Chapter 3: Combining Classifiers

From "Web Data Mining", by Bing Liu (UIC), Springer Verlag, 2007

CS583, Bing Liu, UIC

Outline

- Ensemble methods: Bagging and Boosting
- Fully supervised learning (traditional classification)
- Partially (semi-) supervised learning (or classification)
 - Learning with a small set of labeled examples and a large set of unlabeled examples (LU learning)

Combining classifiers

- So far, we have only discussed individual classifiers, i.e., how to build them and use them.
- Can we combine multiple classifiers to produce a better classifier?
- Yes, sometimes
- We discuss two main algorithms:
 - Bagging
 - Boosting

- Breiman, 1996
- Bootstrap <u>Agg</u>regating = Bagging
 - Application of bootstrap sampling
 - Given: set *D* containing *m* training examples
 - Create a sample S[i] of D by drawing m examples at random with replacement from D
 - S[i] of size m: expected to leave out 0.37 of examples from D

Bagging (cont...)

Training

- Create k bootstrap samples S[1], S[2], ..., S[k]
- Build a distinct classifier on each S[*i*] to produce k classifiers, using the same learning algorithm.

Testing

 Classify each new instance by voting of the k classifiers (equal weights)

Bagging Example

Original	1	2	3	4	5	6	7	8
Training set 1	2	7	8	3	7	6	3	1
Training set 2	7	8	5	6	4	2	7	1
Training set 3	3	6	2	7	5	6	2	2
Training set 4	4	5	1	4	6	4	3	8

Bagging (cont ...)

When does it help?

- When learner is <u>unstable</u>
 - Small change to training set causes large change in the output classifier
 - True for decision trees, neural networks; not true for knearest neighbor, naïve Bayesian, class association rules
- Experimentally, bagging can help substantially for unstable learners, may somewhat degrade results for stable learners

Boosting

- A family of methods:
 - We only study AdaBoost (Freund & Schapire, 1996)

Training

- Produce a sequence of classifiers (the same base learner)
- Each classifier is dependent on the previous one, and focuses on the previous one's errors
- Examples that are incorrectly predicted in previous classifiers are given higher weights

Testing

For a test case, the results of the series of classifiers are combined to determine the final class of the test case.

AdaBoost

Weighted training set

 (x_1, y_1, W_1) (x_2, y_2, W_2) (x_n, y_n, W_n) 1Non-negative w

a weaker classifier
 Build a classifier *h_t* whose accuracy on training set > ½ (better than random)

Non-negative weights sum to 1 Change weights

AdaBoost algorithm

Algorithm AdaBoost.M1

Input: sequence of m examples $\langle (x_1, y_1), \dots, (x_m, y_m) \rangle$ with labels $y_i \in Y = \{1, \dots, k\}$ weak learning algorithm WeakLearn integer T specifying number of iterations

Initialize $D_1(i) = 1/m$ for all *i*. Do for t = 1, 2, ..., T:

- 1. Call WeakLearn, providing it with the distribution D_t.
- 2. Get back a hypothesis $h_t : X \to Y$.
- 3. Calculate the error of h_t : $\epsilon_t = \sum_{i:h_t(x_i) \neq \eta_i} D_t(i)$.

If $\epsilon_t > 1/2$, then set T = t - 1 and abort loop.

- 4. Set $\beta_t = \epsilon_t / (1 \epsilon_t)$.
- 5. Update distribution D_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & \text{if } h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$$

where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$h_{fin}(x) = \arg \max_{y \in Y} \sum_{t:h_t(x)=y} \log \frac{1}{\beta_t}.$$

