Stochastic models for learning language models

R. Basili

Corso di Web Mining e Retrieval a.a. 2013-14

April 23, 2015

《曰》 《聞》 《臣》 《臣》 三臣

Overview

Outline

Outline

Overview

Probability and Language Modeling

- Motivations
- Probability Models for Natural Language
- Introduction to Markov Models
 - Hidden Markov Models
 - Advantages
 - HMM and POS tagging
 - Forward Algorithm and Viterbi
 - About Parameter Estimation for POS

References

Motivations

Quantitative Models of language structures

"" "

Linguistic structures are example of structures where syntagmatic information is crucial for machine learning. The most used modeling here are grammars:

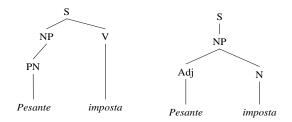
1.	S	->	NP V
2.	S	->	NP
3.	NP	->	PN
4.	NP	->	Ν
5.	NP	->	Adj N
6.	Ν	->	"imposta
7.	V	->	"imposta
8.	Adj	->	"pesante
9.	ΡN	->	"Pesante

Introduction to Markov Models

References Exercises

Motivations

The role of Quantitative Approaches



Motivations

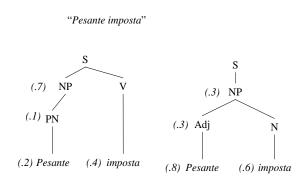
The role of Quantitative Approaches

Weighted grammars are models of (possibly limited) *degrees of grammaticality*. They are meant to deal with a large range of ambiguity problems:

1.	S	->	NP V	.7
2.	S	->	NP	.3
3.	NP	->	PN	.1
4.	NP	->	Ν	.6
5.	NP	->	Adj N	.3
6.	Ν	->	imposta	.6
7.	V	->	imposta	.4
8.	Adj	->	Pesante	.8
9.	ΡN	->	Pesante	.2

Motivations

Linguistic Ambiguity and weighted grammars



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Motivations

Linguistic Ambiguity and weighted grammars

Weighted grammars allow to compute the degree of grammaticality of different ambiguous derivations, thus supporting disambiguation:

Motivations

Linguistic Ambiguity and weighted grammars

Weighted grammars allow to compute the degree of grammaticality of different ambiguous derivations, thus supporting disambiguation:

1.	S	->	NP V	.7
2.	S	->	NP	.3
3.	NP	->	PN	.1
4.	NP	->	N	.6
5.	NP	->	Adj N	.3
6.	Ν	->	imposta	.6
7.	V	->	imposta	.4
8.	Adj	->	Pesante	.8
9.	ΡN	->	Pesante	.2

. . .

 $prob(((Pesante)_{PN} (imposta)_V)_S) = (.7 \cdot .1 \cdot .2 \cdot .4) = 0.0084$

・ロト・「聞・・」 単・ 「聞・・」 目・

Motivations

Linguistic Ambiguity and weighted grammars

Weighted grammars allow to compute the degree of grammaticality of different ambiguous derivations, thus supporting disambiguation:

1.	S	->	NP V	.7
2.	S	->	NP	.3
3.	NP	->	PN	.1
4.	NP	->	N	.6
5.	NP	->	Adj N	.3
6.	Ν	->	imposta	.6
7.	V	->	imposta	.4
8.	Adj	->	Pesante	.8
9.	PN	->	Pesante	.2

• • •

 $prob(((Pesante)_{PN} (imposta)_V)_S) = (.7 \cdot .1 \cdot .2 \cdot .4) = 0.0084$ $prob(((Pesante)_{Adj} (imposta)_N)_S) = (.3 \cdot .3 \cdot .8 \cdot .6) = 0.0432$ Overview

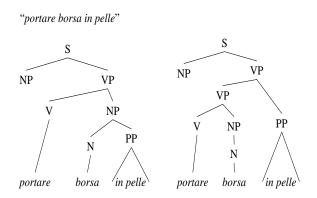
Probability and Language Modeling

Introduction to Markov Models

References Exercises

Motivations

Syntactic Disambiguation

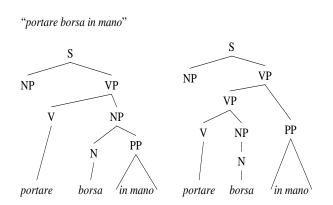


Derivation Trees for a structurally ambiguous sentence

Introduction to Markov Models

Motivations

Syntactic Disambiguation (cont'd)

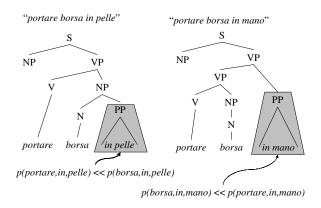


Derivation Trees for a second structurally ambiguous sentence.

