Chapter 3: Combining Classitiers

From “Web Data Mining”, by Bing Liu (UIC),
Springer Verlag, 2007
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Outline

= Ensemble methods: Bagging and Boosting

= Fully supervised learning (traditional
classification)

= Partially (semi-) supervised learning (or
classification)

o Learning with a small set of labeled examples
and a large set of unlabeled examples (LU

learning)
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Combining classifiers

= So far, we have only discussed individual
classifiers, 1.e., how to build them and use
them.

= Can we combine multiple classifiers to
produce a better classifier?

= Yes, sometimes

= We discuss two main algorithms:
o Bagging
o Boosting
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Bagging
s Breiman, 1996
m Bootstrap Aggregating = Bagging

o Application of bootstrap sampling
= Given: set D containing m training examples

= Create a sample SJi] of D by drawing m examples at
random with replacement from D

= SJi] of size m: expected to leave out 0.37 of examples
from D
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Bagging (cont...)

= Training
o Create k bootstrap samples S[1], S[2], ..., S[K]

o Build a distinct classifier on each S[i] to produce k
classifiers, using the same learning algorithm.

= Testing

o Classify each new instance by voting of the k
classifiers (equal weights)
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Baggoing Example

Original 1
Training set 1 2
Training set 2 7
Training set 3 3
Training set 4 4
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Bagging (cont ...)

s When does it help?

2 When learner 1s unstable

= Small change to training set causes large change in the
output classifier

= True for decision trees, neural networks; not true for k-
nearest neighbor, naive Bayesian, class association
rules

o Experimentally, bagging can help substantially for
unstable learners, may somewhat degrade results
for stable learners
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Boosting

= A family of methods:
o We only study AdaBoost (Freund & Schapire, 1996)
= Training

o Produce a sequence of classifiers (the same base
learner)

o Each classifier is dependent on the previous one,
and focuses on the previous one’s errors

o Examples that are incorrectly predicted in previous
classifiers are given higher weights

= Testing

o For a test case, the results of the series of
classifiers are combined to determine the final
class of the test case.

CS583, Bing Liu, UIC N8



AdaBoost

Weighted called a weaker classifier
training set \'
(Xq, Y, W,) = Build a classifier h,
(X2, Yo, W)) whose accuracy on
—p y
training set > %%
Xy Yo W) (better than random)

|

Non-negative weights

sumto 1
Change weights
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" AdaBoost algorithm

Algorithm AdaBoost.M1
Input: sequence of re examples {{1: T ) P i —_ y,,t]}
with labels g, € Y = {1..._. k}
weak learning algorithm WeakLearn
integer I specitying number of iterations
Initialize [, {:a:] = 1.,."'m for all z.

Dofort=12_.... T
I. Call WeakLearn, providing it with the distribution Ds.

2. Get back a hypothesis fry - X — ¥,

3. Calculate the error of his: € = Z Diiz).
eufeal s | FEw:

Ife; = 1,.’2* then set T = £ — 1 and abort loop.

Set s = e /(1 —€z).

Update distribution Dy

D) = Dilz) X { e ha(we) = w.

Lh =

Zs I otherwise
where Z; 15 a normalization constant (chosen so that £,
will be a distribution).
Output the final hypothesis:

I
Jr () = arg max E log —
¥ = : o =
.-m ..':l"E Y ,-"J!i:
Eih-gl:J.!_]zs,.
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Bagging, Boostmg and C4.5

C4.5’s mean error sneal

rate over the
10 cross-
validation.

Bagged C4.5
vs. C4.5.

Boosted C4.5
vs. C4.5.

Boosting Vvs.
Baqqing
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heart-h
hepatitis
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labar
letter
lymphography
phoneme
segment
sick
SOnAr
soybean
splice
vehicle
vote
waveform

