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Problem Definition 

 PARSING: Breaking down a text into its component parts of 

speech (according to a formal grammar) with an explanation 

of the form, function, and syntactic relationship of each part 

 INPUT: Boeing is located in Seattle 

 OUTPUT: 
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An Example Applications 

 In Machine Translation each language has its own word 

ordering rules 

 English word order is: subject-verb-object 

 Japanes word order is subject-object-verb 

 

 Examples: 

 English: IBM bought Lotus 

 Japanese: IBM Lotus bought 

 

 English: Sources said that IBM bought Lotus yesterday 

 Japanese: Sources yesterday IBM Lotus bought that said 
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Context Free Grammars (CFG) 

 

 Formal Definition: a context free grammar 

(CFG) is a 4-tuple G=(N, , R, S) where: 

N is a set of non-terminal symbols 

  is a set of terminal symbols 

R is a set of rules of the form 𝑋 → 𝑌1𝑌2 ⋯𝑌𝑛 for 

𝑛 ≥ 0, 𝑋 ∈ 𝑁, 𝑌𝑖 ∈ (𝑁 ∪ Σ) 

𝑆 ∈ 𝑁 is a distinguished start symbol 



A Simple CFG for English 



Left-Most Derivations 

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where: 

 𝑠1 = 𝑆 

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only 

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most 

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a 

rule in R 
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 Example: [S] 



Left-Most Derivations 

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where: 

 𝑠1 = 𝑆 

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only 

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most 

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a 

rule in R 

 

 Example: [S],[NP VP] 



Left-Most Derivations 

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where: 

 𝑠1 = 𝑆 

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only 

 Each 𝑠𝑖 for 𝑖 = 2…𝑛 is derived from 𝑠𝑖−1 by picking the left-most 

non-terminal X in 𝑠𝑖−1 and replacing it by some 𝛽 where 𝑋 → 𝛽 is a 

rule in R 

 

 Example: [S],[NP VP], [D N VP] 
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Left-Most Derivations 

 A left-most derivation is a sequence of strings 𝑠1 …𝑠𝑛, where: 

 𝑠1 = 𝑆 

 𝑠𝑛 ∈ Σ∗, i.e. 𝑠𝑛 is made up of terminal symbols only 
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rule in R 

 

 Example: [S],[NP VP], [D N VP],[the N VP], 

        [the man VP],[the man Vi], 

        [the man sleeps] 



Properties of a CFG 

 A Context-free Grammar G defines a set of derivations 

 

 A word 𝑠 ∈ Σ∗ is in the language defined by G if there is at 

least one derivation that yields s 

 

 Each string in the language generated by the CFG may have 

more than one derivation (ambiguity problem) 
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Ambiguity Problem 

INPUT: The man saw the dog with the telescope 

 

POSSIBLE OUTPUTS: 



Ambiguity Problem 
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Solving Ambiguity Problem 

 Given a sentence s, and a formal grammar G, there can be 

many derivations that yield s 

 

 Let 𝒯𝐺(𝑠) be the set of possible derivations that yield s 

 

 Defining a probability distribuition p(t) over all the possible 

derivations t ∈ 𝒯𝐺(𝑠) we are able to disambiguate the parsing 

problem selecting the most probable parse tree: 

𝑡∗ = argmax
𝑡∈𝒯𝐺(𝑠)

𝑝(𝑡) 



Probabilistic Context-Free Grammars 

(PCFG) 



Deriving PCFG From a Corpus 

 Given a set of example trees (a treebank), the underlying 

CFG can simply be all rules seen in the corpus  

 

 Maximum-likelihood estimation of the probability parameters 

𝑞(𝛼 → 𝛽) : 

𝑞𝑀𝐿 𝛼 → 𝛽 =
𝑐𝑜𝑢𝑛𝑡 𝛼 → 𝛽

𝑐𝑜𝑢𝑛𝑡(𝛼)
 

where the counts are taken from a training set of example 

trees 
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Chomsky Normal Form 

 a Context-Free Grammar G=(N, , R, S) in 

Chomsky Normal Form is as follow: 

N is a set of non-terminal symbols 

  is a set of terminal symbols 

R is a set of rules which take one of two forms: 

