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Problem Definition 

 PARSING: Breaking down a text into its component parts of 

speech (according to a formal grammar) with an explanation 

of the form, function, and syntactic relationship of each part 

 INPUT: Boeing is located in Seattle 

 OUTPUT: 
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An Example Applications 

 In Machine Translation each language has its own word 

ordering rules 

 English word order is: subject-verb-object 

 Japanes word order is subject-object-verb 

 

 Examples: 

 English: IBM bought Lotus 

 Japanese: IBM Lotus bought 

 

 English: Sources said that IBM bought Lotus yesterday 

 Japanese: Sources yesterday IBM Lotus bought that said 
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Context Free Grammars (CFG) 

 

 Formal Definition: a context free grammar 

(CFG) is a 4-tuple G=(N, , R, S) where: 

N is a set of non-terminal symbols 

  is a set of terminal symbols 

R is a set of rules of the form 𝑋 → 𝑌1𝑌2 ⋯𝑌𝑛 for 

𝑛 ≥ 0, 𝑋 ∈ 𝑁, 𝑌𝑖 ∈ (𝑁 ∪ Σ) 

𝑆 ∈ 𝑁 is a distinguished start symbol 



A Simple CFG for English 



Left-Most Derivations 

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where: 

 𝑠1 = 𝑆 

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only 

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most 

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a 

rule in R 
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Left-Most Derivations 

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where: 

 𝑠1 = 𝑆 
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non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a 

rule in R 

 

 Example: [S],[NP VP], [D N VP],[the N VP], 

        [the man VP],[the man Vi], 

        [the man sleeps] 



Properties of a CFG 

 A Context-free Grammar G defines a set of derivations 

 

 A word 𝑠 ∈ Σ∗ is in the language defined by G if there is at 

least one derivation that yields s 

 

 Each string in the language generated by the CFG may have 

more than one derivation (ambiguity problem) 

 



Overview 

 Context Free Grammars 

 Ambiguity Problem 

 Probabilistic Context Free Grammars 

 CYK parsing algorithm 

 Weakness of PCFG 

 Lexicalized Context Free Grammars 

 Evaluation of parsing algorithms 

 Statistical Dependency Parsing 

 



Ambiguity Problem 

INPUT: The man saw the dog with the telescope 

 

POSSIBLE OUTPUTS: 



Ambiguity Problem 
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Solving Ambiguity Problem 

 Given a sentence s, and a formal grammar G, there can be 

many derivations that yield s 

 

 Let 𝒯𝐺(𝑠) be the set of possible derivations that yield s 

 

 Defining a probability distribuition p(t) over all the possible 

derivations t ∈ 𝒯𝐺(𝑠) we are able to disambiguate the parsing 

problem selecting the most probable parse tree: 

𝑡∗ = argmax
𝑡∈𝒯𝐺(𝑠)

𝑝(𝑡) 



Probabilistic Context-Free Grammars 

(PCFG) 



Deriving PCFG From a Corpus 

 Given a set of example trees (a treebank), the underlying 

CFG can simply be all rules seen in the corpus  

 

 Maximum-likelihood estimation of the probability parameters 

𝑞(𝛼 → 𝛽) : 

𝑞𝑀𝐿 𝛼 → 𝛽 =
𝑐𝑜𝑢𝑛𝑡 𝛼 → 𝛽

𝑐𝑜𝑢𝑛𝑡(𝛼)
 

where the counts are taken from a training set of example 

trees 
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Chomsky Normal Form 

 a Context-Free Grammar G=(N, , R, S) in 

Chomsky Normal Form is as follow: 

N is a set of non-terminal symbols 

  is a set of terminal symbols 

R is a set of rules which take one of two forms: 

𝑋 → 𝑌1𝑌2 for 𝑋 ∈ 𝑁 and 𝑌1, 𝑌2 ∈ 𝑁 

𝑋 → 𝑌 for 𝑋 ∈ 𝑁 and 𝑌 ∈ Σ 

𝑆 ∈ 𝑁 is a distinguished start symbol 



Cocke-Younger-Kasami Algorithm 

 Notation: 

 n=number of words in the sentence 

𝑤𝑖=i-th word in the sentence (i.e. 𝑠 = 𝑤1 …𝑤𝑛) 

