
Online Machine Learning

Web Mining e Retrieval 2013/2014

Simone Filice

filice.simone@gmail.com

University of Roma Tor Vergata

Motivations

 Common ML algorithms simultaneously exploit a

whole dataset. This process, referred as batch

learning, is not practical when:

 New data naturally arise over the time: exploiting new data

means building from scratch a new model usually not

feasible!

 The dataset is too large to be efficiently exploited: memory

and computational problems!

 The concept we need to learn changes over the time: batch

learning provide a static solution that will surely degrade as

time goes by

Online Machine Learning

 Incremental Learning Paradigm:

 Every time a new example is available, the learned

hypothesis is updated

 Inherent Appealing Characteristics:

 The model does not need to be re-generated from

scratch when new data is available

 Capability of tracking a Shifting Concept

 Faster training process if compared to batch learners

(e.g. SVM)

Overview

 Linear Online Learning Algorithms

 Kernelized Online Learning Algorithms

 Online Learning on a Budget

Overview

 Linear Online Learning Algorithms

 Kernelized Online Learning Algorithms

 Online Learning on a Budget

Perceptron

 Perceptron is a simple discriminative classifier

 Instances are feature vectors 𝒙′ ∈ ℝ𝑑 with label 𝑦 ∈ −1, +1

 Classification function is an hyperplane in ℝ𝑑 : 𝑓 𝒙′ = 𝒘′ ∙ 𝒙′ + 𝑏

 Compact notation: 𝒘 = *𝑏,𝑤′1, 𝑤
′
2,…, 𝑤′𝑑+, 𝒙 = *1, 𝑥

′
1, 𝑥
′
2,…, 𝑥′𝑑+

Batch Perceptron

 IDEA : adjust the hyperplane until no training errors are
done (input data must be linearly separable)

 Batch perceptron learning procedure:
Start with 𝒘1 = 0

do

 errors=false

 For all t=1…T

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝒘𝑡 ∙ 𝒙𝒕

 if 𝑦 ∙ 𝑦𝑡 < 𝛽𝑡 then 𝒘𝑡+1 = 𝛾𝑡𝒘𝑡 + 𝛼𝑡𝑦𝑡𝒙𝑡 with 𝛼𝑡 > 0
 errors=true

 else

 𝒘𝑡+1 = 𝒘𝑡

while(errors)

return 𝒘𝑇+1

Online Learning Perceptron

 IDEA : adjust the hyperplane after each classification (𝒘𝑡 =

weight vector at time t) and never stop learning

 Online perceptron learning procedure:

Start with 𝒘1 = 0

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝒘𝑡 ∙ 𝒙𝒕

 Receive a feedback 𝑦𝑡

 if 𝑦 ∙ 𝑦𝑡 < 𝛽𝑡 then 𝒘𝑡+1 = 𝛾𝑡𝒘𝑡 + 𝛼𝑡𝑦𝑡𝒙𝑡 with 𝛼𝑡 > 0
 else 𝒘𝑡+1 = 𝒘𝑡

endfor

Shifting Perceptron

 IDEA: weak dependance from the past in order to obtain a tracking
ability

 Shifting Perceptron learning procedure (Cavallanti et al 2006):
Start with 𝒘1 = 0 , k=0

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = sign(𝒘𝑡 ∙ 𝒙𝒕)

 Receive a feedback 𝑦𝑡

 if 𝑦 ≠ 𝑦𝑡 then

 𝜆𝑘 =
𝜆

𝜆+𝑘
 with 𝜆 > 0

 𝒘𝑡+1 = 1 − 𝜆𝑘 𝒘𝑡 + 𝜆𝑘𝑦𝑡𝒙𝑡

 k=k+1

 else 𝒘𝑡+1 = 𝒘𝑡

endfor

Online Linear Passive Aggressive (1/3)

 IDEA: Every time a new example ‹xt , yt› is available the current
classification function is modified as less as possible to
correctly classify the new example

 Passive Aggressive learning procedure (Crammer et al 2006):
Start with 𝒘1 = 0 , k=0

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = sign(𝒘𝑡 ∙ 𝒙𝒕)

 Receive a feedback 𝑦𝑡

 Measure a classification loss (divergence between 𝑦𝑡 and 𝑦)
 Modify the model to get zero loss, preserving what was
 learned from previous examples

Online Linear Passive Aggressive (2/3)

 Loss measure:

Hinge loss: 𝑙 𝒘; 𝒙𝑡 , 𝑦𝑡 = max 0; 1 − 𝑦𝑡 𝒘 ∙ 𝒙𝑡

 Model variation:

𝒘𝑡+1 −𝒘𝑡
2

 Passive Aggressive Optimization Problem:

𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 such that 𝑙 𝒘; 𝒙𝑡 , 𝑦𝑡 = 0

 Closed form solution:

𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡 where 𝜏𝑡 =
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡
2

Online Linear Passive Aggressive (3/3)

 The previous formulation is a hard margin version that has a problem:

 a single outlier could produce a high hyperplane shifting, making the model
forget the previous learning