𝑋 → 𝑌1𝑌2 for 𝑋 ∈ 𝑁 and 𝑌1, 𝑌2 ∈ 𝑁 

𝑋 → 𝑌 for 𝑋 ∈ 𝑁 and 𝑌 ∈ Σ 

𝑆 ∈ 𝑁 is a distinguished start symbol 



Cocke-Younger-Kasami Algorithm 

 Notation: 

 n=number of words in the sentence 

𝑤𝑖=i-th word in the sentence (i.e. 𝑠 = 𝑤1 …𝑤𝑛) 

 𝒯(𝑖, 𝑗, 𝑋) for 𝑋 ∈ 𝑁 and 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 is the set of all 

possible parse trees for words 𝑤𝑖 …𝑤𝑗 such that X is at 

the root of the tree 

𝜋 𝑖, 𝑗, 𝑋 = max
𝑡∈𝒯 𝑖,𝑗,𝑋

𝑝(𝑡)  i.e. 𝜋 𝑖, 𝑗, 𝑋  is the highest 

score for any parse tree in 𝒯(𝑖, 𝑗, 𝑋) 

 𝜋 1, 𝑛, 𝑆 = max
𝑡∈𝒯𝐺 𝑠

𝑝(𝑡) 



Cocke-Younger-Kasami Algorithm 

 Dynamic programmic parsing algorithm for PCFG in 

Chomsky Normal Form 

 Bottom up approach in which 𝜋 𝑖, 𝑗, 𝑋  are recursively 

evaluated: 

 Base case (𝑖 = 𝑗):   

𝜋 𝑖, 𝑖, 𝑋 =  
𝑞 𝑋 → 𝑥𝑖     𝑖𝑓 𝑋 → 𝑥𝑖 ∈ 𝑅
 0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Recursive case (𝑖 < 𝑗): 
𝜋 𝑖, 𝑗, 𝑋 = max

𝑋→𝑌𝑍∈𝑅
𝑖≤𝑘≤ (𝑗−1) 

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍  



Cocke-Younger-Kasami Algorithm 

𝜋 𝑖, 𝑗, 𝑋 = max
𝑋→𝑌𝑍∈𝑅

𝑖≤𝑘≤ (𝑗−1) 

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍  

X 

Y Z 

𝑤𝑖 𝑤𝑘 𝑤𝑘+1 𝑤𝑗 … … 



Cocke-Younger-Kasami Algorithm 

 Input: a sentence 𝑠 = 𝑤1 …𝑤𝑛 a PCFG G=(N, , R, S, q)  

 Initialization:  

For all 𝑖 ∈ {1…𝑛}, for all 𝑋 ∈ 𝑁 

𝜋 𝑖, 𝑖, 𝑋 =  
𝑞 𝑋 →  𝑥𝑖     𝑖𝑓 𝑋 → 𝑥𝑖 ∈ 𝑅
 0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Algorithm: 

 For 𝑙 = 1… 𝑛 − 1  

 For 𝑖 = 1… 𝑛 − 𝑙  

 Set 𝑗 = 𝑖 + 𝑙 
 For all 𝑋 ∈ 𝑁 calculate 

𝜋 𝑖, 𝑗, 𝑋 = max
𝑋→𝑌𝑍∈𝑅

𝑖≤𝑘≤ (𝑗−1) 

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍  

And store 

𝑏𝑝 𝑖, 𝑗, 𝑋 = argmax
𝑋→𝑌𝑍∈𝑅

𝑖≤𝑘≤ (𝑗−1) 

𝑞(𝑋 → 𝑌𝑍) × 𝜋 𝑖, 𝑘, 𝑌 × 𝜋 𝑘 + 1, 𝑗, 𝑍  

 Output: 𝑏𝑝 1, 𝑛, 𝑆  
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Weakness of PCFG 

 Lack of sensitivity to lexical information: excluding the pre-terminal 

nodes (i.e. the Part-Of-Speeches) the probabilities 𝑞 𝛼 →  𝛽  are completely 

independent of the words  

Chosen if: 

𝑞 𝑁𝑃 → 𝑁𝑃 𝑃𝑃 ≤ 𝑞(𝑉𝑃 → 𝑉𝑃 𝑃𝑃) 
Chosen if: 

