Online Machine Learning

Simone Filice filice.simone@gmail.com

University of Roma Tor Vergata

Web Mining e Retrieval 2013/2014

Motivations

- Common ML algorithms simultaneously exploit a whole dataset. This process, referred as batch learning, is not practical when:

 - The dataset is too large to be efficiently exploited: memory and computational problems!
 - The concept we need to learn changes over the time: batch learning provide a static solution that will surely degrade as time goes by

Online Machine Learning

- Incremental Learning Paradigm:
 - Every time a new example is available, the learned hypothesis is updated
- Inherent Appealing Characteristics:
 - The model does not need to be re-generated from scratch when new data is available
 - Capability of tracking a Shifting Concept
 - Faster training process if compared to batch learners (e.g. SVM)

Linear Online Learning Algorithms

Kernelized Online Learning Algorithms

Online Learning on a Budget

Linear Online Learning Algorithms

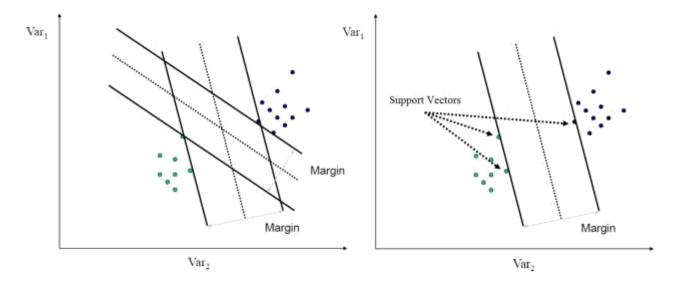
Kernelized Online Learning Algorithms

Online Learning on a Budget

Perceptron

Perceptron is a simple discriminative classifier

- Instances are feature vectors $\mathbf{x}' \in \mathbb{R}^d$ with label $y \in [-1, +1]$
- Classification function is an hyperplane in \mathbb{R}^d : $f(\mathbf{x}') = \mathbf{w}' \cdot \mathbf{x}' + b$



Compact notation: $\boldsymbol{w} = \{b, w'_1, w'_2, ..., w'_d\}, \boldsymbol{x} = \{1, x'_1, x'_2, ..., x'_d\}$

Batch Perceptron

- IDEA : adjust the hyperplane until no training errors are done (input data must be linearly separable)
- Batch perceptron learning procedure:

```
Start with w_1 = 0
do
       errors=false
       For all t=1...T
           Receive a new sample x_t
           Compute y = w_t \cdot x_t
           if y \cdot y_t < \beta_t then w_{t+1} = \gamma_t w_t + \alpha_t y_t x_t with \alpha_t > 0
               errors=true
            else
                   w_{t+1} = w_t
while(errors)
return w_{T+1}
```

Online Learning Perceptron

□ IDEA : adjust the hyperplane after each classification (w_t = weight vector at time t) and never stop learning

Online perceptron learning procedure:

```
Start with w_1 = 0

For all t=1...

Receive a new sample x_t

Compute y = w_t \cdot x_t

Receive a feedback y_t

if y \cdot y_t < \beta_t then w_{t+1} = \gamma_t w_t + \alpha_t y_t x_t with \alpha_t > 0

else w_{t+1} = w_t

endfor
```

Shifting Perceptron

IDEA: weak dependance from the past in order to obtain a tracking ability

□ Shifting Perceptron learning procedure (Cavallanti et al 2006): Start with $w_1 = 0$, k=0 For all t=1... Receive a new sample x_t Compute $y = sign(w_t \cdot x_t)$ Receive a feedback y_t if $y \neq y_t$ then $\lambda_k = \frac{\lambda}{\lambda+k}$ with $\lambda > 0$ $w_{t+1} = (1 - \lambda_k)w_t + \lambda_k y_t x_t$ k=k+1else $w_{t+1} = w_t$ endfor

Online Linear Passive Aggressive (1/3)

