
CS276

Lecture 14

Crawling and web indexes

Today’s lecture

!! Crawling

!! Connectivity servers

Basic crawler operation

!! Begin with known “seed”
pages

!! Fetch and parse them

!!Extract URLs they point to

!!Place the extracted URLs on a
queue

!! Fetch each URL on the queue
and repeat 20.2

Crawling picture

Web

URLs crawled
and parsed

URLs frontier

Unseen Web

Seed
pages

20.2

Simple picture – complications

!! Web crawling isn’t feasible with one machine
!! All of the above steps distributed

!! Even non-malicious pages pose challenges
!! Latency/bandwidth to remote servers vary

!! Webmasters’ stipulations
!! How “deep” should you crawl a site’s URL hierarchy?

!! Site mirrors and duplicate pages

!! Malicious pages
!! Spam pages

!! Spider traps – incl dynamically generated

!! Politeness – don’t hit a server too often

20.1.1

What any crawler must do

!! Be Polite: Respect implicit and
explicit politeness considerations

!! Only crawl allowed pages

!! Respect robots.txt (more on this
shortly)

!! Be Robust: Be immune to spider
traps and other malicious
behavior from web servers

20.1.1

What any crawler should do

!! Be capable of distributed operation:
designed to run on multiple
distributed machines

!! Be scalable: designed to increase the
crawl rate by adding more machines

!! Performance/efficiency: permit full use
of available processing and network
resources

20.1.1

What any crawler should do

!! Fetch pages of “higher quality”
first

!! Continuous operation: Continue
fetching fresh copies of a
previously fetched page

!! Extensible: Adapt to new data
formats, protocols

20.1.1

Updated crawling picture

URLs crawled
and parsed

Unseen Web

Seed
Pages

URL frontier

Crawling thread 20.1.1

URL frontier

!! Can include multiple pages from
the same host

!! Must avoid trying to fetch them all
at the same time

!! Must try to keep all crawling
threads busy

20.2

Explicit and implicit politeness

!! Explicit politeness: specifications
from webmasters on what
portions of site can be crawled

!! robots.txt

!! Implicit politeness: even with no
specification, avoid hitting any
site too often

20.2

Robots.txt

!! Protocol for giving spiders (“robots”)
limited access to a website, originally
from 1994

!! www.robotstxt.org/wc/norobots.html

!! Website announces its request on what
can(not) be crawled

!! For a URL, create a file URL/
robots.txt

!! This file specifies access restrictions

20.2.1

Robots.txt example

!! No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *

Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

20.2.1

Processing steps in crawling

!! Pick a URL from the frontier

!! Fetch the document at the URL

!! Parse the URL

!! Extract links from it to other docs (URLs)

!! Check if URL has content already seen

!! If not, add to indexes

!! For each extracted URL

!! Ensure it passes certain URL filter tests

!! Check if it is already in the frontier (duplicate
URL elimination)

E.g., only crawl .edu,
obey robots.txt, etc.

Which one?

20.2.1

Basic crawl architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

20.2.1

Parsing: URL normalization

!! When a fetched document is parsed, some of
the extracted links are relative URLs

!! E.g., at
http://en.wikipedia.org/wiki/Main_Page

we have a relative link to /wiki/
Wikipedia:General_disclaimer which is the
same as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

!! During parsing, must normalize (expand)
such relative URLs

20.2.1

Duplicate URL elimination

!! For a non-continuous (one-shot)
crawl, test to see if an extracted
+filtered URL has already been
passed to the frontier

!! For a continuous crawl – see
details of frontier implementation

20.2.1

Distributing the crawler

!! Run multiple crawl threads, under
different processes – potentially at
different nodes

!! Geographically distributed nodes

!! Partition hosts being crawled into
nodes

!! Hash used for partition

!! How do these nodes communicate?

20.2.1

20.2.1

Communication between nodes

!! The output of the URL filter at each node is sent
to the Duplicate URL Eliminator at all nodes

WWW

Fetch

DNS

Parse

Content
seen?

URL
filter

Dup
URL
elim

Doc
FP’s

URL
set

URL Frontier

robots
filters

Host
splitter

To
other
hosts

From
other
hosts

URL frontier: two main
considerations

!! Politeness: do not hit a web server too
frequently

!! Freshness: crawl some pages more often
than others

!! E.g., pages (such as News sites) whose
content changes often

These goals may conflict each other.

(E.g., simple priority queue fails – many
links out of a page go to its own site,
creating a burst of accesses to that site.)

20.2.3

Politeness – challenges

!! Even if we restrict only one thread
to fetch from a host, can hit it
repeatedly

!! Common heuristic: insert time
gap between successive requests
to a host that is >> time for most
recent fetch from that host

20.2.3

