
NLP Chain
Giuseppe Castellucci
castellucci@ing.uniroma2.it
Web Mining & Retrieval a.a. 2013/2014

mailto:castellucci@ing.uniroma2.it

Outline

 NLP chains

 RevNLT

 Exercise

NLP chain

 Automatic analysis of texts

 At different levels

 Token

 Morphological

 Grammatical

 Syntax

 Semantics

 Chain

 reflects these levels in different processing modules

What is useful for?

 Find patterns

 Verb-Noun, Noun-Adjective, etc…

 Applications in (not limited to)

 Requisite analysis

 Object-Action-Tool discovery

 Extract information for ML algorithms

 In higher level tasks linguistic features are very useful

 Search, Semantic Role Labeling, Sentiment

Analysis

Examples

General flow
 Most general case

 One Linguistic Level – One Module

 Each module takes in input a data structure

 And enrich it with new information

 Advantages

 Problem decomposition

 Each module is responsible of one step

 Can use previously computed information

 Disadvantages

 Any idea?

 Error propagation

 No joint inferences

Tok

POS

Synt

Il cane corre.

Il cane corre.

Il cane corre.

Il cane corre.

TOKenizer
 Input

 A text

 A paragraph

 A sentence

 Output

 List of tokens

 Each token represents the minimal unit for further
processing

 It is not a whitespace splitter!

 Dates

 Numbers

 Abbreviations

 In web texts: emoticons, links etc.

Il cane corre .

TOK

Il cane corre.

MOrphology Analyzer

 Input

 Tokenized string

 Output

 Enrich tokens with morphological information

 Simplest case using a dictionary

 Grammatical category, grammatical
features

 Abbassiamo is verb 1.pers.plur.ind.pres

 A token can have multiple morphological
information

 E.g. diviso is an adjective or a verb

Il/art cane/noun

corre/verb ./punt

MOA

Il cane corre .

POS tagger

 Part-Of-Speech: linguistic category of words

 Input

 Morphologically analyzed tokens

 Output

 Assign to each token its grammatical category

 Morphological information used as features

 Context-dependent models Il/RD cane/S

corre/V ./FS

POS

Il/art cane/noun

corre/verb ./punt

Named Entity Recognizer…

 … and Classifier

 Input

 Tokens with morphological and

grammatical information

 Output

 Enriched tokens where a named entity is

recognized and classified w.r.t. predefined

classes

 PERsons, ORGanizations, LOCations

NERC

Giuseppe/SP ieri/B era/V

a/E Roma/SP ./FS

Giuseppe/SP-PER ieri/B era/V

a/E Roma/SP-LOC ./FS

Parser

 Recognize the grammatical structure of

sentences

 Highlight relations between words

 Two formalisms

 Constituency based parser

 Dependency based parser

 Details in next lectures, here just a quick look.

Constituent

 A constituency parse tree breaks a text into sub-

phrases

 Non-terminals in the tree are types of phrases

 Terminals are the words in the sentence

 Edges are unlabeled

 Context-free grammar formalisms

 Statistical methods

 Probabilistic CFG

Dependency

 A dependency parse connects words according to
their relationships

 Each vertex in the tree represents a word

 Child are words that are dependent on the parent

 Edges are labeled by the relationship

 Again, Statistical methods are used

The dog

runs .

ROOT

root

det

nsubj

punct

Example: Stanford Parser

 State-of-the-art parser
 (http://nlp.stanford.edu/software/corenlp.shtml)

 Widely used in research

 Simple and intuitive java interface

 Bindings also for other programming languages

 It includes a classical chain

 With the idea of annotator

 Include constituent and dependency based parsers

 Contains semantic level annotators

 E.g. sentiment annotator

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml

Stanford Parser

 Can be integrated as a maven dependency in
your projects

 Package stanford-corenlp

Properties props = new Properties();

props.put("annotators", "tokenize, ssplit, pos, lemma, parse");

StanfordCoreNLP pipeline = new StanfordCoreNLP();

Annotation document = new Annotation("The dog runs over the grass.");

pipeline.annotate(document);

List<CoreMap> sentences = document.get(SentencesAnnotation.class);