 Soft version solution:

 control the algorithm aggressiveness through a parameter C

 PA-I formulation:

 𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉 s.t. 𝑙 𝒘; 𝒙𝑡, 𝑦𝑡 ≤ 𝜉 with 𝜉 ≥ 0

 𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡 where 𝜏𝑡 = min 𝐶;
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡
2

 PA-II model:

 𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉2 s.t. 𝑙 𝒘; 𝒙𝑡, 𝑦𝑡 ≤ 𝜉 with 𝜉 ≥ 0

 𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡 where 𝜏𝑡 =
𝑙 𝒘𝑡; 𝒙𝑡,𝑦𝑡

𝒙𝑡 2+
1

2
𝐶

Overview

 Linear Online Learning Algorithms

 Kernelized Online Learning Algorithms

 Online Learning on a Budget

Data Separability

 Training data could not be separable

 Possible solutions:

 Use a more complex classification function Risk of overfitting!

 Define a new set of feature that makes the problem linearly separable

 Project the current examples in a space in which they are separable…

Kernel Methods

 Training data can be projected in a space in which they are more easily

separable

 Kernel Trick: any kernel function K performs the dot product in the kernel

space without explicitly project the input vectors in that space

 Structured data (tree, graph, high order tensor…) can be exploited

Kernelized Passive Aggressive

 In kernelized Online Learning algorithms a new support vector is added every time

a misclassification occurs

 LINEAR VERSION KERNELIZED VERSION

Classification function

𝑓𝑡 𝒙 = 𝒘𝑡
𝑇𝒙 𝑓𝑡 𝑥 = 𝛼𝑖𝑘(𝑥, 𝑥𝑖)

𝑖∈𝑆

Optimization Problem (PA-I)

𝒘𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏

𝟐
𝒘−𝒘𝑡

𝟐 + 𝐶𝜉

Such that 1 − 𝑦𝑡f𝑡 𝒙𝑡 ≤ 𝜉, 𝜉 ≥ 0

𝑓𝑡+1(𝑥) = argminf
1

2
𝑓(𝑥) − 𝑓𝑡(𝑥)

2
ℋ
+ 𝐶𝜉

Such that 1 − 𝑦𝑡𝑓𝑡 𝑥𝑡 ≤ 𝜉, 𝜉 ≥ 0

Closed form solution

𝒘𝑡+1 = 𝒘𝑡 + 𝜏𝑡𝑦𝑡𝒙𝑡

where 𝜏𝑡 = min 𝐶;
max (0,1−𝑦𝑡𝑓𝑡 𝒙𝑡)

𝒙𝑡 2

𝑓𝑡+1(𝑥) = f𝑡(𝑥) + α𝑡𝑘(𝑥, 𝑥𝑡)

where α𝑡 = 𝑦𝑡 ∙ min 𝐶;
max (0,1−𝑦𝑡𝑓𝑡 𝑥𝑡)

𝑥𝑡 2ℋ

Linear Vs Kernel Based Learning

LINEAR VERSION KERNELIZED VERSION

Classification function

explicit hyperlplane in the original space

 Only linear functions can be learnt

implicit hyperplane in the RKHS

 Non linear functions can be learnt

Example form

 Only feature vectors can be exploited Structured representations can be exploited

Computational complexity

 A classification is a single dot product
 A classification involves |S| kernel

computations

Memory usage

 Only a the explicit hyperplane must be

stored

 All the support vectors and their weights

must be stored

Overview

 Linear Online Learning Algorithms

 Kernelized Online Learning Algorithms

 Online Learning on a Budget

Learning on a Budget

 In kernelized online learning algorithm the set of support
vectors can grow without limits

 Possible solution: Limit the number of support vector, defining
a budget B

 This solution has the following advantages:

 The memory occupation is upperbounded by B support vectors

 Each classification needs at most B kernel computations

 In shifting concept tasks, budget algorithms can outperform non-
budget counterparts because they are faster in adapting

Limit the number of Support Vectors

 In order to respect the budget B, different policies can be formulated:

 Stop learning when budget is exceeded: Stoptron

 Delete a random support vector: Randomized Perceptron

 Delete the more redundant support vector: Fixed Budget Conscious Perceptron

 Delete the oldest support vector: Least recent Budget Perceptron and Forgetron

 Modify the Support Vectors weights in order to adapt the classification

hypothesis to the new sample: Projectron

 Online Passive-Aggressive on a Budget

Stoptron

 Baseline of the online learning on a budget algorithms: Fix a budget B and

stop learning when the number of support vectors is equal to B

 Stoptron algorithm (Orabona et al 2008):

Start with S = ∅

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡)𝑖∈𝑆

 Receive a feedback 𝑦𝑡

 if 𝑦𝑦𝑡 < 𝛽 and 𝑆 < 𝐵 then

 𝑆 = 𝑆 ∪ 𝑡

 𝛼𝑡= 1

 endif

endfor

Randomized Perceptron

 Simplest deleting policy: when the budget B is exceeded remove a random

support vector

 Randomized Perceptron algorithm (Cavallanti et al 2007):

Start with S = ∅

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡)𝑖∈𝑆

 Receive a feedback 𝑦𝑡

 if 𝑦𝑦𝑡 < 𝛽

 if 𝑆 = 𝐵

 select randomly 𝑠 ∈ 𝑆, 𝑆 = 𝑆 ∖ 𝑠

 endif

 𝑆 = 𝑆 ∪ *𝑡+ 𝛼𝑡= 1

 endif

endfor

Forgetron

 Deleting policy: Every time a new support vector is added, the weights of

the others are reduced. Thus SVs lose weight with aging and removing the

older SV should assure a minimum impact to the classification function.