Introduction to Markov Models

Motivations

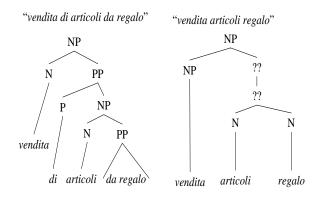
Structural Disambiguation (cont'd)



Disambiguation of structural ambiguity.

Motivations

Tolerance to errors



An example of ungrammatical but meaningful sentence

Overview

Probability and Language Modeling

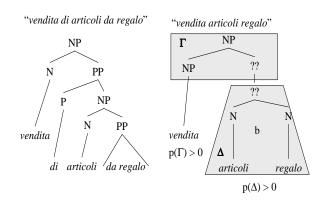
Introduction to Markov Models

References Exercises

4 12 14

Motivations

Error tolerance (cont'd)



Modeling of ungrammatical phenomena

Probability Models for Natural Language

Probability and Language Modeling

• Aims

- to extend grammatical (i.e. rule-based) models with predictive and disambiguation capabilities
- to offer theoretically well founded inductive methods
- to develop (not merely) quantitative models of linguistic phenomena

Probability Models for Natural Language

Probability and Language Modeling

• Aims

- to extend grammatical (i.e. rule-based) models with predictive and disambiguation capabilities
- to offer theoretically well founded inductive methods
- to develop (not merely) quantitative models of linguistic phenomena
- Methods and Resources:
 - Methematical theories (e.g. Markov models)
 - Systematic testing/evaluation frameworks
 - Extended repositories of examples of *language in use*
 - Traditional linguistic resources (e.g. "models" like dictionaries)

- コン・4回シュービン・4回シューレー

Probability Models for Natural Language

Probability and Language Modeling

• Signals are abstracted via symbols that are not known in advance

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Probability Models for Natural Language

- Signals are abstracted via symbols that are not known in advance
- Emitted signals belong to an alphabet A

Probability Models for Natural Language

- Signals are abstracted via symbols that are not known in advance
- Emitted signals belong to an alphabet A
- Time is discrete: each time point corresponds to an emitted signal

Probability Models for Natural Language

- Signals are abstracted via symbols that are not known in advance
- Emitted signals belong to an alphabet A
- Time is discrete: each time point corresponds to an emitted signal
- Sequences of symbols (w_1, \ldots, w_n) correspond to sequences of time points $(1, \ldots, n)$

Probability Models for Natural Language

- Signals are abstracted via symbols that are not known in advance
- Emitted signals belong to an alphabet A
- Time is discrete: each time point corresponds to an emitted signal
- Sequences of symbols (w_1, \ldots, w_n) correspond to sequences of time points $(1, \ldots, n)$

$$\boxed{)} \\ \boxed{)} \\ \dots, \\ \boxed{w_{i8}}, \\ w_{i7}, \\ w_{i6}, \\ w_{i5}, \\ w_{i4}, \\ w_{i3}, \\ w_{i2}, \\ w_{i1} \\ \end{aligned}$$

Introduction to Markov Models

References Exercises

Probability Models for Natural Language

Probability and Language Modeling

A generative language model

A random variable X can be introduced so that

Introduction to Markov Models

References Exercises

▲□▶▲□▶▲□▶▲□▶ □ のQで

Probability Models for Natural Language

Probability and Language Modeling

A generative language model

A random variable X can be introduced so that

- It assumes values w_i in the alfabet A
- Probability is used to describe the uncertainty on the emitted signal

$$p(X = w_i) \qquad w_i \in A$$

Probability Models for Natural Language

- A random variable *X* can be introduced so that
 - X assumes values in A at each step i, i.e. $X_i = w_j$
 - probability is $p(X_i = w_j)$

Probability Models for Natural Language

Probability and Language Modeling

- A random variable *X* can be introduced so that
 - X assumes values in A at each step i, i.e. $X_i = w_j$
 - probability is $p(X_i = w_j)$
- Constraints: the total probability is for each step:

$$\sum_{j} p(X_i = w_j) = 1 \qquad \forall i$$

$$\boxed{} \\ \boxed{} \\ \hline{} \\ \hline{} \\ \hline{} \\ \hline{\phantom$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

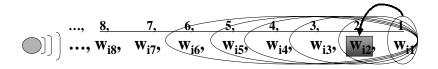
Probability Models for Natural Language

- Notice that time points can be represented as **states** of the emitting source
- An output *w_i* can be considered as emitted in a *given state X_i* by the source, and *given a certain* **history**

Probability Models for Natural Language

Probability and Language Modeling

- Notice that time points can be represented as **states** of the emitting source
- An output *w_i* can be considered as emitted in a *given state X_i* by the source, and *given a certain* **history**



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Introduction to Markov Models

References Exercises

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Probability Models for Natural Language