CoreMap sentence = sentences.get(0);

 for (CoreLabel token: sentence.get(TokensAnnotation.class)) {

 String surface = token.originalText();

 int start = token.beginPosition();

 int end = token.endPosition();

 String postag = token.tag();

 String lemma = token.lemma();

 }

// HERE ARE THE DEPENDENCIES

SemanticGraph dependencies = sentence.get(BasicDependenciesAnnotation.class);

Example: Open NLP
 Machine learning based toolkit for the processing of

natural language text

 Apache foundation software

 https://opennlp.apache.org

 It supports

 Tokenization

 Sentence splitting

 Part of speech tagging

 Named entity recognition

 Chunking

 Parsing

 Co-reference resolution

 Java interface

https://opennlp.apache.org
https://opennlp.apache.org

Example: RevNLT

 A natural language toolkit for Italian and English

 Developed initially at the University of Roma Tor

Vergata by the ART group

 It is based on the eXtended Dependency Graph

formalism

 An incubator of research ideas

 That can be potentially used in production

environments

RevNLT

 It includes

 Tokenizer

 Morphology analyzer

 POS Tagger

 Named Entity Recognizer and Classifier

 Chunker

 Dependency Parser

 XDG is the common data structure

 Client/Server interface

 Graphical User Interface

Chunker

 Chunking can be seen as partial parsing

 Assigns a partial syntactic structure to a sentence

 flatter structures

 only deals with “chunks”

 chunks are typically subsequences of constituents

 more efficient, robust and often deterministic

Data Structure

Client/Server architecture

 Support for a client/server architecture in Java

 Natural language processing is computational

expensive

 NLP as a service

API

 Simple Java API to process texts

 Both local and client/server

 Today we’ll use the client/server API to process

texts

Data Structure API

 A Text is the main data structure

 Initialize a Text without paragraph information

 The system will split paragraphs, and then

sentences.

Text t = new Text("The service was good.”, AvailableLanguage.en);

Data Structure API

 A Text is the main data structure

 Initialize a Text with a paragraph

 The system will not split paragraphs, but it will split

sentences

Text t = new Text();

t.setLanguage(AvailableLanguage.en);

t.setParagraphs(new Vector<Paragraph>());

t.getParagraphs().add(new Paragraph("The

service was good."));

Data Structure API

 Retrieve useful information

for (Paragraph p : t.getParagraphs()) {

 for (XDG x : p.getXdgs()) {

 ConstituentList l = x.getConstituents();

 for (Constituent c : l) {

 SimpleConst s = (SimpleConst) c;

 String lemma = s.getFirstLemma().getSurfaceWithoutQuotes();

 String postag = s.getType();

 String surface = s.getSurfaceWithoutQuotes();

 System.out.println(surface + “ ”+ postag + “ ”+ lemma);

 }

 }

}

Simple constituents of a sentence

Lemma surface

Part Of Speech

Original Surface

Data Structure API

 Save a processed Text in XML for further use

t.save(“myText.xml”);

 Load a previously processed Text

Text loadedText = Text.load(“myText.xml”);

Client API

 How can we process a text?

 Client c = new Client(”address", port);
System.out.println(c.askLanguage().toString());

// Text t = c.parseText(“The service is good.”, “TOK,MOA,POS,PMF”);

Text t= c.parseText(t, "TOK,MOA,POS,PMF");

Simple Exercise (10 min)
 Produce a text file in which each line is composed by

 Original surface

 POS tag

 Lemma surface

 Use: address = 160.80.24.16, port = 4005

 All separated by a tab char, all sentences are separated
by a blank line

 Use the file inClassSentences.txt as input file

 Iterate over each line and process the file through the client
interface

 classes(space separated)TABsentence

 Produced file should be identical to triColumnInClass.txt

Example code

Client c = new Client(”address", port);

System.out.println(c.askLanguage().toString());

// Text t = c.parseText(“The service is good.”, “TOK,MOA,POS,PMF”);

Text t= c.parseText(t, "TOK,MOA,POS,PMF");

address = 160.80.24.16, port = 4005

for (Paragraph p : t.getParagraphs()) {

 for (XDG x : p.getXdgs()) {

 ConstituentList l = x.getConstituents();

 for (Constituent c : l) {

 SimpleConst s = (SimpleConst) c;

 String lemma = s.getFirstLemma().getSurfaceWithoutQuotes();

 String postag = s.getType();

 String surface = s.getSurfaceWithoutQuotes();

 System.out.println(surface + “ ”+ postag + “ ”+ lemma);

 }

 }

}

Evaluation

 How to evaluate NLP systems?