- DEA: Every time a new example $\langle X_t, Y_t \rangle$ is available the current classification function is modified as less as possible to correctly classify the new example
- Passive Aggressive learning procedure (Crammer et al 2006): Start with $w_1 = 0$, k=0 For all t=1... Receive a new sample x_t Compute $y = sign(w_t \cdot x_t)$ Receive a feedback y_t Measure a classification loss (divergence between y_t and y) Modify the model to get zero loss, preserving what was learned from previous examples

Online Linear Passive Aggressive (2/3)

Loss measure:

Hinge loss: $l(w; (x_t, y_t)) = max(0; 1 - y_t(w \cdot x_t))$

- Model variation:
 - $\|\boldsymbol{w}_{t+1} \boldsymbol{w}_t\|^2$
- □ Passive Aggressive Optimization Problem: $w_{t+1} = argmin_w \frac{1}{2} ||w - w_t||^2$ such that $l(w; (x_t, y_t)) = 0$
- Closed form solution:

$$w_{t+1} = w_t + \tau_t y_t x_t$$
 where $\tau_t = \frac{l(w_t;(x_t,y_t))}{\|x_t\|^2}$

Online Linear Passive Aggressive (3/3)

The previous formulation is a hard margin version that has a problem:

- a single outlier could produce a high hyperplane shifting, making the model forget the previous learning
- Soft version solution:
 - control the algorithm aggressiveness through a parameter C

PA-I formulation:

$$w_{t+1} = argmin_{w}\frac{1}{2}||w - w_{t}||^{2} + C\xi \text{ s.t. } l(w; (x_{t}, y_{t})) \leq \xi \text{ with } \xi \geq 0$$

$$\implies w_{t+1} = w_{t} + \tau_{t}y_{t}x_{t} \text{ where } \tau_{t} = \min\left\{C; \frac{l(w_{t}; (x_{t}, y_{t}))}{||x_{t}||^{2}}\right\}$$

PA-II model:

$$w_{t+1} = \operatorname{argmin}_{w} \frac{1}{2} \|w - w_t\|^2 + C\xi^2 \text{ s.t. } l(w; (x_t, y_t)) \le \xi \text{ with } \xi \ge 0$$
$$\implies w_{t+1} = w_t + \tau_t y_t x_t \text{ where } \tau_t = \frac{l(w_t; (x_t, y_t))}{\|x_t\|^2 + \frac{1}{2}C}$$

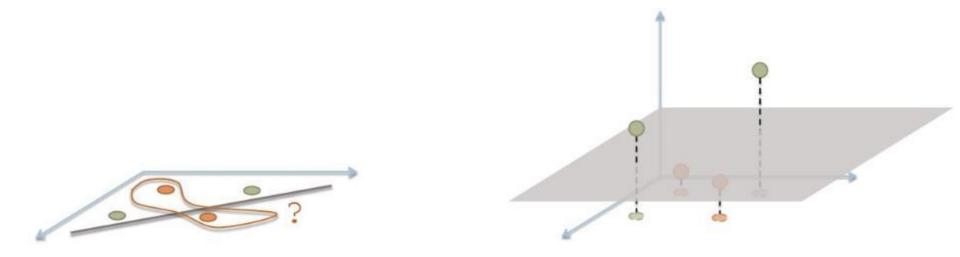
Linear Online Learning Algorithms

Kernelized Online Learning Algorithms

Online Learning on a Budget

Data Separability

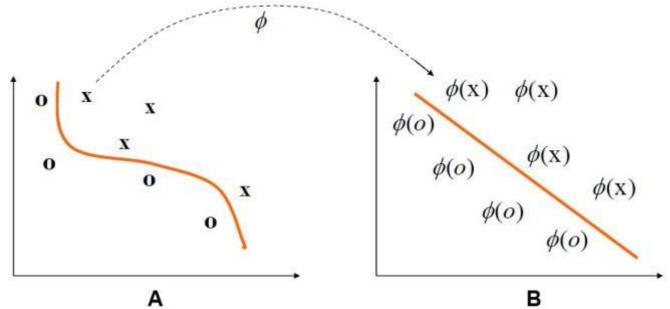
- Training data could not be separable
- Possible solutions:
 - \square Use a more complex classification function \rightarrow Risk of overfitting!
 - Define a new set of feature that makes the problem linearly separable



Project the current examples in a space in which they are separable...