 Forgetron algorithm (Dekel et al 2008):

Start with S = ∅

For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = 𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙𝑡)𝑖∈𝑆

 Receive a feedback 𝑦𝑡

 if 𝑦𝑦𝑡 < 𝛽

 if 𝑆 = 𝐵

 𝑆=𝑆∖𝑚𝑖𝑛{𝑆} //the oldest Support vector is removed

 endif

 𝑆 = 𝑆 ∪ *𝑡+ 𝛼𝑡= 1, 𝛼𝑖 = 𝜙𝑡𝛼𝑖 ∀𝑖 ∈ 𝑆 ∖ *𝑡+ //adding a new Sv and shrinking

 endif

endfor

Passive Aggressive Algorithms

on a Budget (1/2)

 When 𝑆 = 𝐵 , to respect the budget B, the PA optimization

problem is modified as follows (Wang et al 2010):

𝑓𝑡+1(𝑥) = argminf
1

2
𝑓(𝑥) − 𝑓𝑡(𝑥)

2
ℋ
+ 𝐶𝜉

Such that: 1 − 𝑦𝑡𝑓𝑡 𝑥𝑡 ≤ 𝜉, 𝜉 ≥ 0 (old constraints)

 𝑓 = 𝑓𝑡 − 𝛼𝑟𝑘(𝑥𝑟 ,∙)
𝑆𝑉 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

+ 𝛽𝑖𝑘 𝑥𝑖 ,∙𝑖∈𝑉

𝑤𝑒𝑖𝑔𝑡 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

(new constraint)

Where V is the set of the indices of support vectors whose

weights can be modified and r is the support vector to be

removed.

Passive Aggressive Algorithms

on a Budget (2/2)

 Given a r to be deleted, the optimization problem can be solved

and the optimal weight modifications 𝛽𝑖 for a given r can be

computed

 A brute force approach is performed in order to chose 𝑟∗ (the best r

is the one that minimizes the objective function) and the

corresponding 𝛽𝑖
∗

 B optimization problems must be solved every time a new SV must be

added (when the budget is reached)

 The computational complexity of a single optimization problem depends on

|V| (i.e. the number of SV whose weights can be modified)

 Three proposal for V:

 BPA-simple: 𝑉={𝑡}

 BPA-projecting: 𝑉=𝑆∪{𝑡}∖{𝑟}

 BPA-Nearest-Neighbor: 𝑉={𝑡}∪𝑁𝑁{𝑟}

Online Learning Algorithm Comparison

 DATASET USED:

 Adult: determine whether a person makes over 50K a year using census
attributes (2 classes, 21K samples, 123 features)

 Banana: An artificial data set where instances belongs to several clusters
with a banana shape (2 classes, 4.3K samples, 2 feature)

 Checkerboard: An artificial dataset where instances of two classes are
distributed like a checkerboard (2 classes, 10K samples, 2 features)

 NCheckerboard: noisy version of checkerboard dataset (15% of the
samples are bad classified)

 Covertype Data Set: Predicting forest cover type from cartographic
variables only (Elevation, Distance to hydrology…) (7 classes, 10K samples,
41 features)

 Phoneme: phoneme recognition (11 classes, 10K samples, 41 features)

 USPD: optical character recognition dataset. (10 classes, 7.3 K samples,
256 features)

Online Learning Algorithm Comparison

 DATASET USED:

 Adult: determine whether a person makes over 50K a year using census
attributes (2 classes, 21K samples, 123 features)

 Banana: An artificial data set where instances belongs to several clusters
with a banana shape (2 classes, 4.3K samples, 2 feature)

 Checkerboard: An artificial dataset where instances of two classes are
distributed like a checkerboard (2 classes, 10K samples, 2 features)

 NCheckerboard: noisy version of checkerboard dataset (15% of the
samples are bad classified)

 Covertype Data Set: Predicting forest cover type from cartographic
variables only (Elevation, Distance to hydrology…) (7 classes, 10K samples,
41 features)

 Phoneme: phoneme recognition (11 classes, 10K samples, 41 features)

 USPD: optical character recognition dataset. (10 classes, 7.3 K samples,
256 features)

Results using a RBF kernel

Summary

 Online learning methods can:

 Incrementally learn from new samples

 Dinamically adapt to problem variations

 Reduce the computational cost of building a new model

 Online learning methods can be used with kernels but
they suffer from the “curse of kernelization”:

 The number of support vectors can grow without bounds

 Several number of budgeted solutions have been
proposed