 𝒯(𝑖, 𝑗, 𝑋) for 𝑋 ∈ 𝑁 and 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 is the set of all 

possible parse trees for words 𝑤𝑖 …𝑤𝑗 such that X is at 

the root of the tree 

𝜋 𝑖, 𝑗, 𝑋 = max
𝑡∈𝒯 𝑖,𝑗,𝑋

𝑝(𝑡)  i.e. 𝜋 𝑖, 𝑗, 𝑋  is the highest 

score for any parse tree in 𝒯(𝑖, 𝑗, 𝑋) 

 𝜋 1, 𝑛, 𝑆 = max
𝑡∈𝒯𝐺 𝑠

𝑝(𝑡) 



Cocke-Younger-Kasami Algorithm 

 Dynamic programmic parsing algorithm for PCFG in 

Chomsky Normal Form 

 Bottom up approach in which 𝜋 𝑖, 𝑗, 𝑋  are recursively 

evaluated: 

 Base case (𝑖 = 𝑗):   

𝜋 𝑖, 𝑖, 𝑋 =  
𝑞 𝑋 → 𝑥𝑖     𝑖𝑓 𝑋 → 𝑥𝑖 ∈ 𝑅
 0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Recursive case (𝑖 < 𝑗): 
𝜋 𝑖, 𝑗, 𝑋 = max

𝑋→𝑌𝑍∈𝑅
𝑖≤𝑘≤ (𝑗−1) 

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍  



Cocke-Younger-Kasami Algorithm 

𝜋 𝑖, 𝑗, 𝑋 = max
𝑋→𝑌𝑍∈𝑅

𝑖≤𝑘≤ (𝑗−1) 

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍  

X 

Y Z 

𝑤𝑖 𝑤𝑘 𝑤𝑘+1 𝑤𝑗 … … 



Cocke-Younger-Kasami Algorithm 

 Input: a sentence 𝑠 = 𝑤1 …𝑤𝑛 a PCFG G=(N, , R, S, q)  

 Initialization:  

For all 𝑖 ∈ {1…𝑛}, for all 𝑋 ∈ 𝑁 

𝜋 𝑖, 𝑖, 𝑋 =  
𝑞 𝑋 →  𝑥𝑖     𝑖𝑓 𝑋 → 𝑥𝑖 ∈ 𝑅
 0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Algorithm: 

 For 𝑙 = 1… 𝑛 − 1  

 For 𝑖 = 1… 𝑛 − 𝑙  

 Set 𝑗 = 𝑖 + 𝑙 
 For all 𝑋 ∈ 𝑁 calculate 

𝜋 𝑖, 𝑗, 𝑋 = max
𝑋→𝑌𝑍∈𝑅

𝑖≤𝑘≤ (𝑗−1) 

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍  

And store 

𝑏𝑝 𝑖, 𝑗, 𝑋 = argmax
𝑋→𝑌𝑍∈𝑅

𝑖≤𝑘≤ (𝑗−1) 

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍  

 Output: 𝑏𝑝 1, 𝑛, 𝑆  
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Weakness of PCFG 

 Lack of sensitivity to lexical information: excluding the pre-terminal 

nodes (i.e. the Part-Of-Speeches) the probabilities 𝑞 𝛼 →  𝛽  are completely 

independent of the words  

Chosen if: 

𝑞 𝑁𝑃 → 𝑁𝑃 𝑃𝑃 ≤ 𝑞(𝑉𝑃 → 𝑉𝑃 𝑃𝑃) 
Chosen if: 

𝑞 𝑁𝑃 → 𝑁𝑃 𝑃𝑃 > 𝑞(𝑉𝑃 → 𝑉𝑃 𝑃𝑃) 