Kernel Methods

Training data can be projected in a space in which they are more easily separable



- Kernel Trick: any kernel function K performs the dot product in the kernel space without explicitly project the input vectors in that space
- Structured data (tree, graph, high order tensor...) can be exploited

Kernelized Passive Aggressive

 In kernelized Online Learning algorithms a new support vector is added every time a misclassification occurs

LINEAR VERSION	KERNELIZED VERSION							
Classification function								
$f_t(\boldsymbol{x}) = \boldsymbol{w}_t^T \boldsymbol{x}$	$f_t(x) = \sum_{i \in S} \alpha_i k(x, x_i)$							
Optimization Problem (PA-I)								
$\boldsymbol{w}_{t+1} = argmin_{\boldsymbol{w}}\frac{1}{2}\ \boldsymbol{w} - \boldsymbol{w}_t\ ^2 + C\xi$	$f_{t+1}(x) = \operatorname{argmin}_{f\frac{1}{2}} \ f(x) - f_t(x)\ _{\mathcal{H}}^2 + C\xi$							
Such that $1 - y_t f_t(x_t) \le \xi, \xi \ge 0$	Such that $1 - y_t f_t(x_t) \le \xi, \xi \ge 0$							
Closed form solution								
$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \tau_t y_t \boldsymbol{x}_t$	$f_{t+1}(x) = f_t(x) + \alpha_t k(x, x_t)$							
where $\tau_t = \min \left\{ C; \frac{\max(0, 1 - y_t f_t(x_t))}{\ x_t\ ^2} \right\}$	where $\alpha_t = y_t \cdot \min\left\{C; \frac{\max(0, 1-y_t f_t(x_t))}{\ x_t\ ^2_{\mathcal{H}}}\right\}$							

Linear Vs Kernel Based Learning

LINEAR VERSION	KERNELIZED VERSION							
Classification function								
explicit hyperlplane in the original space Only linear functions can be learnt	implicit hyperplane in the RKHS Non linear functions can be learnt 							
Example form								
😕 Only feature vectors can be exploited	Structured representations can be exploited							
Computational complexity								
A classification is a single dot product	A classification involves S kernel computations							
Memory usage								
Only a the explicit hyperplane must be stored	8 All the support vectors and their weights must be stored							

Linear Online Learning Algorithms

Kernelized Online Learning Algorithms

Online Learning on a Budget

Learning on a Budget

- In kernelized online learning algorithm the set of support vectors can grow without limits
- Possible solution: Limit the number of support vector, defining a budget B
- This solution has the following advantages:
 - The memory occupation is upperbounded by B support vectors
 - Each classification needs at most B kernel computations
 - In shifting concept tasks, budget algorithms can outperform nonbudget counterparts because they are faster in adapting

Limit the number of Support Vectors

- In order to respect the budget B, different policies can be formulated:
 - Stop learning when budget is exceeded: Stoptron
 - Delete a random support vector: Randomized Perceptron
 - Delete the more redundant support vector: Fixed Budget Conscious Perceptron
 - Delete the oldest support vector: Least recent Budget Perceptron and Forgetron
 - Modify the Support Vectors weights in order to adapt the classification hypothesis to the new sample: Projectron
 - Online Passive-Aggressive on a Budget

