
NLP Chain
Giuseppe Castellucci
castellucci@ing.uniroma2.it
Web Mining & Retrieval a.a. 2013/2014

mailto:castellucci@ing.uniroma2.it

Outline

 NLP chains

 RevNLT

 Exercise

NLP chain

 Automatic analysis of texts

 At different levels

 Token

 Morphological

 Grammatical

 Syntax

 Semantics

 Chain

 reflects these levels in different processing modules

What is useful for?

 Find patterns

 Verb-Noun, Noun-Adjective, etc…

 Applications in (not limited to)

 Requisite analysis

 Object-Action-Tool discovery

 Extract information for ML algorithms

 In higher level tasks linguistic features are very useful

 Search, Semantic Role Labeling, Sentiment

Analysis

Examples

General flow
 Most general case

 One Linguistic Level – One Module

 Each module takes in input a data structure

 And enrich it with new information

 Advantages

 Problem decomposition

 Each module is responsible of one step

 Can use previously computed information

 Disadvantages

 Any idea?

 Error propagation

 No joint inferences

Tok

POS

Synt

Il cane corre.

Il cane corre.

Il cane corre.

Il cane corre.

TOKenizer
 Input

 A text

 A paragraph

 A sentence

 Output

 List of tokens

 Each token represents the minimal unit for further
processing

 It is not a whitespace splitter!

 Dates

 Numbers

 Abbreviations

 In web texts: emoticons, links etc.

Il cane corre .

TOK

Il cane corre.

MOrphology Analyzer

 Input

 Tokenized string

 Output

 Enrich tokens with morphological information

 Simplest case using a dictionary

 Grammatical category, grammatical
features

 Abbassiamo is verb 1.pers.plur.ind.pres

 A token can have multiple morphological
information

 E.g. diviso is an adjective or a verb

Il/art cane/noun

corre/verb ./punt

MOA

Il cane corre .

POS tagger

 Part-Of-Speech: linguistic category of words

 Input

 Morphologically analyzed tokens

 Output

 Assign to each token its grammatical category

 Morphological information used as features

 Context-dependent models Il/RD cane/S

corre/V ./FS

POS

Il/art cane/noun

corre/verb ./punt

Named Entity Recognizer…

 … and Classifier

 Input

 Tokens with morphological and

grammatical information

 Output

 Enriched tokens where a named entity is

recognized and classified w.r.t. predefined

classes

 PERsons, ORGanizations, LOCations

NERC

Giuseppe/SP ieri/B era/V

a/E Roma/SP ./FS

Giuseppe/SP-PER ieri/B era/V

a/E Roma/SP-LOC ./FS

Parser

 Recognize the grammatical structure of

sentences

 Highlight relations between words

 Two formalisms

 Constituency based parser

 Dependency based parser

 Details in next lectures, here just a quick look.

Constituent

 A constituency parse tree breaks a text into sub-

phrases

 Non-terminals in the tree are types of phrases

 Terminals are the words in the sentence

 Edges are unlabeled

 Context-free grammar formalisms

 Statistical methods

 Probabilistic CFG

Dependency

 A dependency parse connects words according to
their relationships

 Each vertex in the tree represents a word

 Child are words that are dependent on the parent

 Edges are labeled by the relationship

 Again, Statistical methods are used

The dog

runs .

ROOT

root

det

nsubj

punct

Example: Stanford Parser

 State-of-the-art parser
 (http://nlp.stanford.edu/software/corenlp.shtml)

 Widely used in research

 Simple and intuitive java interface

 Bindings also for other programming languages

 It includes a classical chain

 With the idea of annotator

 Include constituent and dependency based parsers

 Contains semantic level annotators

 E.g. sentiment annotator

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml

Stanford Parser

 Can be integrated as a maven dependency in
your projects

 Package stanford-corenlp

Properties props = new Properties();

props.put("annotators", "tokenize, ssplit, pos, lemma, parse");

StanfordCoreNLP pipeline = new StanfordCoreNLP();

Annotation document = new Annotation("The dog runs over the grass.");

pipeline.annotate(document);

List<CoreMap> sentences = document.get(SentencesAnnotation.class);