𝑞 𝑁𝑃 → 𝑁𝑃 𝑃𝑃 > 𝑞(𝑉𝑃 → 𝑉𝑃 𝑃𝑃) 

Attachment decision is completely indipendent of the words 



Weakness of PCFG 

 Lack of sensitivity to structural preferences: the probabilities 

𝑞 𝛼 →  𝛽   focus only on 𝛼 and 𝛽  ignoring the overall tree structure   

 

 For instance the sentence John was believed to have been shot 

by Bill can have at least two interpretations: 

 Bill does the shooting (the PP by Bill attaches to the verb shot) 

 Bill believes in John (the PP by Bill attaches to the verb believe) 

 Both interpretations have the same rules and then identical probability 

 Closer attachment should be preferred as a corpus analysis can 

demonstrate 
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Lexicalization of a Treebank 

 Idea: propagate the lexical information of the leaves (the 

words) through the entire tree 

 

 According to some euristics, in each context-free rule a child is 

selected as head of the rule 

 S  NP VP  (VP is the head)  

 VP  Vt NP  (Vt is the head) 

 NP  DT NN NN (the last NN is the head) 

 

 In a recursive bottom-up approach each constitient receives its 

headword from its head child 

 



Adding Headwords to Trees 



Lexicalized Context-Free Grammars in 

Chomsky Normal Form 

 a Lexicalized Context-Free Grammar G=(N, , R, S) 

in Chomsky Normal Form is as follow: 

N is a set of non-terminal symbols 

  is a set of terminal symbols 

R is a set of rules which take one of three forms: 

𝑋(ℎ)  →1 𝑌1(ℎ)𝑌2(𝑤) for 𝑋 ∈ 𝑁;   𝑌1, 𝑌2 ∈ 𝑁;  ℎ,𝑤 ∈ Σ 

𝑋(ℎ)  →2 𝑌1(𝑤)𝑌2(ℎ) for 𝑋 ∈ 𝑁;   𝑌1, 𝑌2 ∈ 𝑁;  ℎ, 𝑤 ∈ Σ 

𝑋(ℎ) → ℎ for 𝑋 ∈ 𝑁 and ℎ ∈ Σ 

𝑆 ∈ 𝑁 is a distinguished start symbol 



Lexicalized Context-Free Grammars 

 The CYK algorithm is still valid but its q parameters 

have a different form: 

An example of parameter in a PCFG: 

𝑞(𝑆 → 𝑁𝑃 𝑉𝑃) 

 

An example of parameter in a Lexicalized PCFG: 

𝑞(𝑆(𝑠𝑎𝑤) →2  𝑁𝑃(𝑚𝑎𝑛) 𝑉𝑃(𝑠𝑎𝑤)) 

 



Parameter Estimation in Lexicalized 

PCFGs (Charniak 1997) 

 First step: decompose a parameter into a product of two terms 

𝑞 𝑆 𝑠𝑎𝑤 →2 𝑁𝑃 𝑚𝑎𝑛 𝑉𝑃 𝑠𝑎𝑤  
= 𝑞(𝑆 →2 𝑁𝑃 𝑉𝑃|𝑆, 𝑠𝑎𝑤) × 𝑞(𝑚𝑎𝑛|𝑆 →2 𝑁𝑃 𝑉𝑃, 𝑠𝑎𝑤) 

 

 Second Step: use smoothed estimation for the two term estimates 

 

 
𝑞 𝑆 →2 𝑁𝑃 𝑉𝑃 𝑆, 𝑠𝑎𝑤  
= 𝜆1 × 𝑞𝑀𝐿 𝑆 →2 𝑁𝑃 𝑉𝑃 𝑆, 𝑠𝑎𝑤 + (1 − 𝜆1) × 𝑞𝑀𝐿 𝑆 →2 𝑁𝑃 𝑉𝑃 𝑆  

 