average

Bagged (4.5 Baosted (4.5 Boasting
vs 045 vs (4.5 vs Bagging
err (%) | exr (%) w-l ratio | err (%) w-1 ratioc | w-l ratio
7.67 625 100 814 | 473 100 617 [ 100  .758 |
22.12 15.29 9-0 872 | 1871 100 710 | 100 314
17.66 15.66 2-8 1113 | 15.22 31 [62 | 61 74
5.28 4.23 5-Q 302 4.09 5-Q J76 | T-2 966
8.55 8.3 6-2 975 4.5 1040 437 | 100 aal
14.92 15.19 -6 1.018 | 18.83 -10 1262 | (10 1240
14.70 14.13 8-2 562 | 15.64 - 1064 | 10 1.1Q7
28.44 25.81 1¢Q S08 | 25.14 28 1025 | G100 1.129
25.39 23.63 9-1 531 | 28.18 ¢-1Q0 1110 | ¢10 1.192
32.48 27.01 1¢-Q 832 | 2355 100 728 | 51 372
22.54 21.52 7-2 538 | 21.39 &0 532 | &4 554
21.53 20.31 8-1 543 | 21.05 o4 S78 | 6 1037
20.35 18.52 3-Q S08 | 17.68 104 J67 | &1 533
A48 45 7-2 923 36 31 J46 | G-1 304
4.80 5.13 2-6 1.069 6.3 10 1361 | 8 1273
15.12 1435 10-0 792 | 13.86 31 723 [ &3 563
11.55 7.51 100 626 4.66 100 <2389 | 100 £21
21.69 20.41 8-2 S4 | 1743 100 204 | 100 354
15.44 18.73 10-0 564 | 1636 1040 342 | 1040 373
3.21 2.74 9-1 353 1.87 1040 433 | 1040 £34
1.3 1.22 7-1 807 1.05 1040 J381 | 61 361
25.62 23.80 7-1 529 | 19.62 104 766 | 100 324
773 7.58 6-3 981 7.16 &2 526 | &1 544
3.91 5.598 g9-1 543 .43 30 519 | 64 974
27.05 25.54¢ 100 543 | 22.72 104 339 | 1040 389
3.06 4.37 3-Q 364 5.29 F6 1046 | 19 1211
27.33 15.77 100 723 | 1853 100 £78 | &2 538
15.66 | 13.11 05 | 1336 347 O3 |
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Does AdaBoost always work?

= The actual performance of boosting depends
on the data and the base learner.

o It requires the base learner to be unstable as
bagging.
= Boosting seems to be susceptible to noise.

2 When the number of outliners is very large, the
emphasis placed on the hard examples can hurt
the performance.
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C4.5 and Boosting
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Boosting over Reuters
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— Sleeping-experts ---3----
2 Rocchio *:
Naive-Bayes B
PrTFIDF --m-
0 ! ,
2 6

Number of Classes

Source: A Short Introduction to Boosting, (Freund&Schapire,99)
http://www.site.uottawa.ca/~stan/csi5387/boost-tut-ppr.pdf
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Chapter 5: Partially-Supervised
Learning
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Learning from a small labeled
set and a large unlabeled set

LU learning
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Unlabeled Data

= One of the bottlenecks of classification is the
labeling of a large set of examples (data
records or text documents).
o Often done manually
o Time consuming

= Can we label only a small number of examples
and make use of a large number of unlabeled
examples to learn?

= Possible in many cases.
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Why unlabeled data are usetul?

= Unlabeled data are usually plentiful, labeled
data are expensive.

= Unlabeled data provide information about the
joint probability distribution over words and
collocations (in texts).

= We will use text classification to study this
problem.
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Labeled Data

Unlabeled Data

Documents containing “homework”
tend to belong to the positive class

DocNo: k ClassLabel: Positive

DocNo: x (ClassLabel: Positive)

DocNo: m ClassLabel: Positive

DocNo: y (ClassLabel: Positive)

DocNo: n ClassLabel: Positive

DocNo: z ClasslLabel: Positive
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How to use unlabeled data

= One way is to use the EM algorithm
o EM: Expectation Maximization

= The EM algorithm is a popular iterative algorithm for
maximum likelihood estimation in problems with
missing data.

= The EM algorithm consists of two steps,
o Expectation step, i.e., filling in the missing data

o Maximization step — calculate a new maximum a posteriori
estimate for the parameters.
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Incorporating unlabeled Data with EM
(Nigam et al, 2000)

= Basic EM
= Augmented EM with weighted unlabeled data

= Augmented EM with multiple mixture
components per class
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Algorithm Outline

1. Train a classifier with only the labeled
documents.

2. Use It to probabilistically classify the
unlabeled documents.

3. Use ALL the documents to train a new
classifier.

4. lterate steps 2 and 3 to convergence.
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‘ Basic Algorithm

Algorithm EM(L. U)
] Leamn an imitial naive Bayesian classifier f from only the labeled set L (us-
ing Equations (27) and (28) m Chap. 3):

2 repeat
/I E-Step
3 for each example d; in U do
4 Using the current classifier f to compute Pr(c|d;) (using Equation
(29) 1 Chap. 3).
b end
// M-Step
6 learn a new naive Bayesian classifier f from L v U by computing Pr(c;)

and Pr(w¢;) (using Equations (27) and (28) i Chap. 3).
7 until the classifier parameters stabilize
Return the classifier / from the last iteration.