CoreMap sentence = sentences.get(0);

 for (CoreLabel token: sentence.get(TokensAnnotation.class)) {

 String surface = token.originalText();

 int start = token.beginPosition();

 int end = token.endPosition();

 String postag = token.tag();

 String lemma = token.lemma();

 }

// HERE ARE THE DEPENDENCIES

SemanticGraph dependencies = sentence.get(BasicDependenciesAnnotation.class);

Example: Open NLP
 Machine learning based toolkit for the processing of

natural language text

 Apache foundation software

 https://opennlp.apache.org

 It supports

 Tokenization

 Sentence splitting

 Part of speech tagging

 Named entity recognition

 Chunking

 Parsing

 Co-reference resolution

 Java interface

https://opennlp.apache.org
https://opennlp.apache.org

Example: RevNLT

 A natural language toolkit for Italian and English

 Developed initially at the University of Roma Tor

Vergata by the ART group

 It is based on the eXtended Dependency Graph

formalism

 An incubator of research ideas

 That can be potentially used in production

environments

RevNLT

 It includes

 Tokenizer

 Morphology analyzer

 POS Tagger

 Named Entity Recognizer and Classifier

 Chunker

 Dependency Parser

 XDG is the common data structure

 Client/Server interface

 Graphical User Interface

Chunker

 Chunking can be seen as partial parsing

 Assigns a partial syntactic structure to a sentence

 flatter structures

 only deals with “chunks”

 chunks are typically subsequences of constituents

 more efficient, robust and often deterministic

Data Structure

Client/Server architecture

 Support for a client/server architecture in Java

 Natural language processing is computational

expensive

 NLP as a service

API

 Simple Java API to process texts

 Both local and client/server

 Today we’ll use the client/server API to process

texts

Data Structure API

 A Text is the main data structure

 Initialize a Text without paragraph information

 The system will split paragraphs, and then

sentences.

Text t = new Text("The service was good.”, AvailableLanguage.en);

Data Structure API

 A Text is the main data structure

 Initialize a Text with a paragraph

 The system will not split paragraphs, but it will split

sentences

Text t = new Text();

t.setLanguage(AvailableLanguage.en);

t.setParagraphs(new Vector<Paragraph>());

t.getParagraphs().add(new Paragraph("The

service was good."));

Data Structure API

 Retrieve useful information

for (Paragraph p : t.getParagraphs()) {

 for (XDG x : p.getXdgs()) {

 ConstituentList l = x.getConstituents();

 for (Constituent c : l) {

 SimpleConst s = (SimpleConst) c;

 String lemma = s.getFirstLemma().getSurfaceWithoutQuotes();

 String postag = s.getType();

 String surface = s.getSurfaceWithoutQuotes();

 System.out.println(surface + “ ”+ postag + “ ”+ lemma);

 }

 }

}

Simple constituents of a sentence

Lemma surface

Part Of Speech

Original Surface

Data Structure API

 Save a processed Text in XML for further use

t.save(“myText.xml”);

 Load a previously processed Text

Text loadedText = Text.load(“myText.xml”);

Client API

 How can we process a text?

 Client c = new Client(”address", port);
System.out.println(c.askLanguage().toString());

// Text t = c.parseText(“The service is good.”, “TOK,MOA,POS,PMF”);

Text t= c.parseText(t, "TOK,MOA,POS,PMF");

Simple Exercise (10 min)
 Produce a text file in which each line is composed by

 Original surface

 POS tag

 Lemma surface

 Use: address = 160.80.24.16, port = 4005

 All separated by a tab char, all sentences are separated
by a blank line

 Use the file inClassSentences.txt as input file

 Iterate over each line and process the file through the client
interface

 classes(space separated)TABsentence

 Produced file should be identical to triColumnInClass.txt

Example code

Client c = new Client(”address", port);

System.out.println(c.askLanguage().toString());

// Text t = c.parseText(“The service is good.”, “TOK,MOA,POS,PMF”);

Text t= c.parseText(t, "TOK,MOA,POS,PMF");

address = 160.80.24.16, port = 4005

for (Paragraph p : t.getParagraphs()) {

 for (XDG x : p.getXdgs()) {

 ConstituentList l = x.getConstituents();

 for (Constituent c : l) {

 SimpleConst s = (SimpleConst) c;

 String lemma = s.getFirstLemma().getSurfaceWithoutQuotes();

 String postag = s.getType();

 String surface = s.getSurfaceWithoutQuotes();

 System.out.println(surface + “ ”+ postag + “ ”+ lemma);

 }

 }

}

Evaluation

 How to evaluate NLP systems?