𝑞(𝑚𝑎𝑛|𝑆 →2 𝑁𝑃 𝑉𝑃, 𝑠𝑎𝑤) 
= 𝜆2 × 𝑞𝑀𝐿 𝑚𝑎𝑛 𝑆 →2 𝑁𝑃 𝑉𝑃, 𝑠𝑎𝑤 + 𝜆3 × 𝑞𝑀𝐿 𝑚𝑎𝑛 𝑆 →2 𝑁𝑃 𝑉𝑃  

+ 𝜆4 × 𝑞𝑀𝐿 𝑚𝑎𝑛 𝑁𝑃  
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Evaluation: Representing Trees as 

Constituents 



Evaluation: Precision and Recall 

Gold standard Parse output 

 G = number of constituents in gold standard = 7 

 P = number of constituents in parse output = 6 

 C = number of correct constituents = 6 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶

𝐺
=

6

7
     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝐶

𝑃
=

6

6
  

 



Some Results 

 Training data: 40,000 sentences from the Penn Wall Street 

Journal treebank. Testing: around 2,400 sentences from the 

Penn Wall Street Journal treebank 

 Results for a PCFG: 70.6% Recall, 74.8% Precision 

 Magerman (1994): 84.0% Recall, 84.3% Precision 

 Results for a lexicalized PCFG: 88.1% recall, 88.3% precision 

(from Collins (1997, 2003)) 

 More recent results: 90.7% Recall/91.4% Precision (Carreras 

et al., 2008); 91.7% Recall, 92.0% Precision (Petrov 2010); 

91.2% Recall, 91.8% Precision (Charniak and Johnson, 2005) 
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Dependency Parse Trees  

 Dependency syntax postulates that syntactic structure consists 

of lexical items linked by binary asymmetric relations 

(“arrows”) called dependencies 

 The arrow connects a head with a modifier and are typed with 

the name of the grammatical relations 

 

 



Dependency Parse Trees  

ROOT 

Economic 

news 

had 

little 

effect 

on 

financial 

markets 

. 

PRED 

SBJ 

OBJ 

PU 

ATT 

ATT ATT 

PC 

ATT 



Transition-Based Dependency Parsing 

 Idea: 

 Define a transition system for dependency parsing 

 Learn a model for scoring possible transitions 

 Parse by searching for the optimal transition sequence 

 Advantages: 

 Highly efficient parsing with low complexity 

 Rich history-based feature models for disambiguation 

 



Transition System: Configurations 

 Notation: 

 Arc (𝑤𝑖 , 𝑙, 𝑤𝑗) connects head 𝑤𝑖 to modifier 𝑤𝑗 with label l 

 Node 𝑤0 (labeled ROOT) is the unique root of the tree 

 A configuration is a triple c=(S,Q,A) where: 

 S is a stack … ,𝑤𝑖 𝑆 of partially processed nodes 

 Q is a queue 𝑤𝑗 , … 𝑄
 of remaining input nodes 

 A is a set of labeled arcs (𝑤𝑖 , 𝑙, 𝑤𝑗) 

 Initialization: 

 𝑤0 𝑆, 𝑤1, … , 𝑤𝑛 𝑄, {}  

 Termination: 

 𝑤0 𝑆, 𝑄, 𝐴  

 



Transition System: Transitions 

 Three possible transitions: 



Transition Sequence Example 
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Transition Sequence Example 



Transition Sequence Example 



Selecting the Next Transition 

 The next transition can be selected using a classifier (MaltParser): 

Next transition = argmax
𝑡

𝒘 ∙ 𝒇(𝑐, 𝑡) 

 

 𝒇(𝑐, 𝑡) = Historic-based feature representation: 

 Features over input tokens relative to S and Q 

 Features over the (partial) dependency tree defined by A 

 Features over the (partial) transition sequence 

 

 𝒘 = weight vector learned from treebank data: 

 Reconstruct oracle transition sequence for Each sentence 

 Contruct training dataset 𝐷 = 𝑐, 𝑡 |𝑜 𝑐 = 𝑡  

 Maximize accuracy of local predictions  

 



Evaluation of Dependency Parsing 

 Labeled Attachment Score(LAS) = the percentage of tokens, excluding punctuation, 

that are assigned both the correct head and the correct dependency label  

 Unlabeled Attachment Score(UAS) = the percentage of tokens, excluding 

punctuation, that are assigned the correct head 
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