CS583, Bing Liu, UIC

Bagging, Boosting and C4.5

		C4.5	Bagged C4.5		Boosted C4.5			Boosting		
		500000000	vs C4.5		vs C4.5			vs Bagging		
	100000000000000000000000000000000000000	егт (%)	егт (%)	w-1	ratio	err (%)	w-1	ratio	w-1	ratio
<u>C4.5</u> 's mean error	anneal	7.67	6.25	10-0	.814	4.73	10-0	.617	10-0	.758
rate over the	andiology	22.12	19.29	9-0	.872	15.71	10-0	.710	10-0	.814
	anto	17.66	19.66	2-8	1.113	15.22	9-1	.862	9-1	.774
10 cross-	breast-w	5.28	4.23	9-0	.802	4.09	9-0	.775	7-2	.966
validation	chess	8.55	8.33	6-2	.975	4.59	10-0	.537	10-0	.551
vanuation.	colic	14.92	15.19	0-6	1.018	18.83	0-10	1.262	0-10	1.240
	credit-a	14.70	14.13	8-2	.962	15.64	1-9	1.064	0-10	1.107
	credit-g	28.44	25.81	10-0	.908	29.14	2-8	1.025	0-10	1.129
	diabetes	25.39	23.63	9-1	.931	28.18	0-10	1.110	0-10	1.192
Bagged C4 5	glass	32.48	27.01	10-0	.832	23.55	10-0	.725	9-1	.872
	heart-c	22.94	21.52	7-2	.938	21.39	8-0	.932	5-4	.994
vs. C4.5.	heart-h	21.53	20.31	8-1	.943	21.05	5-4	.978	3-6	1.037
	hepatitis	20.39	18.52	9-0	.908	17.68	10-0	.867	6-1	.955
	hypo	.48	.45	7-2	.928	.36	9-1	.746	9-1	.804
	iris	4.80	5.13	2-6	1.069	6.53	0-10	1.361	0-8	1.273
	labor	19.12	14.39	10-0	.752	13.86	9-1	.725	5-3	.963
Boosted C4.5	letter	11.99	7.51	10-0	.626	4.66	10-0	.389	10-0	.621
vs C45	lymphography	21.69	20.41	8-2	.941	17.43	10-0	.804	10-0	.854
10: 04:0	phoneme	19.44	18.73	10-0	.964	16.36	10-0	.842	10-0	.873
	segment	3.21	2.74	9-1	.853	1.87	10-0	.583	10-0	.684
	sick	1.34	1.22	7-1	.907	1.05	10-0	.781	9-1	.861
	SOLAT	25.62	23.80	7-1	.929	19.62	10-0	.766	10-0	.824
Boosting vs.	soybean	7.73	7.58	6-3	.981	7.16	8-2	.926	8-1	.944
	splice	5.91	5.58	9-1	.943	5.43	9-0	.919	6-4	.974
Bagging	vehicle	27.09	25.54	10-0	.943	22.72	10-0	.839	10-0	.889
	vote	5.06	4.37	9-0	.864	5.29	3-6	1.046	1-9	1.211
	waveform	27.33	19.77	10-0	.723	18.53	10-0	.678	8-2	.938
	average	15.66	14.11	0.410000	.905	13.36		.847		.930

Does AdaBoost always work?

- The actual performance of boosting depends on the data and the base learner.
 - It requires the base learner to be unstable as bagging.
- Boosting seems to be susceptible to noise.
 - When the number of outliners is very large, the emphasis placed on the hard examples can hurt the performance.

C4.5 and Boosting

Boosting over Reuters

Source: A Short Introduction to Boosting, (Freund&Schapire,99) http://www.site.uottawa.ca/~stan/csi5387/boost-tut-ppr.pdf

Chapter 5: Partially-Supervised Learning

Learning from a small labeled set and a large unlabeled set

LU learning

CS583, Bing Liu, UIC

Unlabeled Data

- One of the bottlenecks of classification is the labeling of a large set of examples (data records or text documents).
 - Often done manually
 - Time consuming
- Can we label only a small number of examples and make use of a large number of unlabeled examples to learn?
- Possible in many cases.

Why unlabeled data are useful?

- Unlabeled data are usually plentiful, labeled data are expensive.
- Unlabeled data provide information about the joint probability distribution over words and collocations (in texts).
- We will use text classification to study this problem.

Labeled Data

Unlabeled Data

Documents containing "homework" tend to belong to the positive class

DocNo: k ClassLabel: Positive

.....homework....

. . .

DocNo: m ClassLabel: Positivehomework....

. . .

DocNo: n ClassLabel: Positivehomework....

. . .

DocNo: x (ClassLabel: Positive)

.....homework.... ...lecture....

DocNo: y (ClassLabel: Positive)lecture.....homework....

. . .

DocNo: z ClassLabel: Positive

.....homework....

.....lecture....

How to use unlabeled data

- One way is to use the EM algorithm
 - EM: Expectation Maximization
- The EM algorithm is a popular iterative algorithm for maximum likelihood estimation in problems with missing data.
- The EM algorithm consists of two steps,
 - *Expectation* step, i.e., filling in the missing data
 - Maximization step calculate a new maximum a posteriori estimate for the parameters.

Incorporating unlabeled Data with EM (Nigam et al, 2000)

- Basic EM
- Augmented EM with weighted unlabeled data
- Augmented EM with multiple mixture components per class

Algorithm Outline

- 1. Train a classifier with only the labeled documents.
- 2. Use it to probabilistically classify the unlabeled documents.
- 3. Use ALL the documents to train a new classifier.
- 4. Iterate steps 2 and 3 to convergence.

Basic Algorithm

Algorithm EM(L, U)

- Learn an initial naïve Bayesian classifier *f* from only the labeled set *L* (using Equations (27) and (28) in Chap. 3);
- 2 repeat
 - // E-Step
- 3 for each example d_i in U do
- 4 Using the current classifier f to compute Pr(c_j|d_i) (using Equation (29) in Chap. 3).
- 5 end
 - // M-Step
- 6 learn a new naïve Bayesian classifier f from $L \cup U$ by computing $Pr(c_j)$ and $Pr(w_t|c_j)$ (using Equations (27) and (28) in Chap. 3).

7 **until** the classifier parameters stabilize

Return the classifier f from the last iteration.