Probability and Language Modeling

• Formally:

•
$$P(X_i = w_i, X_{i-1} = w_{i-1}, \dots, X_1 = w_1) =$$

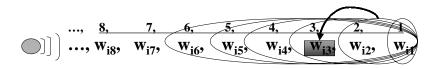
Probability Models for Natural Language

Probability and Language Modeling

• Formally:

•
$$P(X_i = w_i, X_{i-1} = w_{i-1}, \dots, X_1 = w_1) =$$

= $P(X_i = w_i | X_{i-1} = w_{i-1}, X_{i-2} = w_{i-2}, \dots, X_1 = w_1)$
 $P(X_{i-1} = w_{i-1}, X_{i-2} = w_{i-2}, \dots, X_1 = w_1)$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲○

Introduction to Markov Models

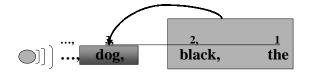
References Exercises

Probability Models for Natural Language

Probability and Language Modeling

What's in a state

n-1 preceding words \Rightarrow *n*-gram language models



p(the, black, dog) = p(dog|the, black)

Introduction to Markov Models

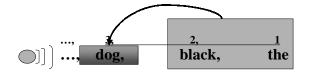
References Exercises

Probability Models for Natural Language

Probability and Language Modeling

What's in a state

n-1 preceding words \Rightarrow *n*-gram language models



p(the, black, dog) = p(dog|the, black)p(black|the)p(the)

Introduction to Markov Models

References Exercises

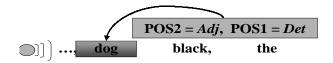
▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Probability Models for Natural Language

Probability and Language Modeling

What's in a state

preceding POS tags \Rightarrow stochastic taggers



Introduction to Markov Models

References Exercises

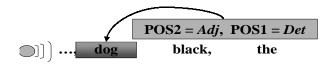
▲□▶▲□▶▲□▶▲□▶ □ のQで

Probability Models for Natural Language

Probability and Language Modeling

What's in a state

preceding POS tags \Rightarrow stochastic taggers



 $p(the_{DT}, black_{ADJ}, dog_N) = p(dog_N | the_{DT}, black_{ADJ}) \dots$

Introduction to Markov Models

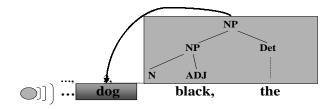
References Exercises

Probability Models for Natural Language

Probability and Language Modeling

What's in a state

preceding *parses* \Rightarrow **stochastic grammars**



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction to Markov Models

References Exercises

イロト 不得 とうほう イヨン

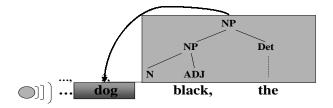
э.

Probability Models for Natural Language

Probability and Language Modeling

What's in a state

preceding *parses* \Rightarrow **stochastic grammars**



 $\overline{p((the_{Det}, (black_{ADJ}, dog_N)_{NP})_{NP})} =$

Introduction to Markov Models

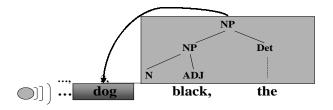
References Exercises

Probability Models for Natural Language

Probability and Language Modeling

What's in a state

preceding *parses* \Rightarrow **stochastic grammars**



 $p((the_{Det}, (black_{ADJ}, dog_N)_{NP})_{NP}) = p(dog_N|((the_{Det}), (black_{ADJ}, _)))...$

◆□▶ ◆圖▶ ◆ 圖▶ ◆ 圖▶ ─ 圖 = • • • • • •

Probability Models for Natural Language

Probability and Language Modeling (2)

- Expressivity
 - The predictivity of a statistical grammar can provide a very good explanatory model of the source language (string)
 - Acquiring information from data has a clear definition, with simple and sound induction algorithms
 - Simple but richer descriptions (e.g. grammatical preferences)
 - Optimal Coverage (i.e. better on *more important phenomena*)

Probability Models for Natural Language

Probability and Language Modeling (2)

- Expressivity
 - The predictivity of a statistical grammar can provide a very good explanatory model of the source language (string)
 - Acquiring information from data has a clear definition, with simple and sound induction algorithms
 - Simple but richer descriptions (e.g. grammatical preferences)
 - Optimal Coverage (i.e. better on *more important phenomena*)
- Integrating Linguistic Description
 - Start with poor assumptions and approximate as much as possible *what is known* (early evaluate only performance)
 - *Bias* the statistical model since the beginning and check the results on a *linguistic ground*

Introduction to Markov Models

References Exercises

▲□▶▲□▶▲□▶▲□▶ □ のQで

Probability Models for Natural Language

Probability and Language Modeling (3)

Advantages: Performances

• Faster Processing

Introduction to Markov Models

References Exercises

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Probability Models for Natural Language

