

Structured Learning

Hidden Markov Support Vector Machines for NLP tasks

Giuseppe Castellucci <u>castellucci@ing.uniroma2.it</u> Web Mining & Retrieval a.a. 2013/2014

Outline

- Structured Learning
- SVM-HMM
- Task modeling examples
 - Part of Speech tagging
 - Named Entity Recognition and Classification

Structured Learning

- Learning algorithms so far in the course
 - Classification of "simple" outputs
- Structured Learning
 - Classification of "complex" outputs
 - Such as sequences or trees
- In general,
 - Learn dependencies between arbitrary input and arbitrary outputs

A Structured Learning framework

- Learn a w-parameterized function $f(\mathbf{x}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y}; \mathbf{w})$
- Where $F(\mathbf{x}, \mathbf{y}; \mathbf{w})$ is linear in some combined feature representation of inputs and outputs Φ $F(\mathbf{x}, \mathbf{y}; \mathbf{w}) = \langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}) \rangle$
- In particular, Φ(x,y) is responsible of extracting features jointly from input-output pairs
 - Dependency between x and y can be fully explained only by jointly looking at some property of x and y
 - Even more true if **y** has an internal structure

SVM-HMM

- Learn a function whose
 - Input is a sequence of observation
 - Output is a sequence of labels
- Sequence related problems in NLP
 - Part-Of-Speech tagging
 - Named-Entity Recognition and Classification
 - Chunking
 - Semantic Role Labeling
- Why?
 - Generative models
 - Discriminative models

SVM-HMM: the idea

SVM-HMM in Structured Learning

- Learn a discriminative model isomorphic to a korder Hidden Markov Model
 - Input: feature vectors $\mathbf{x} = (x_1 \dots x_l) \in \mathcal{X}$ Output: label sequence $\mathbf{y} = (y_1 \dots y_l) \in \mathcal{Y}$
- In SVM-HMM $\Phi(\mathbf{x}, \mathbf{y})$ represents
 - interaction between observations and classes
 - Emissions in HMM terminology
 - interaction between adjacent classes
 - Transitions in HMM terminology

SVM-HMM classification

- The Cutting-Plane algorithm is applied to estimate w
- The Viterbi algorithm is used to output the best sequence explaining an observation

Sequence Labeling with SVM-HMM

- SVM-HMM represents both
 - Generative models (Hidden Markov Model)
 - Discriminative models (Support Vector Machine)
- In NLP
 - Treat a sentence as a sequence
 - Ideal to take into account contextual information
 - To find the best solution for the entire sequence
- How to model NLP related problems?
 - Two examples: POS Tagging and NERC

Part-of-Speech tagging

- Task: Assign to each token in a sentence the correct grammatical category
- POS tagging can be modeled as a sequential tagging task
 - Linguistic information can be acquired by annotated examples
- We could classify each word without contextual information, i.e. ignoring other words in the sentence
 - It can work for not ambiguous cases: "the" "often"
 - ... but the context is crucial to classify a word like "run"

Modeling

An HMM model:

- The sentence is a SEQUENCE
- Words (represented through a set of features) are our OBSERVATIONS
- HMM STATES are mapped into POS tags
- The transition probability is estimated from the training set
- SVM classifier are used to estimate the emission probability
- The solution is estimated by applying the Viterbi algorithm

Feature Engineering

- The better feature representation the better will be the performance
 - Feature engineering (for each token)
 - Contextual (k words before and after the target word using Padding)
 - The word prefix and suffix
 - Boolean indicators of: IsTheFirstWord, ContainsNumbers, StartsWithCapital,ContainsSymbols,isAllNumbers
 - Dictionary Information, e.g. morphology (if available)
 - Feature post-processing
 - Normalization
 - Do not mix features!
 - E.g. Ieri Giuseppe Castellucci era al parco.

BEGIN_1 BEGIN_0 le ri leri FirstWord NotContainsNumbers StartsCapital NotContainsSymbol NotAllNumbers BEGIN_0 leri Gi pe Giuseppe NotFirstWord NotContainsNumbers StartsCapital NotContainSymbol NotAllNumbers

Setup	System	TA	UWTA
Open	RevNLT	97.68	95.21
	Best System1	97.03	95.30
Close	RevNLT	96.93	93.39
	Best System2	96.91	93.81

Results

- Evaluation
 - Token based accuracy
- Italian performances on the EVALITA 2009 task
 - EVALITA is a campaign to evaluate systems on the Italian language
- Experimental setup
 - Training dataset: 108874 words in 3719 sentences
 - Development dataset: 5021 words in 147 sentences
 - Test dataset: 5066 words in 147 sentences
 - In development and test 17% of unknown words
 - 37 classes
 - Open and Close evaluation refer to the possibility to use external resources

Named Entity Recognition and Classification

- Task: Find and classify entities in a sentence
 - Classify w.r.t. predefined classes, as PERSON, LOCATION, ORGANIZATION, etc...
- We can model it as a labeling task
 - Linguistic information can be acquired by annotated examples
- Again, assign to each token in a sentence a specific class