 It depends on the linguistic level we are

interested in

 Different evaluations for

 POS Tagging

 Named entities

 Parsing

 See two examples

Evaluating POS Tagging

 In general: accuracy

 Count the correct assigned Part Of Speech to

each token

 Different evaluations for known words and

unknown words

 Verify algorithms generalization capability

 Generate a list of known words given the training set

 At test time a word not in this list is an unknown word

Evaluating Named Entities

 An entity based evaluation

 Evaluate entities, not tokens!

 [Giuseppe Rossi]PER non è stato convocato da [Cesare Prandelli]PER.

 Here, two entities

 The evaluation must consider a true positive as a
correctly recognized entity

 Giuseppe Rossi non è stato convocato da [Cesare Prandelli]PER.

 Here,

 Precision = 1

 Recall = 0.5

 F1 = 0.66

Exercise

 Construct a dataset for svmlight

 +1 1:1 50:1 55:1

 Topic classification task of sentences in the

restaurant domain

 A sub task of 2014 Aspect Based Sentiment Analysis task

 Given a sentence classify it with respect to topic classes

 Classes are not mutually exclusive

food service ambience Excellent atmosphere, delicious dishes good and friendly service.

How to model the task
 Let’s think about the model

 Can we model topics with bag of words?

 And distributional vectors?

 And Tree Kernels?

 In class, keep it simple,

 Bag-of-words or bag-of-lemmapos

 Multiple classes -> multiple classifiers

 How to manage multiple classifiers and multiple
(not mutually exclusive) classes?

 Ideas?

 Use the margin (score > 0) of the classifier to decide if
an example belongs to a class

General algorithm for

generating training files

 Analyze sentences with RevNLT

 For each class D

 Produce a file training{D}.txt containing examples in

which positive (+1) are the one of class {D} and others

are negative (-1)

 For each example produce a feature representation

(bag-of-word or bag-of-lemmapos)

 Produce also files for development and test

General algorithm for

generating training files

 How to generate vectors?

 Use a dictionary!

 Associate to each words or lemma and pos pair a
number

 It will be its feature number

 Use a boolean feature value

 Write your dictionary on a file!

Tuning

 For each parameter c (1,2,5,10)

 For each class D

 Train a model model_c_D.model

 Classify development with model_c_D.model

 Choose classes D1,…,Dk with margin > 0

 Evaluate performances with respect to the oracle

 Performance is the F1 measure of correctly

recognized classes

 Choose the parameter c that optimize the

performance

Training

 Train |D| models with the best parameter found

 Classify test sentences

 Evaluate your system on test

 This is your final performance

Exercise
 In WMR_1314_nlpexercise.zip

 trainingSentences.txt

 developmentSentences.txt

 testSentences.txt

 TopicClassification.java: starter code in an Eclipse
project

 In class,

 Generate vector files using the starter code

 At home,

 Perform a proper tuning phase of the C parameter

 Perform testing and report via mail performances with a
bag-of-words model and a bag-of-lemmapos model
(also your tuning runs)

Hint

 Call the C svmlight executable via Java

 It can speed up (a lot) your coding time!

// parameters

float c = 1.0f;

// input file

String train_file=“train.txt;

// output file

String modelFile = “model.tmp”;

// your executable

String learnExecutable = “svm_learn”

//prepare your process

ProcessBuilder ps = new ProcessBuilder(learnExecutable, "-c", c, train_file, modelFile);

// start the process

Process p = ps.start();

// this is if you want to capture the log of the training phase

BufferedReader in = new BufferedReader(new InputStreamReader(p.getInputStream()));

String line;

PrintWriter logWriter = new PrintWriter(logLearn, "UTF-8");

while ((line = in.readLine()) != null) {

 logWriter.println(line);

}

p.waitFor();

logWriter.flush();

logWriter.close();

