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Motivations 

 Common ML algorithms simultaneously exploit a 

whole dataset. This process, referred as batch 

learning, is not practical when: 

 New data naturally arise over the time: exploiting new data 

means building from scratch a new model  usually not 

feasible! 

 The dataset is too large to be efficiently exploited: memory 

and computational problems! 

 The concept we need to learn changes over the time: batch 

learning provide a static solution that will surely degrade as 

time goes by 

 

 



Online Machine Learning 

 Incremental Learning Paradigm:  

 Every time a new example is available, the learned 

hypothesis is updated  

 Inherent Appealing Characteristics: 

 The model does not need to be re-generated from 

scratch when new data is available 

 Capability of tracking a Shifting Concept 

 Faster training process if compared to batch learners 

(e.g. SVM) 
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Perceptron 

 Perceptron is a simple discriminative classifier 

 Instances are feature vectors 𝒙′ ∈ ℝ𝑑  with label 𝑦 ∈ −1, +1   

 Classification function is an hyperplane in ℝ𝑑  : 𝑓 𝒙′ = 𝒘′ ∙ 𝒙′ + 𝑏 

 

 

 

 

 

 

 

 

 

 

 Compact notation: 𝒘 = *𝑏,𝑤′1, 𝑤
′
2,…, 𝑤′𝑑+, 𝒙 = *1, 𝑥

′
1, 𝑥
′
2,…, 𝑥′𝑑+ 

 

 



Batch Perceptron 

 IDEA : adjust the hyperplane until no training errors are 
done (input data must be linearly separable) 

 Batch perceptron learning procedure: 
Start with 𝒘1 = 0   

do 

 errors=false 

 For all t=1…T 

    Receive a new sample 𝒙𝒕  

    Compute 𝑦 = 𝒘𝑡 ∙ 𝒙𝒕  

    if 𝑦 ∙ 𝑦𝑡 < 𝛽𝑡 then 𝒘𝑡+1 = 𝛾𝑡𝒘𝑡 + 𝛼𝑡𝑦𝑡𝒙𝑡   with 𝛼𝑡 > 0          
       errors=true 

         else 

                       𝒘𝑡+1 = 𝒘𝑡   

while(errors) 

return 𝒘𝑇+1 



Online Learning Perceptron 

 IDEA : adjust the hyperplane after each classification (𝒘𝑡 = 

weight vector at time t) and never stop learning 

 

 Online perceptron learning procedure: 

Start with 𝒘1 = 0   

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute 𝑦 = 𝒘𝑡 ∙ 𝒙𝒕  

 Receive a feedback 𝑦𝑡 

 if 𝑦 ∙ 𝑦𝑡 < 𝛽𝑡 then 𝒘𝑡+1 = 𝛾𝑡𝒘𝑡 + 𝛼𝑡𝑦𝑡𝒙𝑡   with 𝛼𝑡 > 0  
 else      𝒘𝑡+1 = 𝒘𝑡   

endfor 



Shifting Perceptron 

 IDEA: weak dependance from the past in order to obtain a tracking 
ability 

 

 

 Shifting Perceptron learning procedure (Cavallanti et al 2006): 
Start with 𝒘1 = 0  , k=0 

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute 𝑦 = sign(𝒘𝑡 ∙ 𝒙𝒕)  

 Receive a feedback 𝑦𝑡 

 if 𝑦 ≠ 𝑦𝑡 then  

  𝜆𝑘 =
𝜆

𝜆+𝑘
   with   𝜆 > 0 

  𝒘𝑡+1 = 1 − 𝜆𝑘 𝒘𝑡 + 𝜆𝑘𝑦𝑡𝒙𝑡   

  k=k+1 

 else      𝒘𝑡+1 = 𝒘𝑡   

endfor 



Online Linear Passive Aggressive (1/3) 

 IDEA: Every time a new example ‹xt , yt› is available the current 
classification function is modified as less as possible to 
correctly classify the new example 

 

 Passive Aggressive learning procedure (Crammer et al 2006): 
Start with 𝒘1 = 0  , k=0 

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute 𝑦 = sign(𝒘𝑡 ∙ 𝒙𝒕)  

 Receive a feedback 𝑦𝑡 

 Measure a classification loss (divergence between 𝑦𝑡 and 𝑦) 
 Modify the model to get zero loss, preserving what was 
 learned from previous examples 

  



Online Linear Passive Aggressive (2/3) 

 Loss measure:  

Hinge loss: 𝑙 𝒘; 𝒙𝑡 , 𝑦𝑡 = max 0; 1 − 𝑦𝑡 𝒘 ∙ 𝒙𝑡  

 

 Model variation:  

𝒘𝑡+1 −𝒘𝑡  
2
 

 

 Passive Aggressive Optimization Problem: 

𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐  such that 𝑙 𝒘; 𝒙𝑡 , 𝑦𝑡 = 0 

 