- <u>Baseline</u> of the online learning on a budget algorithms: Fix a budget B and stop learning when the number of support vectors is equal to B
- □ Stoptron algorithm (Orabona et al 2008):

```
Start with S = \emptyset

For all t=1...

Receive a new sample x_t

Compute y = \sum_{i \in S} \alpha_i y_i K(x_i, x_t)

Receive a feedback y_t

if yy_t < \beta and |S| < B then

S = S \cup \{t\}

\alpha_t = 1

endif
```

endfor

Randomized Perceptron

- Simplest deleting policy: when the budget B is exceeded remove a random support vector
- Randomized Perceptron algorithm (Cavallanti et al 2007):

```
Start with S = \emptyset
For all t=1...
        Receive a new sample x_t
        Compute y = \sum_{i \in S} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_t)
        Receive a feedback y_t
        if yy_t < \beta
              if |S| = B
                     select randomly s \in S, S = S \setminus \{s\}
              endif
              S = S \cup \{t\} \quad \alpha_t = 1
        endif
endfor
```

Forgetron

- Deleting policy: Every time a new support vector is added, the weights of the others are reduced. Thus SVs lose weight with aging and removing the older SV should assure a minimum impact to the classification function.
- Forgetron algorithm (Dekel et al 2008):

```
Start with S = \emptyset

For all t=1...

Receive a new sample x_t

Compute y = \sum_{i \in S} \alpha_i y_i K(x_i, x_t)

Receive a feedback y_t

if yy_t < \beta

if |S| = B

S=S \setminus min\{S\} //the oldest Support vector is removed

endif

S = S \cup \{t\} \ \alpha_t = 1, \ \alpha_i = \phi_t \alpha_i \ \forall i \in S \setminus \{t\} //adding a new Sv and shrinking

endif
```

endfor

Passive Aggressive Algorithms on a Budget (1/2)

□ When |S| = B, to respect the budget *B*, the PA optimization problem is modified as follows (Wang et al 2010):

$$f_{t+1}(x) = \operatorname{argmin}_{f} \frac{1}{2} \|f(x) - f_{t}(x)\|^{2}_{\mathcal{H}} + C\xi$$

Such that: $1 - y_{t}f_{t}(x_{t}) \leq \xi, \xi \geq 0$ (old constraints)
$$f = f_{t} - \underbrace{\alpha_{r}k(x_{r}, \cdot)}_{SV \ elimination} + \underbrace{\sum_{i \in V} \beta_{i}k(x_{i}, \cdot)}_{weight \ modification}$$
 (new constraint)

Where V is the set of the indices of support vectors whose weights can be modified and r is the support vector to be removed.

Passive Aggressive Algorithms on a Budget (2/2)

- Given a r to be deleted, the optimization problem can be solved and the optimal weight modifications β_i for a given r can be computed
- A brute force approach is performed in order to chose r^* (the best r is the one that minimizes the objective function) and the corresponding β_i^*
 - B optimization problems must be solved every time a new SV must be added (when the budget is reached)
 - The computational complexity of a single optimization problem depends on |V| (i.e. the number of SV whose weights can be modified)
 - Three proposal for V:
 - BPA-simple: $V = \{t\}$
 - BPA-projecting: $V=S\cup\{t\}\setminus\{r\}$
 - BPA-Nearest-Neighbor: $V = \{t\} \cup NN\{r\}$

Online Learning Algorithm Comparison

DATASET USED:

- Adult: determine whether a person makes over 50K a year using census attributes (2 classes, 21K samples, 123 features)
- Banana: An artificial data set where instances belongs to several clusters with a banana shape (2 classes, 4.3K samples, 2 feature)
- Checkerboard: An artificial dataset where instances of two classes are distributed like a checkerboard (2 classes, 10K samples, 2 features)
- NCheckerboard: noisy version of checkerboard dataset (15% of the samples are bad classified)
- Covertype Data Set: Predicting forest cover type from cartographic variables only (Elevation, Distance to hydrology...) (7 classes, 10K samples, 41 features)
- Phoneme: phoneme recognition (11 classes, 10K samples, 41 features)
- USPD: optical character recognition dataset. (10 classes, 7.3 K samples, 256 features)