Attachment decision is completely indipendent of the words 



Weakness of PCFG 

 Lack of sensitivity to structural preferences: the probabilities 

𝑞 𝛼 →  𝛽   focus only on 𝛼 and 𝛽  ignoring the overall tree structure   

 

 For instance the sentence John was believed to have been shot 

by Bill can have at least two interpretations: 

 Bill does the shooting (the PP by Bill attaches to the verb shot) 

 Bill believes in John (the PP by Bill attaches to the verb believe) 

 Both interpretations have the same rules and then identical probability 

 Closer attachment should be preferred as a corpus analysis can 

demonstrate 
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Lexicalization of a Treebank 

 Idea: propagate the lexical information of the leaves (the 

words) through the entire tree 

 

 According to some euristics, in each context-free rule a child is 

selected as head of the rule 

 S  NP VP  (VP is the head)  

 VP  Vt NP  (Vt is the head) 

 NP  DT NN NN (the last NN is the head) 

 

 In a recursive bottom-up approach each constitient receives its 

headword from its head child 

 



Adding Headwords to Trees 



Lexicalized Context-Free Grammars in 

Chomsky Normal Form 

 a Lexicalized Context-Free Grammar G=(N, , R, S) 

in Chomsky Normal Form is as follow: 

N is a set of non-terminal symbols 

  is a set of terminal symbols 

R is a set of rules which take one of three forms: 

𝑋(ℎ)  →1 𝑌1(ℎ)𝑌2(𝑤) for 𝑋 ∈ 𝑁;   𝑌1, 𝑌2 ∈ 𝑁;  ℎ,𝑤 ∈ Σ 

𝑋(ℎ)  →2 𝑌1(𝑤)𝑌2(ℎ) for 𝑋 ∈ 𝑁;   𝑌1, 𝑌2 ∈ 𝑁;  ℎ, 𝑤 ∈ Σ 

𝑋(ℎ) → ℎ for 𝑋 ∈ 𝑁 and ℎ ∈ Σ 

𝑆 ∈ 𝑁 is a distinguished start symbol 



Lexicalized Context-Free Grammars 

 The CYK algorithm is still valid but its q parameters 

have a different form: 

An example of parameter in a PCFG: 

𝑞(𝑆 → 𝑁𝑃 𝑉𝑃) 

 

An example of parameter in a Lexicalized PCFG: 

𝑞(𝑆(𝑠𝑎𝑤) →2  𝑁𝑃(𝑚𝑎𝑛) 𝑉𝑃(𝑠𝑎𝑤)) 

 



Parameter Estimation in Lexicalized 

PCFGs (Charniak 1997) 

 First step: decompose a parameter into a product of two terms 

𝑞 𝑆 𝑠𝑎𝑤 →2 𝑁𝑃 𝑚𝑎𝑛 𝑉𝑃 𝑠𝑎𝑤  
= 𝑞(𝑆 →2 𝑁𝑃 𝑉𝑃|𝑆, 𝑠𝑎𝑤) × 𝑞(𝑚𝑎𝑛|𝑆 →2 𝑁𝑃 𝑉𝑃, 𝑠𝑎𝑤) 

 

 Second Step: use smoothed estimation for the two term estimates 

 

 
𝑞 𝑆 →2 𝑁𝑃 𝑉𝑃 𝑆, 𝑠𝑎𝑤  
= 𝜆1 × 𝑞𝑀𝐿 𝑆 →2 𝑁𝑃 𝑉𝑃 𝑆, 𝑠𝑎𝑤 + (1 − 𝜆1) × 𝑞𝑀𝐿 𝑆 →2 𝑁𝑃 𝑉𝑃 𝑆  

 

𝑞(𝑚𝑎𝑛|𝑆 →2 𝑁𝑃 𝑉𝑃, 𝑠𝑎𝑤) 
= 𝜆2 × 𝑞𝑀𝐿 𝑚𝑎𝑛 𝑆 →2 𝑁𝑃 𝑉𝑃, 𝑠𝑎𝑤 + 𝜆3 × 𝑞𝑀𝐿 𝑚𝑎𝑛 𝑆 →2 𝑁𝑃 𝑉𝑃  

+ 𝜆4 × 𝑞𝑀𝐿 𝑚𝑎𝑛 𝑁𝑃  
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Evaluation: Representing Trees as 