Fig. 5.1. The EM algorithm with naïve Bayesian classification

Basic EM: E Step & M Step

$$\begin{array}{l} \operatorname{Pr}(c_{j} \mid d_{i}; \hat{\Theta}) = \displaystyle \frac{\operatorname{Pr}(c_{j} \mid \hat{\Theta}) \operatorname{Pr}(d_{i} \mid c_{j}; \hat{\Theta})}{\operatorname{Pr}(d_{i} \mid \hat{\Theta})} \\ = \displaystyle \frac{\operatorname{Pr}(c_{j} \mid \hat{\Theta}) \prod_{k=1}^{|d_{i}|} \operatorname{Pr}(w_{d_{i},k} \mid c_{j}; \hat{\Theta})}{\sum_{r=1}^{|C|} \operatorname{Pr}(c_{r} \mid \hat{\Theta}) \prod_{k=1}^{|d_{i}|} \operatorname{Pr}(w_{d_{i},k} \mid c_{r}; \hat{\Theta})}, \end{array}$$

$$(29)$$

M Step:
$$\Pr(w_t \mid c_j; \hat{\Theta}) = \frac{\lambda + \sum_{i=1}^{|D|} N_{ti} \Pr(c_j \mid d_i)}{\lambda \mid V \mid + \sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{si} \Pr(c_j \mid d_i)}.$$

$$\Pr(c_j \mid \hat{\Theta}) = \frac{\sum_{i=1}^{|D|} \Pr(c_j \mid d_i)}{\mid D \mid}.$$
(27)

The problem

- It has been shown that the EM algorithm in Fig. 5.1 works well if the
 - The two mixture model assumptions for a particular data set are true.
- The two mixture model assumptions, however, can cause major problems when they do not hold. In many real-life situations, they may be violated.
- It is often the case that a class (or topic) contains a number of sub-classes (or sub-topics).
 - For example, the class Sports may contain documents about different sub-classes of sports, Baseball, Basketball, Tennis, and Softball.
- Some methods to deal with the problem.

Weighting the influence of unlabeled examples by factor μ

New M step:

$$\Pr(w_t \mid c_j) = \frac{\lambda + \sum_{i=1}^{|D|} \Lambda(i) N_{ti} \Pr(c_j \mid d_i)}{\lambda \mid V \mid + \sum_{s=1}^{|V|} \sum_{i=1}^{|D|} \Lambda(i) N_{ti} \Pr(c_j \mid d_i)},$$
(1)

where

$$\Lambda(i) = \begin{cases} \mu & \text{if } d_i \in U \\ 1 & \text{if } d_i \in L. \end{cases}$$
(2)

The prior probability also needs to be weighted.

Experimental Evaluation

- Newsgroup postings
 - 20 newsgroups, 1000/group
- Web page classification
 - student, faculty, course, project
 - 4199 web pages
- Reuters newswire articles
 - 12,902 articles
 - 10 main topic categories

20 Newsgroups

20 Newsgroups

Another approach: Co-training

- Again, learning with a small labeled set and a large unlabeled set.
- The attributes describing each example or instance can be partitioned into two subsets. Each of them is sufficient for learning the target function.
 - E.g., hyperlinks and page contents in Web page classification.
- Two classifiers can be learned from the same data.

Co-training Algorithm [Blum and Mitchell, 1998]

Given: labeled data L,

unlabeled data U

Loop:

Train h1 (e.g., hyperlink classifier) using L Train h2 (e.g., page classifier) using L

Allow h1 to label p positive, n negative examples from U

Allow h^2 to label p positive, n negative examples from U

Add these most confident self-labeled examples to L

Co-training: Experimental Results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: co-training 5.0%

	Page-base classifier	Link-based classifier	Combined classifier
Supervised training	12.9	12.4	11.1
Co-training	6.2	11.6	5.0

Co-training: Experimental Results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: co-training 5.0%

	Page-base classifier	Link-based classifier	Combined classifier
Supervised training	12.9	12.4	11.1
Co-training	6.2	11.6	5.0

When the generative model is not suitable

- Multiple Mixture Components per Class (M-EM). E.g., a class --- a number of sub-topics or clusters.
- Results of an example using 20 newsgroup data
 - 40 labeled; 2360 unlabeled; 1600 test
 - Accuracy
 - **NB** 68%
 - EM 59.6%

Solutions

- M-EM (Nigam et al, 2000): Cross-validation on the training data to determine the number of components.
- Partitioned-EM (Cong, et al, 2004): using hierarchical clustering. It does significantly better than M-EM.

Summary

- Using unlabeled data can improve the accuracy of classifier when the data fits the generative model.
- Partitioned EM and the EM classifier based on multiple mixture components model (M-EM) are more suitable for real data when multiple mixture components are in one class.
- Co-training is another effective technique when redundantly sufficient features are available.

Further Topics

- Learning from Positive and Unlabeled Example (PU).
- Graph-based methods for Semi-supervised learning
 - Labeled and unlabeled examples are nodes in a graph
 - mincut: See the labeling of Us as a graph partition process (polynomial time)
 - Spectral Graph transducer: map the graph partition into a minimization problem and apply eigenvector analysis to find the best solutions. Parameters: balancing factors between P and U instances
- ICML '07 Tutorial (by Jerry Zhu) at: http://pages.cs.wisc.edu/~jerryzhu/icml07tutorial.html