Online Learning Algorithm Comparison

DATASET USED:

- Adult: determine whether a person makes over 50K a year using census attributes (2 classes, 21K samples, 123 features)
- Banana: An artificial data set where instances belongs to several clusters with a banana shape (2 classes, 4.3K samples, 2 feature)
- Checkerboard: An artificial dataset where instances of two classes are distributed like a checkerboard (2 classes, 10K samples, 2 features)
- NCheckerboard: noisy version of checkerboard dataset (15% of the samples are bad classified)
- Covertype Data Set: Predicting forest cover type from cartographic variables only (Elevation, Distance to hydrology...) (7 classes, 10K samples, 41 features)
- Phoneme: phoneme recognition (11 classes, 10K samples, 41 features)
- USPD: optical character recognition dataset. (10 classes, 7.3 K samples, 256 features)

Results using a RBF kernel

Time	Algs	Adult 21K×123 75%	Banana 4.3K×2 55%	Checkerb 10K×2 50%	NCheckerb 10K×2 50%	Cover 10K×54 51%	Phoneme 10K×41 50%	USPS 7.3K×256 52%	Avg
			Memor	y-unbounded	l online algori	thms			
	Peptrn	80.2 ± 0.2	87.4±1.5	96.3 ± 0.6	83.4 ± 0.7	76.0 ± 0.4	78.9 ± 0.6	94.6 ± 0.1	85.3
	(#SV)	(4.5K)	(0.6K)	(0.5K)	(2.8K)	(2.8K)	(2.4K)	(0.4K)	
O(N)	PA	83.6 ± 0.2	89.1±0.7	97.2 ± 0.1	95.8 ± 1.0	81.6 ± 0.2	82.6 ± 0.9	96.7 ± 0.1	89.5
	(#SV)	(15K)	(2K)	(2.6K)	(5.9K)	(9.9K)	(7.2K)	(4.5K)	
	\mathbf{PA}^{R}	84.1 ± 0.1	89.3 ± 0.7	97.5 ± 0.1	96.2 ± 0.8	82.7 ± 0.3	83.7 ± 0.7	96.7 ± 0.1	90.0
	(#SV)	(4.4K)	(1.5K)	(2.6K)	(3.3K)	(9.8K)	(6.5K)	(4.5K)	
			Budge	ted online al	gorithms (B=	100)			
	Stptrn	76.5 ± 2.0	86.7 ± 2.1	87.3 ± 0.9	75.4 ± 4.3	64.2 ± 1.7	67.6±2.7	89.1±1.2	78.1
	Rand	76.2 ± 3.6	84.1 ± 2.6	85.6 ± 1.2	69.4 ± 2.9	61.3 ± 3.2	65.0 ± 4.4	87.1 ± 0.9	75.5
	Fogtrn	72.8 ± 6.1	82.8 ± 2.4	86.1 ± 1.0	68.2 ± 3.5	60.8 ± 2.7	65.6 ± 1.2	86.2 ± 2.1	74.6
O(B)	PA+Rnd	78.4 ± 1.9	84.9 ± 2.1	83.3 ± 1.4	75.1 ± 3.6	63.1 ± 1.5	64.0 ± 3.9	86.2 ± 1.1	76.4
O(B)	BPA-S	82.4 ± 0.1	89.4 ± 1.3	90.0 ± 0.8	87.4 ± 0.7	68.6 ± 1.9	67.4 ± 3.0	89.6 ± 1.3	82.1