Constituents 



Evaluation: Precision and Recall 

Gold standard Parse output 

 G = number of constituents in gold standard = 7 

 P = number of constituents in parse output = 6 

 C = number of correct constituents = 6 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶

𝐺
=

6

7
     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝐶

𝑃
=

6

6
  

 



Some Results 

 Training data: 40,000 sentences from the Penn Wall Street 

Journal treebank. Testing: around 2,400 sentences from the 

Penn Wall Street Journal treebank 

 Results for a PCFG: 70.6% Recall, 74.8% Precision 

 Magerman (1994): 84.0% Recall, 84.3% Precision 

 Results for a lexicalized PCFG: 88.1% recall, 88.3% precision 

(from Collins (1997, 2003)) 

 More recent results: 90.7% Recall/91.4% Precision (Carreras 

et al., 2008); 91.7% Recall, 92.0% Precision (Petrov 2010); 

91.2% Recall, 91.8% Precision (Charniak and Johnson, 2005) 
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Dependency Parse Trees  

 Dependency syntax postulates that syntactic structure consists 

of lexical items linked by binary asymmetric relations 

(“arrows”) called dependencies 

 The arrow connects a head with a modifier and are typed with 

the name of the grammatical relations 

 

 



Dependency Parse Trees  

ROOT 

Economic 

news 

had 

little 

effect 

on 

financial 

markets 

. 

PRED 

SBJ 

OBJ 

PU 

ATT 

ATT ATT 

PC 

ATT 



Transition-Based Dependency Parsing 

 Idea: 

 Define a transition system for dependency parsing 

 Learn a model for scoring possible transitions 

 Parse by searching for the optimal transition sequence 

 Advantages: 

 Highly efficient parsing with low complexity 

 Rich history-based feature models for disambiguation 

 



Transition System: Configurations 

 Notation: 

 Arc (𝑤𝑖 , 𝑙, 𝑤𝑗) connects head 𝑤𝑖 to modifier 𝑤𝑗 with label l 

 Node 𝑤0 (labeled ROOT) is the unique root of the tree 

 A configuration is a triple c=(S,Q,A) where: 

 S is a stack … ,𝑤𝑖 𝑆 of partially processed nodes 

 Q is a queue 𝑤𝑗 , … 𝑄
 of remaining input nodes 

 A is a set of labeled arcs (𝑤𝑖 , 𝑙, 𝑤𝑗) 

 Initialization: 

 𝑤0 𝑆, 𝑤1, … , 𝑤𝑛 𝑄, {}  

 Termination: 

 𝑤0 𝑆, 𝑄, 𝐴  

 



Transition System: Transitions 

 Three possible transitions: 



Transition Sequence Example 
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Selecting the Next Transition 

 The next transition can be selected using a classifier (MaltParser): 

Next transition = argmax
𝑡

𝒘 ∙ 𝒇(𝑐, 𝑡) 

 

 𝒇(𝑐, 𝑡) = Historic-based feature representation: 

 Features over input tokens relative to S and Q 

 Features over the (partial) dependency tree defined by A 

 Features over the (partial) transition sequence 

 

 𝒘 = weight vector learned from treebank data: 

 Reconstruct oracle transition sequence for Each sentence 

 Contruct training dataset 𝐷 = 𝑐, 𝑡 |𝑜 𝑐 = 𝑡  

 Maximize accuracy of local predictions  

 



Evaluation of Dependency Parsing 

 Labeled Attachment Score(LAS) = the percentage of tokens, excluding punctuation, 

that are assigned both the correct head and the correct dependency label  

 Unlabeled Attachment Score(UAS) = the percentage of tokens, excluding 

punctuation, that are assigned the correct head 

La
b

e
le

d
 A

tt
a

ch
m

e
nt
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co

re
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