𝑃 𝑉𝑃 𝑆, 𝑠𝑎𝑤 + (1 − 𝜆1) × 𝑞𝑀𝐿 𝑆 →2 𝑁𝑃 𝑉𝑃 𝑆

𝑞(𝑚𝑎𝑛|𝑆 →2 𝑁𝑃 𝑉𝑃, 𝑠𝑎𝑤)
= 𝜆2 × 𝑞𝑀𝐿 𝑚𝑎𝑛 𝑆 →2 𝑁𝑃 𝑉𝑃, 𝑠𝑎𝑤 + 𝜆3 × 𝑞𝑀𝐿 𝑚𝑎𝑛 𝑆 →2 𝑁𝑃 𝑉𝑃

+ 𝜆4 × 𝑞𝑀𝐿 𝑚𝑎𝑛 𝑁𝑃

Overview

 Context Free Grammars

 Ambiguity Problem

 Probabilistic Context Free Grammars

 CYK parsing algorithm

 Weakness of PCFG

 Lexicalized Context Free Grammars

 Evaluation of parsing algorithms

 Statistical Dependency Parsing

Evaluation: Representing Trees as

Constituents

Evaluation: Precision and Recall

Gold standard Parse output

 G = number of constituents in gold standard = 7

 P = number of constituents in parse output = 6

 C = number of correct constituents = 6

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶

𝐺
=

6

7
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝐶

𝑃
=

6

6

Some Results

 Training data: 40,000 sentences from the Penn Wall Street

Journal treebank. Testing: around 2,400 sentences from the

Penn Wall Street Journal treebank

 Results for a PCFG: 70.6% Recall, 74.8% Precision

 Magerman (1994): 84.0% Recall, 84.3% Precision

 Results for a lexicalized PCFG: 88.1% recall, 88.3% precision

(from Collins (1997, 2003))

 More recent results: 90.7% Recall/91.4% Precision (Carreras

et al., 2008); 91.7% Recall, 92.0% Precision (Petrov 2010);

91.2% Recall, 91.8% Precision (Charniak and Johnson, 2005)

Overview

 Context Free Grammars

 Ambiguity Problem

 Probabilistic Context Free Grammars

 CYK parsing algorithm

 Weakness of PCFG

 Lexicalized Context Free Grammars

 Evaluation of parsing algorithms

 Statistical Dependency Parsing

Dependency Parse Trees

 Dependency syntax postulates that syntactic structure consists

of lexical items linked by binary asymmetric relations

(“arrows”) called dependencies

 The arrow connects a head with a modifier and are typed with

the name of the grammatical relations

Dependency Parse Trees

ROOT

Economic

news

had

little

effect

on

financial

markets

.

PRED

SBJ

OBJ

PU

ATT

ATT ATT

PC

ATT

Transition-Based Dependency Parsing

 Idea:

 Define a transition system for dependency parsing

 Learn a model for scoring possible transitions

 Parse by searching for the optimal transition sequence

 Advantages:

 Highly efficient parsing with low complexity

 Rich history-based feature models for disambiguation

Transition System: Configurations

 Notation:

 Arc (𝑤𝑖 , 𝑙, 𝑤𝑗) connects head 𝑤𝑖 to modifier 𝑤𝑗 with label l

 Node 𝑤0 (labeled ROOT) is the unique root of the tree

 A configuration is a triple c=(S,Q,A) where:

 S is a stack … ,𝑤𝑖 𝑆 of partially processed nodes

 Q is a queue 𝑤𝑗 , … 𝑄
 of remaining input nodes

 A is a set of labeled arcs (𝑤𝑖 , 𝑙, 𝑤𝑗)

 Initialization:

 𝑤0 𝑆, 𝑤1, … , 𝑤𝑛 𝑄, {}

 Termination:

 𝑤0 𝑆, 𝑄, 𝐴

Transition System: Transitions

 Three possible transitions:

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Transition Sequence Example

Selecting the Next Transition

 The next transition can be selected using a classifier (MaltParser):

Next transition = argmax
𝑡

𝒘 ∙ 𝒇(𝑐, 𝑡)

 𝒇(𝑐, 𝑡) = Historic-based feature representation:

 Features over input tokens relative to S and Q

 Features over the (partial) dependency tree defined by A

 Features over the (partial) transition sequence

 𝒘 = weight vector learned from treebank data:

 Reconstruct oracle transition sequence for Each sentence

 Contruct training dataset 𝐷 = 𝑐, 𝑡 |𝑜 𝑐 = 𝑡

 Maximize accuracy of local predictions

Evaluation of Dependency Parsing

 Labeled Attachment Score(LAS) = the percentage of tokens, excluding punctuation,

that are assigned both the correct head and the correct dependency label

 Unlabeled Attachment Score(UAS) = the percentage of tokens, excluding

punctuation, that are assigned the correct head

La
b

e
le

d
 A

tt
a

ch
m

e
nt

 S
co

re

References

 Michael Collins:

 Notes on PCFGs:

http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/pcfgs.pdf

 Notes on Lexicalized PCFGs

http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf

 Joakim Nivre, Johan Hall and Jens Nilsson. MaltParser: A Data-

Driven Parser-Generator for Dependency Parsing. In Proc. of

LREC 2006

 Ryan McDonald and Joakim Nivre. Characterizing the Errors of

Data-Driven Dependency Parsing Models. In Proc. of EMNLP

2007

http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/pcfgs.pdf
http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf

