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Linear Transformation

Linear Transformation:

Any transformation T of vectors x in the space is such that the transformed
vector T'(x) lies in another (sometimes the same) vector space.
A transformatin T : V,, — W, is said to be linear iff:

T(ox) = oT (x)
T(x+y) =Tx)+T(y)
T(ax+By) = al(x)+BT(y)



Linear Transformation

Linear Transformation and Basis:

The effect of linear transformation 7 from V,, to W, is entirely determined
by its effect on the basis {b,,..,b, } of the originating space V,,, thus we need
to know for a generic vector x = a1b; + ... + ab,,, just the vectors:

bi=T(b;)  Vi=1,..nthatis

n
by =T(b) = Y anb
i=1

as T(x) = T(¥; oub;) = X T(b;).
Notice that the coefficents a;  Vi,k = 1,...,n form a square matrix A.



Linear Transformation

Linear Transformation and Basis:
For a generic vector pair x = Y, x;b; and y = ¥, y;b;, such that T'(x) = y, it
follows.

n

=Y uT(b) =

Xk Z aikb; =
k=1

Z ( Qi Xk ) (but also) =
i
Z)’ibi =Yy

||M=

from which we deduce that

y,—Zaikxkzo Vi=1,...,n
k

as b; are all linearly independent.



Linear Transformation and Matrices

The operation y; = Y apxr  (Vi=1,...,n) suggests a matrix representation
with a specific vector by matrix (i.e. row by column) multiplication. First of
all the a;;, coefficient define a square matrix A:

an aypp ... dip

dayy 4y ... dyp
A =

ay1 ay2 ... Qpn

while x and y are as usual column vectors:

X1 Y1
X2 y2

I
|
I'<
|

Xn Yn



Matrices-Vector multiplications

Moreover, we see that the trasnformation T over the vector x, with 7'(x) = ¥
can be expressed as follows:

1 ar ar Aain X1
y2 azr  ax o X2
Yn anl an2 c.. Qpp Xn

where the ith component y; of y corresponds to the component-wise
multiplication between the ith row of A and the vector x, i.e. Vi = Yk QikXk-
Notice that this also corresponds to an inner product between rows in A and
X.
This is also written with more synthesis:

y=Ax



Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices A thus represent linear transformations between vectors in a space
V.

Every T corresponds to a matrix A and viceversa.

Non singular transformations

We can ask if the inverse transformation exist for each 7.

A linear transformation T is non singular when the inverse transformation
T—! exists such that whereas y = T'(x) then x = T~ (y).

The correspondng matrices a follow the same terminology, A~ is called the
inverse matrix of A, and x = A~ ly.

When A~ exist for A, then A is non singular, otherwise it is called singular.



Matrix operations

Matrix multiplication by a scalar and sum
oA = (aaik)
A+B = (ay)+ (bir) = (an +bix)

Matrix multiplication: C = AB

car 2 ... an an ... ap b b
¢ ...y ay  an ... ay by bxn

Cal 2 oo Cm Qi G ... G by b

bin
h2n

bnn



Matrix operations and transformations

Matrix multiplication and transformations

Matrix multiplications are the counterpart of the compositions between
linear transformations, i.e.

ABx =y when T4 Tg(x) =y

Symmetry
Matrix multiplications are clearly non symmetric, i.e.
y=ABx#BAx =)

and correspondingly

y = TaTp(x) # TpTa(x) =y’



Matrix operations and transformations

Zero Matrix
The zero matrix 0 is the neutral elements with respect to the matrix sums, i.e.

VA, A+0=0+A=A

It corresponds to the unique matrix A whereas Vi,k =1,....n aj =0.
For n = 3, 0 is as follows:

S OO
S OO
S OO



Matrix operations: Identity

Identity Matrix
The identity matrix I is the neutral elements with respect to the matrix

multiplication, i.e.
VA, AI=TA=A

It corresponds to the matrix with all elements in the main diagonal equal to
1, e 0 elsewehere, i.e.:

1

=k
I:(aik):5ik:{ 0

i=
ik

For n = 3, 1 is as follows:

SO =
S = O
=]



Change of Basis

Change of Basis

Given two alternative basis B = {by,...,b, } and B = {b}, ..., b}, }, such that
the square matrix C = (¢;k) describe the change of the basis, i.e.

by, = cikby + cokby + -..ciby, Vk=1,...,n



Matrix and Change of Basis
Matrix and Change of Basis

The effect of the matrix C on a generic vector x allows to compute the
change of basis according only to the involved basis B and B’. For every
X =Y}, Xxby such that in the new basis B', x can be expressed by

x =Y}, x;by, then it follows that:

ik=1

x=Y xb=Y % (Zcikbi> = Y sicub;
k=1 k i
from which it follows that:

n
Xi = foccik Vi=1,..,n
k=1

The above condition suggests that C is sufficient to describe any change of
basis through the matrix vector mutliplication operations:

x=Cx



Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a matrix A can be seen by studying the case
where x,y are the expression of two vectors in a base B while their
counterpart on B’ are x’,y’, respectively. Now if A and B are such that
y=Ax and y = B/, then it follows that:

y=Cy'= A(CY) =ACY
(th1s means that)
y/ — CflACl/

from which it follows that:
B=C"'AC

The transformation of basis C is a similarity transformation and matrices A
and C are said similar.



Adjont Matrix

Adjoint (Transpose) of a matrix
The adjoint A* of a matrix A is the unique matrix such that

(ATxy) = (x,Ay)

In case A has real values (as always in this course) the adjoint A* is noted as
AT and it is called transpose of matrix A. AT is obtained from A by
exchanging rows and columns, i.e.

A= (a5) = AT = (a;)



Self-adjointness and Idempotence

Self-Adjoint matrices
A matrix A is self-adjoint iff the following holds:

(AX’X) = (&AX)

Note that the above means that when A takes only real values, then A is
symmetric, i.e. A = AT. Diagonal matrices are always self-adjoint.

ldempotence
A matrix A is idempotent iff the following holds:

EEx = Ex Vx



Projectors

Projectors

Linear transformations that are
» Idempotent (i.e. EEx = Ex Vx)
> Self-Adjoint: (i.e. (Ax,y) = (x,Ay)

are called projectors.

Examples
Some noticeable examples of projectors are alrady known:

» (Null Matrix) The operator O is a projector: it maps every vector x in
the null vector 0.
» (Idenity) The operator I is a projector: it maps every vector x into itself.

Projectors are applications between a vector space V,, and one of its
subspaces: as 0 and 1 are part of this subspace it has still the properties of
being a vector space.



Projectors

1-dimensional projections
Given a basis B = {b;}, for every b; a projector P; can be built, that maps any
X =Y ;x;b; in the subspace generated (or spanned) by b;, i.e.

Pix = x;b;

If B is an orthonormal basis, P; are a collection of orthogonal projectors:
» every vector in the space spanned by b; will be projected into itself
> every vector orthogonal to b; will be projected into the null vector, 0.

» Every vector x is the sum of a vector x; in the subspace spanned by b,
and a vector x in the subspace orthogonal to b;, i.e. x = x; +x*.



Projectors

1-dimensional projections: example

Let B={b;, i=1,...,n} be an orthonormal basis, and x =} ; x;b; be a
normalized vector, i.e. ||x|| = 1 (or ¥, |x;|> = 1). It is of course true that,
when P; is the projector relative to b;, then Pix = x;. As

(x,Px) = (x,PPwx) (Idempotence)
= (Pix,Px) (Self-adjointness)
= (x,b,,x, ;)
= xi(byby) = |l

then the base B establishes through projectors P;, a probability distribution
in the individual spaces spanned by P;.

Selecting a base B is like deciding about a specific point of view on the
space, and its ability to represent vectors (as representations for objects) x.



Projectors and probabilty distributions

I-dimensional projections and probabilities

Notice how it is also true that a given normalized vector x € V,, determines a
probability distibution in different subspaces generated by the P;.

This function depends on x € V,, and ranges in the set of spaces L; of V,,, as

follows:

pe(Li) = (Pix, Pix) = |Pix|?

Properties of [y

> 1 (0) =0

> p(Va) =1

> W (Li ®L;j) = pe(Li) + py(L;), whenever L;NLj = 0. L; ® L; is the
smallest subspace of V), that contains both L; and L;.



Eigenvalues and eigenvectors

Eigenvectors

An eigenvector x for a matrix A is a non-zero vector for which a scalar
A € R exists such that
Ax=Ax

The value of the scalar A is called eigenvalue of A associated to x, and
correspond to the scaling factor along the direction of x.

s (02) w
(25) (5) = (5) =:(5)

x is an eigenvector of A and A = 2 is its eigenvalue.

Example

|

I
P
w W
~



Eigenvalues, eigenvectors and some properties

Eigenvalues, eigenvectors: Some Consequences
When a matrix A has an eigenvector x it must satisfy the following condition:

Ax=Ax
We can rewrite the condition Ax = Ax as
(A—AL) =0

where I is the Identity matrix.

In order for a non-zero vector x to satisfy this equation, A — AI must not be
invertible(see next slide).

The consequence is that the determinant of A — AT must equal 0. This
function is p(A) = det(A — AI), called the characteristic polynomial of A.
The eigenvalues of A are simply the roots of the characteristic polynomial of
A.



Eigenvalues, eigenvectors and some properties: Proof

A — AX must not be invertible: Why?

A — AI must not be invertible, as otherwise, if A — AI has an inverse, and

(A—AD"Y(A—ADx (A—AD)"'ox
Ik = 0.

the zero vector is derived. This is not admissibile as, by definition, x # 0.



Eigenvalues and eigenvectors

An example: computing eigenvalues
LetA = < _21 :‘11 > Then

p(A) = 2=A)(~1-2) = (—4)(~1) = A2~ A —6= (A—3)(A +2)

The eigenvectors are then the solution of the linear equation system given by
(A—ADx=0.

Given the first eigenvalue A; =3, (A —3I)x =

—X] — 4JC2

—X] — 4)(2 =
This suggests that all vectors of the form oux; are eigenvectors with
1l = (—4,1). The span of the vector (—4,1)7 is the eigenspace
corresponding to A; = 3. Correspondingly, the span of the vector

x, = (1,1)7 corresponds to the eigenspace of A, = —2.
Notice that x; and x, are linearly independent, so they can form a basis.

gives the following system:

o olo



Eigenvalues and eigenvectors

Eigenvectors of Symmetric matrices

A symmetric non singular real-valued matrix A is such that A = AT and on
two dimensions, this means that :

i) ai,an#0
ii) ajp =day —da

In order for A to have two real eigenvalues the following must hold:

p(2) (all*l)(azzfl)—azz

= A (all +a22)/'k +apaxn —d?=0

from which eigenvalues are distinct iff:
(a11 —an)*+4a*> >0

The above inequality is always satisfied, with the O case only when A =1.



Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix A has n distinct eigenvectors x; with all real-valued and
distinct eigenvalues A;, it is called non-degenerate.
A non degenerate matrix A has all the eigenvectors mutually orthogonal.

In fact, given two any eigenvectors x; # x,, with Ax; = A;x; (i=1,2),it
follows that

A (x1,42) = (Ax),x5;) = (x1,Ax2) = A2 (x),X,)
from which it follows that (M —22)(x,x,) =0

However as A; # A,, and x,, x, were arbitrarily chosen, the result is that

2o
Vij=1,..n (anj):{'()"l” i=)



Spectral Theorem

Spectral theorem
For every self-adjoint matrix A on a finite dimensional inner product space
Vu, there correspond real valued numbers ¢y, ..., @, and orthonormal
projections Eq, ..., E,,with r < n, such that:

» (1) all oy are pairwise distinct

> (2) all E; are not null (i.e. Vj,E; # 0

> Q)Y E=1

> WA=Y, oE;

Notice that the set of self-adjoint matrices whenever the underlying field is
the set of real numbers consists of the set of symmetric matrices. the spectral
theorem suggests that a possible basis where to diagonalize them is always
available through their eigenvectors.

Applications: document similarity matrices where a;; = sim(d;, d;).
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