 It depends on the linguistic level we are

interested in

 Different evaluations for

 POS Tagging

 Named entities

 Parsing

 See two examples

Evaluating POS Tagging

 In general: accuracy

 Count the correct assigned Part Of Speech to

each token

 Different evaluations for known words and

unknown words

 Verify algorithms generalization capability

 Generate a list of known words given the training set

 At test time a word not in this list is an unknown word

Evaluating Named Entities

 An entity based evaluation

 Evaluate entities, not tokens!

 [Giuseppe Rossi]PER non è stato convocato da [Cesare Prandelli]PER.

 Here, two entities

 The evaluation must consider a true positive as a
correctly recognized entity

 Giuseppe Rossi non è stato convocato da [Cesare Prandelli]PER.

 Here,

 Precision = 1

 Recall = 0.5

 F1 = 0.66

Exercise

 Construct a dataset for svmlight

 +1 1:1 50:1 55:1

 Topic classification task of sentences in the

restaurant domain

 A sub task of 2014 Aspect Based Sentiment Analysis task

 Given a sentence classify it with respect to topic classes

 Classes are not mutually exclusive

food service ambience Excellent atmosphere, delicious dishes good and friendly service.

How to model the task
 Let’s think about the model

 Can we model topics with bag of words?

 And distributional vectors?

 And Tree Kernels?

 In class, keep it simple,

 Bag-of-words or bag-of-lemmapos

 Multiple classes -> multiple classifiers

 How to manage multiple classifiers and multiple
(not mutually exclusive) classes?

 Ideas?

 Use the margin (score > 0) of the classifier to decide if
an example belongs to a class

General algorithm for

generating training files

 Analyze sentences with RevNLT

 For each class D

 Produce a file training{D}.txt containing examples in

which positive (+1) are the one of class {D} and others

are negative (-1)

 For each example produce a feature representation

(bag-of-word or bag-of-lemmapos)

 Produce also files for development and test

General algorithm for

generating training files

 How to generate vectors?

 Use a dictionary!

 Associate to each words or lemma and pos pair a
number

 It will be its feature number

 Use a boolean feature value

 Write your dictionary on a file!

Tuning

 For each parameter c (1,2,5,10)

 For each class D

 Train a model model_c_D.model

 Classify development with model_c_D.model

 Choose classes D1,…,Dk with margin > 0

 Evaluate performances with respect to the oracle

 Performance is the F1 measure of correctly

recognized classes

 Choose the parameter c that optimize the

performance

Training

 Train |D| models with the best parameter found

 Classify test sentences

 Evaluate your system on test

 This is your final performance

Exercise
 In WMR_1314_nlpexercise.zip

 trainingSentences.txt

 developmentSentences.txt

 testSentences.txt

 TopicClassification.java: starter code in an Eclipse
project

 In class,

 Generate vector files using the starter code

 At home,

 Perform a proper tuning phase of the C parameter

 Perform testing and report via mail performances with a
bag-of-words model and a bag-of-lemmapos model
(also your tuning runs)

Hint

 Call the C svmlight executable via Java

 It can speed up (a lot) your coding time!

// parameters

float c = 1.0f;

// input file

String train_file=“train.txt;

// output file

String modelFile = “model.tmp”;

// your executable

String learnExecutable = “svm_learn”

//prepare your process

ProcessBuilder ps = new ProcessBuilder(learnExecutable, "-c", c, train_file, modelFile);

// start the process

Process p = ps.start();

// this is if you want to capture the log of the training phase

BufferedReader in = new BufferedReader(new InputStreamReader(p.getInputStream()));

String line;

PrintWriter logWriter = new PrintWriter(logLearn, "UTF-8");

while ((line = in.readLine()) != null) {

 logWriter.println(line);

}

p.waitFor();

logWriter.flush();

logWriter.close();