 Closed form solution: 

𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡  where 𝜏𝑡 =
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡
2  

 



Online Linear Passive Aggressive (3/3) 

 The previous formulation is a hard margin version that has a problem:  

 a single outlier could produce a high hyperplane shifting, making the model 
forget the previous learning  

 Soft version solution:  

 control the algorithm aggressiveness through a parameter C 

 

  PA-I formulation: 

 𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉  s.t. 𝑙 𝒘; 𝒙𝑡, 𝑦𝑡 ≤ 𝜉 with 𝜉 ≥ 0 

 𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡  where 𝜏𝑡 = min 𝐶;
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡
2  

 

  PA-II model: 

 𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉2 s.t. 𝑙 𝒘; 𝒙𝑡, 𝑦𝑡 ≤ 𝜉 with 𝜉 ≥ 0 

 𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡  where 𝜏𝑡 =
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡 2+
1

2
𝐶
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Data Separability 

 Training data could not be separable 

 Possible solutions: 

 Use a more complex classification function  Risk of overfitting! 

 Define a new set of feature that makes the problem linearly separable 

 

 

 

 

 

 

 

 Project the current examples in a space in which they are separable… 

 

 

 

 

 

 

 

 

 



Kernel Methods 

 Training data can be projected in a space in which they are more easily 

separable 

 

 

 

 

 

 

 

 

 Kernel Trick: any kernel function K performs the dot product in the kernel 

space without explicitly project the input vectors in that space 

 Structured data (tree, graph, high order tensor…) can be exploited 

 

 

 

 

 

 

 

 



Kernelized Passive Aggressive 

 In kernelized Online Learning algorithms a new support vector is added every time 

a misclassification occurs 

 LINEAR VERSION KERNELIZED VERSION 

Classification function 

𝑓𝑡 𝒙 = 𝒘𝑡
𝑇𝒙 𝑓𝑡 𝑥 = 𝛼𝑖𝑘(𝑥, 𝑥𝑖)

𝑖∈𝑆

 

Optimization Problem (PA-I) 

𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉   

Such that  1 − 𝑦𝑡f𝑡 𝒙𝑡 ≤ 𝜉, 𝜉 ≥ 0 

𝑓𝑡+1(𝑥) = argminf
1

2
𝑓(𝑥) − 𝑓𝑡(𝑥)

2
ℋ
+ 𝐶𝜉   

Such that  1 − 𝑦𝑡𝑓𝑡 𝑥𝑡 ≤ 𝜉, 𝜉 ≥ 0 

Closed form solution 

𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡  

where 𝜏𝑡 = min 𝐶;
max (0,1−𝑦𝑡𝑓𝑡 𝒙𝑡 )

𝒙𝑡 2
 

𝑓𝑡+1(𝑥) = f𝑡(𝑥) + α𝑡𝑘(𝑥, 𝑥𝑡)  

where α𝑡 = 𝑦𝑡 ∙ min 𝐶;
max (0,1−𝑦𝑡𝑓𝑡 𝑥𝑡 )

𝑥𝑡 2ℋ
 



Linear Vs Kernel Based Learning  

LINEAR VERSION KERNELIZED VERSION 

Classification function 

explicit hyperlplane in the original space 

 Only linear functions can be learnt 

implicit hyperplane in the RKHS 

 Non linear functions can be learnt 

Example form 

 Only feature vectors can be exploited  Structured representations can be exploited 

Computational complexity 

 A classification is a single dot product 
 A classification involves |S| kernel 

computations 

Memory usage 

 Only a the explicit hyperplane must be 

stored 

 All the support vectors and their weights 

must be stored 
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Learning on a Budget 

 In kernelized online learning algorithm the set of support 
vectors can grow without limits 

 Possible solution: Limit the number of support vector, defining 
a budget B  

 This solution has the following advantages: 

 The memory occupation is upperbounded by B support vectors 

 

 Each classification needs at most B kernel computations 

 

 In shifting concept tasks, budget algorithms can outperform non-
budget counterparts because they are faster in adapting 

 



Limit the number of Support Vectors 

 

 In order to respect the budget B, different policies can be formulated: 

 Stop learning when budget is exceeded: Stoptron 

 Delete a random support vector: Randomized Perceptron 

 Delete the more redundant support vector: Fixed Budget Conscious Perceptron 

 Delete the oldest support vector: Least recent Budget Perceptron and Forgetron  

 Modify the Support Vectors weights in order to adapt the classification 

hypothesis to the new sample: Projectron 

 Online Passive-Aggressive on a Budget 



Stoptron 

 

 Baseline of the online learning on a budget algorithms: Fix a budget B and 

stop learning when the number of support vectors is equal to B 

 Stoptron algorithm (Orabona et al 2008): 

Start with S = ∅  

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute  𝑦 =  𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡 )𝑖∈𝑆  