	BPA^R-S	82.4 ± 0.1	89.5±1.7	90.0±1.0	88.2 ± 1.2	69.3 ± 1.8	67.0±3.2	89.3 ± 1.2	82.2
	BPA-NN	$82.8 {\pm} 0.4$	89.6 ± 1.4	94.0 ± 1.2	90.2 ± 1.3	69.1 ± 1.8	74.3 ± 0.7	90.8 ± 0.9	84.4
	BPA ^R -NN	83.1 ± 0.0	89.8 ± 1.1	94.2 ± 0.9	92.3 ± 0.5	70.3 ± 0.8	74.6 ± 0.8	90.8 ± 0.6	85.0
$O(B^2)$	Pjtrn++	80.1 ± 0.1	89.5 ± 1.1	95.4 ± 0.7	88.1 ± 0.7	68.7 ± 1.0	74.6 ± 0.7	89.2 ± 0.7	83.7
$O(B^3)$	BPA-P	83.0 ± 0.2	89.6 ± 1.1	95.4 ± 0.7	91.7 ± 0.8	74.3 ± 1.4	75.2 ± 1.0	92.8 ± 0.7	86.0
$O(B^2)$	$BPA-P^R$	84.0 ± 0.0	89.6 ± 0.8	95.2 ± 0.8	94.1 ± 0.9	75.0 ± 1.0	74.9 ± 0.6	92.6 ± 0.7	86.5
			Budge	ted online al	gorithms (B=	200)			
O(B)	Stptrn	78.7 ± 1.8	85.6 ± 1.5	92.8 ± 1.1	76.0 ± 3.1	65.5 ± 2.3	70.5 ± 2.6	92.3 ± 0.7	80.2
	Rand	76.4 ± 2.8	83.6 ± 2.0	90.3±1.3	74.5 ± 2.1	62.4 ± 2.4	67.3 ± 2.5	89.8 ±1.1	77.8
	Fogtrn	72.9 ± 6.8	85.0 ± 1.3	90.9 ± 1.7	72.2 ± 4.4	62.1 ± 2.8	68.0 ± 2.3	90.3 ± 0.9	77.3
	PA+Rnd	80.1 ± 2.4	86.7 ± 1.9	87.0 ± 1.3	78.3 ± 1.8	64.2 ± 2.7	68.7 ± 4.3	88.8 ± 0.8	79.1
	BPA-S	82.7 ± 0.2	89.5 ± 0.7	93.4 ± 0.5	89.7 ± 0.9	71.7 ± 1.7	71.3 ± 2.3	92.6 ± 0.9	84.4
	BPA^R -S	83.1 ± 0.1	89.5 ± 0.9	$93.9 {\pm} 0.6$	90.8 ± 0.8	71.7 ± 1.2	71.6 ± 2.2	92.1 ± 0.6	84.7
	BPA-NN	$83.1 {\pm} 0.4$	89.6 ± 1.1	95.5 ± 0.4	91.7 ± 1.3	72.7 ± 1.0	75.8 ± 1.0	92.8 ± 0.6	85.9
	BPA ^R -NN	$83.3{\pm}0.4$	89.5 ± 1.4	95.2 ± 0.5	93.3 ± 0.6	$72.7 {\pm} 1.4$	77.2 ± 1.7	94.0 ± 0.4	86.5
$O(B^2)$	Pjtrn++	82.9 ± 0.1	89.5 ± 1.2	95.8 ± 0.5	92.5 ± 1.0	75.1 ± 2.0	75.2 ± 0.6	93.2 ± 0.6	86.3
$O(B^3)$	BPA-P	83.8 ± 0.0	89.7 ± 0.7	95.9 ± 0.6	92.8 ± 0.7	76.0 ± 1.3	78.0 ± 0.3	94.8 ± 0.3	87.3
U(B-)	BPA ^R -P	84.6 ± 0.0	90.3 ± 1.5	95.6 ± 1.2	94.5 ± 1.1	76.3 ± 1.0	77.6 ± 0.6	94.8 ± 0.3	87.7

Summary

- Online learning methods can:
 - Incrementally learn from new samples
 - Dinamically adapt to problem variations
 - Reduce the computational cost of building a new model
- Online learning methods can be used with kernels but they suffer from the "curse of kernelization":
 - The number of support vectors can grow without bounds
- Several number of budgeted solutions have been proposed