Fig. 5.1. The EM algorithm with naive Bayesian classification
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Basic EM: E Step & M Step

- Pr(c, |(:D)Pr{d‘,. |c?,_.;_(:))
Pr(c, |;6) = e (29)
- Pr(c, |é)}H:"1P1'(Wd,¢ |c?j;(§)}

4 ~
Z _ Pi(e, |®)H Pr(w, ;1¢,:0)

E Step:

. . A+ S 7N, Pr(c
M Step: Pr(w, |c,.0)= i Z re (27)
A+ I_INHPI({’ d)
Pr(c, | d,
Pr(c, |@)_Z (| ). (28)
| D]
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The problem

= It has been shown that the EM algorithm in Fig. 5.1
works well if the

o The two mixture model assumptions for a particular data
set are true.

= The two mixture model assumptions, however, can
cause major problems when they do not hold. In
many real-life situations, they may be violated.

= [tis often the case that a class (or topic) contains a
number of sub-classes (or sub-topics).

o For example, the class Sports may contain documents
about different sub-classes of sports, Baseball, Basketball,
Tennis, and Softball.

= Some methods to deal with the problem.

CS583, Bing Liu, UIC



Weighting the influence of unlabeled
examples by factor u

New M step:
D

A+ Zf=lﬂ(5)sz Pr(c; | d;) (1)

Pr(w, |E‘J,-) = T — R :

2V 1+) > AN, Pr(c; |d,)

where
u ifd eU

A = i 2
D211 ifd el 2

The prior probability also needs to be weighted.

CS583, Bing Liu, UIC 35



Experimental Evaluation

= Newsgroup postings
o 20 newsgroups, 1000/group

= Web page classification

o student, faculty, course, project
0 4199 web pages

= Reuters newswire articles
0 12,902 articles
o 10 main topic categories
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‘ 20 Newsgroups
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‘ 20 Newsgroups
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Another approach: Co-training

= Again, learning with a small labeled set and a large
unlabeled set.

= The attributes describing each example or instance
can be partitioned into two subsets. Each of them is
sufficient for learning the target function.

o E.g., hyperlinks and page contents in Web page
classification.

= Two classifiers can be learned from the same data.
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Co-training Algorithm
[Blum and Mitchell, 1998]

Given: labeled data L,
unlabeled data U
Loop:
Train hl (e.g., hyperlink classifier) using L
Train h2 (e.g., page classifier) using L
Allow h1 to label p positive, n negative examples from U
Allow h2 to label p positive, n negative examples from U

Add these most confident self-labeled examples to L
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Co-training: Experimental Results

= begin with 12 labeled web pages (academic course)
= provide 1,000 additional unlabeled web pages

= average error: learning from labeled data 11.1%;

= average error: co-training 5.0%

Page-base Link-based Combined
classifier classifier classifier
Supervised 12.9 12.4 11.1
training
Co-training 6.2 11.6 5.0
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Co-training: Experimental Results

= begin with 12 labeled web pages (academic course)
= provide 1,000 additional unlabeled web pages
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= average error: co-training 5.0%

Page-base Link-based Combined
classifier classifier classifier
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training
Co-training 6.2 11.6 5.0
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When the generative model is not
suitable

= Multiple Mixture Components per Class (M-EM). E.qg.,
a class --- a number of sub-topics or clusters.

= Results of an example using 20 newsgroup data
2 40 labeled; 2360 unlabeled; 1600 test
o Accuracy

= NB 68%
= EM 59.6%

= Solutions

2 M-EM (Nigam et al, 2000): Cross-validation on the training
data to determine the number of components.

o Partitioned-EM (Cong, et al, 2004): using hierarchical
clustering. It does significantly better than M-EM.
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Summary

= Using unlabeled data can improve the accuracy of
classifier when the data fits the generative model.

= Partitioned EM and the EM classifier based on
multiple mixture components model (M-EM) are more
suitable for real data when multiple mixture
components are in one class.

= Co-training is another effective technigue when
redundantly sufficient features are available.

CS583, Bing Liu, UIC BB



Further Topics

= Learning from Positive and Unlabeled Example (PU).

= Graph-based methods for Semi-supervised learning
o Labeled and unlabeled examples are nodes in a graph

o mincut: See the labeling of Us as a graph partition process
(polynomial time)

o Spectral Graph transducer: map the graph partition into a
minimization problem and apply eigenvector analysis to find
the best solutions. Parameters: balancing factors between P
and U instances

= ICML ‘07 Tutorial (by Jerry Zhu) at:

http://pages.cs.wisc.edu/~jerryzhu/icml07tutorial . html
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