 Receive a feedback 𝑦𝑡 

 if  𝑦𝑦𝑡 < 𝛽  and 𝑆 < 𝐵  then  

   𝑆 = 𝑆 ∪ 𝑡  

   𝛼𝑡= 1 

 endif 

endfor 

   



Randomized Perceptron 

 Simplest deleting policy: when the budget B is exceeded remove a random 

support vector 

 Randomized Perceptron algorithm (Cavallanti et al 2007): 

Start with S = ∅  

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute  𝑦 =  𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡 )𝑖∈𝑆  

 Receive a feedback 𝑦𝑡 

 if  𝑦𝑦𝑡 < 𝛽 

     if 𝑆 = 𝐵   

  select randomly 𝑠 ∈ 𝑆, 𝑆 = 𝑆 ∖ 𝑠   

     endif 

     𝑆 = 𝑆 ∪ *𝑡+   𝛼𝑡= 1 

 endif 

endfor 

   



Forgetron 

 Deleting policy: Every time a new support vector is added, the weights of 

the others are reduced. Thus SVs lose weight with aging and removing the 

older SV should assure a minimum impact to the classification function. 

 Forgetron algorithm (Dekel et al 2008): 

Start with S = ∅  

For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute  𝑦 =  𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡 )𝑖∈𝑆  

 Receive a feedback 𝑦𝑡 

 if  𝑦𝑦𝑡 < 𝛽 

          if 𝑆 = 𝐵   

  𝑆=𝑆∖𝑚𝑖𝑛{𝑆} //the oldest Support vector is removed 

     endif 

     𝑆 = 𝑆 ∪ *𝑡+   𝛼𝑡= 1, 𝛼𝑖 = 𝜙𝑡𝛼𝑖 ∀𝑖 ∈ 𝑆 ∖ *𝑡+ //adding a new Sv and shrinking 

 endif 

endfor 

   



Passive Aggressive Algorithms  

on a Budget (1/2) 

 When 𝑆 = 𝐵 , to respect the budget B, the PA optimization 

problem is modified as follows (Wang et al 2010): 

 

𝑓𝑡+1(𝑥) = argminf
1

2
𝑓(𝑥) − 𝑓𝑡(𝑥)

2
ℋ
+ 𝐶𝜉 

Such that:  1 − 𝑦𝑡𝑓𝑡 𝑥𝑡 ≤ 𝜉, 𝜉 ≥ 0        (old constraints) 

 𝑓 = 𝑓𝑡 − 𝛼𝑟𝑘(𝑥𝑟 ,∙)
𝑆𝑉 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

+  𝛽𝑖𝑘 𝑥𝑖 ,∙𝑖∈𝑉

𝑤𝑒𝑖𝑔𝑡 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

(new constraint) 

 

Where V is the set of the indices of support vectors whose 

weights can be modified and r is the support vector to be 

removed.  



Passive Aggressive Algorithms  

on a Budget (2/2) 

 Given a r to be deleted, the optimization problem can be solved 

and the optimal weight modifications 𝛽𝑖  for a given r can be 

computed 

 A brute force approach is performed in order to chose 𝑟∗ (the best r 

is the one that minimizes the objective function) and the 

corresponding 𝛽𝑖
∗
 

 B optimization problems must be solved every time a new SV must be 

added (when the budget is reached) 

 The computational complexity of a single optimization problem depends on 

|V| (i.e. the number of SV whose weights can be modified) 

 Three proposal for V: 

 BPA-simple: 𝑉={𝑡}   

 BPA-projecting: 𝑉=𝑆∪{𝑡}∖{𝑟}  

 BPA-Nearest-Neighbor: 𝑉={𝑡}∪𝑁𝑁{𝑟} 



Online Learning Algorithm Comparison 

 DATASET USED: 

 Adult: determine whether a person makes over 50K a year using census 
attributes (2 classes, 21K samples, 123 features) 

 Banana: An artificial data set where instances belongs to several clusters 
with a banana shape (2 classes, 4.3K samples, 2 feature) 

 Checkerboard: An artificial dataset where instances of two classes are 
distributed like a checkerboard (2 classes, 10K samples, 2 features) 

 NCheckerboard: noisy version of checkerboard dataset (15% of the 
samples are bad classified) 

 Covertype Data Set: Predicting forest cover type from cartographic 
variables only (Elevation, Distance to hydrology…) (7 classes, 10K samples, 
41 features) 

 Phoneme: phoneme recognition (11 classes, 10K samples, 41 features) 

 USPD: optical character recognition dataset. (10 classes, 7.3 K samples, 
256 features) 
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Results using a RBF kernel 



Summary 

 Online learning methods can: 

 Incrementally learn from new samples 

 Dinamically adapt to problem variations 

 Reduce the computational cost of building a new model 

 

 Online learning methods can be used with kernels but 
they suffer from the “curse of kernelization”: 

 The number of support vectors can grow without bounds 

 

 Several number of budgeted solutions have been 
proposed 

 