Modeling

An HMM model:

- The sentence is a SEQUENCE
- Words (represented through a set of features) are OBSERVATIONS
- HMM STATES are mapped into Named Entities, e.g. PER,LOC,X
- Transition probabilities estimated from the training set
- SVM classifiers used to estimate the emission probability
- The solution computed by the Viterbi algorithm

Multi-word entities

- Named Entities are also multi-word expressions
 - Yesterday Giuseppe Castellucci was happy.
- How to manage multi-word expression in SVM-HMM?
 - First solution is to label each token with a class
 - Yesterday/X Giuseppe/PER Castellucci/PER was/X happy/X /.
- What if an entity directly follows an entity of the same class?
 - Ideas?

IOB notation

- Discriminate from the Begin, the Inside or the Outside of an entity for each class
 - Yesterday/O Giuseppe/B-PER Castellucci/I-PER was/O happy/O ./O
- If entities are consecutive
 - discriminate with B-* tags
- Two possible approaches
 - Cascade of two classifiers (locate entities and then classify w.r.t. classes)
 - A single classifier (jointly classifies the boundaries and the classes)

Feature Engineering

- Same as Part Of Speech tagging + the Part-Of-Speech of a token
 - For each token,
 - Contextual (k words before and after the target word)
 - The word prefix and suffix
 - Boolean indicators of: IsTheFirstWord, ContainsNumbers, StartsWithCapital,ContainsSymbols,isAllNumbers
 - Dictionary Information, e.g. morphology information
 - Part-Of-Speech
 - Again, feature post-processing
 - Normalization
 - Do not mix features!

Results

- Evaluation
 - Entity-based Precision, Recall and F1

Experimental setup

- Evalita 2009 NER task
- Training dataset: 11410 entities in 11227 sentences
- Test dataset: 4966 entities in 4136 sentences
- 4 classes: Person, Location, Organization and GeoPoliticalEntity
- Accuracy: ≈76 F1. Best in Evalita ≈82 F1

How to use SVM^{HMM}

- Download:
 - http://download.joachims.org/svm_hmm/current/svm_hmm.tar.gz
- Compile (make)
- Learn: svm_hmm_learn -c <C> --t <ORDER_T> -e 0.1 -e 1
 training_input.dat modelfile.dat
 - -c: Typical SVM parameter C trading-off slack vs. magnitude of the weight-vector (1, 10, 100, 10³, 10⁴ depends by the training set size).
 - --t: Order of dependencies of transitions in HMM (1,2 o 3)
- Classify: svm_hmm_classify test_input.dat modelfile.dat classify.tags

SVM^{HMM} input Feature vector class Sent_id Comment 4 qid:1 1:1 2:1 51:1 247:1 2675:1 # four 12 gid:1 58:1 84:1 197:1 250:1 433:1 1145:1 2677:1 # score < 3 gid:1 8:1 83:1 88:1 202:1 363:1 364:1 438:1 1147:1 # and 4 gid:1 16:1 47:1 87:1 135:1 197:1 365:1 366:1 # seven 15 gid:1 30:1 49:1 142:1 197:1 202:1 387:1 # years 8 gid:1 39:1 83:1 202:1 267:1 392:1 # ago Sparse notation 20 aid:1 83:1 87:1 247:1 269:1 2675:1 2676:1 # our 21 gid:2 5:1 83:1 576:1 923:1 1379:1 1469:1 # now 19 qid:2 23:1 84:1 87:1 577:1 926:1 1383:1 1470:1 # we 30 gid:2 26:1 83:1 84:1 88:1 433:1 578:1 627:1 # are 29 qid:2 7:1 8:1 9:1 87:1 88:1 438:1 628:1 1077:1 3377:1 # engaged 8 gid:2 15:1 16:1 17:1 23:1 47:1 185:1 1082:1 3381:1 # in 8 gid:3 23:1 47:1 48:1 87:1 219:1 1621:1 # on 7 qid:3 3:1 26:1 49:1 50:1 459:1 # a 9 qid:3 5:1 197:1 217:1 460:1 519:1 1535:1 1536:1 1537:1 # great 12 gid:3 8:1 109:1 202:1 219:1 522:1 531:1 1538:1 1539:1 1540:1 # battlefield

References

- Altun et Al. Hidden Markov Support Vector Machines, ICML 2003
- I. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun. Support Vector Machine Learning for Interdependent and Structured Output Spaces. International Conference on Machine Learning (ICML), 2004.
- I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large Margin Methods for Structured and Interdependent Output Variables, Journal of Machine Learning Research (JMLR), 6(Sep):1453-1484, 2005.
- T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of Structural SVMs, Machine Learning Journal, 77(1):27-59, 2009.
- Danilo Croce, Giuseppe Castellucci, Emanuele Bastianelli. Structured Learning for Semantic Role Labeling, Intelligenza Artificiale, 6(2),163-176, 2012
- <u>http://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html</u>
- <u>http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html</u>