CS276

Lecture 14
Crawling and web indexes

Today’s lecture

= Crawling
= Connectivity servers

Basic crawler operation

= Begin with known “seed”
pages

= Fetch and parse them
s Extract URLs they point to

= Place the extracted URLs on a
queue

= Fetch each URL on the queue
and repeat

20.2

Crawling picture
. @ @ O O O

Web

URLs crawled
and parsed

Seed
pages -

" URLs frontier

Unseen Web

—"

20.2

Simple picture - complications
-
= Web crawling isn’t feasible with one machine

= All of the above steps distributed
= Even non-malicious pages pose challenges
» Latency/bandwidth to remote servers vary

» Webmasters’ stipulations
« How “deep” should you crawl a site’s URL hierarchy?

= Site mirrors and duplicate pages
= Malicious pages

= Spam pages

» Spider traps - incl dynamically generated
= Politeness - don’t hit a server too often

What any crawler must do

= Be Polite: Respect implicit and
explicit politeness considerations

» Only crawl allowed pages

s Respect robots.txt (more on this
shortly)

= Be Robust: Be immune to spider
traps and other malicious
behavior from web servers

20.1.1

What any crawler should do

= Be capable of distributed operation:
designed to run on multiple
distributed machines

= Be scalable: designed to increase the
crawl| rate by adding more machines

= Performance/efficiency: permit full use

of available processing and network
resources

20.1.1

What any crawler should do

= Fetch pages of “higher quality”
first

s Continuous operation: Continue
fetching fresh copies of a
previously fetched page

= Extensible: Adapt to new data
formats, protocols

Updated crawling picture

URLs crawled
and parsed

Unseen Web

Crawling thread @~ —————__ .

URL frontier

. @ @ O O O
= Can include multiple pages from
the same host

= Must avoid trying to fetch them all
at the same time

= Must try to keep all crawling
threads busy

Explicit and implicit politeness
. O OO OO
= Explicit politeness: specifications
from webmasters on what
portions of site can be crawled

= robots.txt

= Implicit politeness: even with no
specification, avoid hitting any
site too often

Robots.txt

= Protocol for giving spiders (“robots”)
limited access to a website, originally
from 1994

s WWW.robotstxt.orqg/wc/norobots.html

s Website announces its request on what
can(not) be crawled

s For a URL, create a file URL/
robots.txt

= This file specifies access restrictions

Robots.txt example

= No robot should visit any URL starting with

"/yoursite/temp/", except the robot called
“searchengine™:

User—-agent: *

Disallow: /yoursite/temp/

User—agent: searchengine

Disallow:

20.2.1

Processing steps in crawling

= Pick a URL from the frontier<#Which one?
s Fetch the document at the URL
= Parse the URL

» Extract links from it to other docs (URLS)
s Check if URL has content already seen

s If not, add to indexes = o sl] E
= For each extracted URL obey robots.txt, etc.

=

= Ensure it passes certain URL filter tests

s Check if it is already in the frontier (duplicate
URL elimination)

20.2.1

Basic crawl architecture

1 DNS

WWW

Fetch

' Parse

Doc obot
FP’s filters
Content URL
seen? filter

elim

URL Frontier

20.2.1

Parsing: URL normalization

= When a fetched document is parsed, some of
the extracted links are relative URLs

= E.g., at
http://en.wikipedia.org/wiki/Main_Page

we have a relative link to /wiki/

Wikipedia:General_disclaimer which is the

same as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

= During parsing, must normalize (expand)
such relative URLs

Duplicate URL elimination

= For a non-continuous (one-shot)
crawl, test to see if an extracted
+filtered URL has already been
passed to the frontier

= For a continuous crawl - see
details of frontier implementation

Distributing the crawler

= Run multiple crawl threads, under
different processes - potentially at
different nodes

» Geographically distributed nodes

= Partition hosts being crawled into
nodes

» Hash used for partition
= How do these nodes communicate?

Communication between nodes

= The output of the URL filter at each node is sent
to the Duplicate URL Eliminator at all nodes

WWW

1 DNS

Fetch

*Parse

oC obot
FP’s filters

other
hosts

[11]

URL
set

Content
seen?

URL
filter

URL Frontier

1 Host [Dup

:I;:)Iltte{ | UrL
| > elim
From

other

hosts

20.2.1

URL frontier: two main
considerations

s Politeness: do not hit a web server too
frequently

= Freshness: crawl some pages more often
than others

= E.g., pages (such as News sites) whose
content changes often

These goals may conflict each other.

(E.g., simple priority queue fails - many
links out of a page go to its own site,
creating a burst of accesses to that site.)

Politeness - challenges

= Even if we restrict only one thread
to fetch from a host, can hit it
repeatedly

= Common heuristic: insert time
gap between successive requests
to a host that is >> time for most
recent fetch from that host