Probability and Language Modeling (3)

Advantages: Performances

- Faster Processing
- Faster Design

References Exercises

▲□▶▲□▶▲□▶▲□▶ □ のQで

Probability Models for Natural Language

Probability and Language Modeling (3)

Advantages: Performances

- Faster Processing
- Faster Design
- Linguistic Adequacy
 - Acceptance
 - Psychological Plausibility
 - Explanatory power

Introduction to Markov Models

References Exercises

▲□▶▲□▶▲□▶▲□▶ □ のQで

Probability Models for Natural Language

Probability and Language Modeling (3)

Advantages: Performances

- Faster Processing
- Faster Design
- Linguistic Adequacy
 - Acceptance
 - Psychological Plausibility
 - Explanatory power
- Tools for further analysis of Linguistic Data

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Markov Models

Markov Models

Suppose $X_1, X_2, ..., X_T$ form a sequence of random variables taking values in a countable set $W = p_1, p_2, ..., p_N$ (State space).

• Limited Horizon Property: $P(X_{t+1} = p_k | X_1, ..., X_t) = P(X_{t+1} = k | X_t)$

Markov Models

Markov Models

Suppose $X_1, X_2, ..., X_T$ form a sequence of random variables taking values in a countable set $W = p_1, p_2, ..., p_N$ (State space).

- Limited Horizon Property: $P(X_{t+1} = p_k | X_1, ..., X_t) = P(X_{t+1} = k | X_t)$
- Time invariant:

$$P(X_{t+1} = p_k | X_t = p_l) = P(X_2 = p_k | X_1 = p_l) \qquad \forall t (> 1)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Markov Models

Markov Models

Suppose $X_1, X_2, ..., X_T$ form a sequence of random variables taking values in a countable set $W = p_1, p_2, ..., p_N$ (State space).

- Limited Horizon Property: $P(X_{t+1} = p_k | X_1, ..., X_t) = P(X_{t+1} = k | X_t)$
- Time invariant:

$$P(X_{t+1} = p_k | X_t = p_l) = P(X_2 = p_k | X_1 = p_l) \qquad \forall t (> 1)$$

It follows that the sequence of $X_1, X_2, ..., X_T$ is a **Markov chain**.

Introduction to Markov Models

References Exercises

イロト 不得 とうほう イヨン

-

Representation of a Markov Chain

Markov Models: Matrix Representation

• A (transition) matrix A:

$$a_{ij} = P(X_{t+1} = p_j | X_t = p_i)$$

Note that $\forall i, j \ a_{ij} \ge 0$ and $\forall i \ \sum_j a_{ij} = 1$

Introduction to Markov Models

References Exercises

▲□▶▲□▶▲□▶▲□▶ □ のQで

Representation of a Markov Chain

Markov Models: Matrix Representation

• A (transition) matrix A:

$$a_{ij} = P(X_{t+1} = p_j | X_t = p_i)$$

Note that $\forall i, j \quad a_{ij} \ge 0$ and $\forall i \quad \sum_j a_{ij} = 1$

• Initial State description (i.e. probabilities of initial states):

$$\pi_i = P(X_1 = p_i)$$

Note that $\sum_{j=1}^{n} \pi_{ij} = 1$.

Representation of a Markov Chain

Graphical Representation (i.e. Automata)

- States as nodes with names
- Transitions from states i-th and j-th as arcs labelled by conditional probabilities $P(X_{t+1} = p_j | X_t = p_i)$ Note that 0 probability arcs are omitted from the graph.

$$\begin{array}{c|cc} S_1 & S_2 \\ \hline S_1 & 0.70 & 0.30 \\ S_2 & 0.50 & 0.50 \end{array}$$

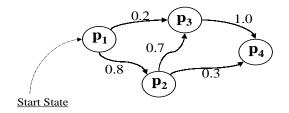
Representation of a Markov Chain

Graphical Representation

$$P(X_1 = p_1) = 1 \qquad \leftarrow StartState$$

$$P(X_k = p_3 | X_{k-1} = p_2) = 0.7 \quad \forall k$$

$$P(X_k = p_4 | X_{k-1} = p_1) = 0 \quad \forall k$$



Hidden Markov Models

A Simple Example of Hidden Markov Model

Crazy Coffee Machine

- Two states: Tea Preferring (*TP*), Coffee Preferring (*CP*)
- Switch from one state to another randomly
- Simple (or visible) Markov model: Iff the machine output *Tea* in *TP* AND *Coffee* in *CP*

What we need is a description of the random event of switching from one state to another. More formally we need for each time step n and couple of states p_i and p_j to determine following conditional probabilities:

$$P(X_{n+1}=p_j|X_n=p_i)$$

where p_t is one of the two states *TP*, *CP*.

Hidden Markov Models

A Simple Example of Hidden Markov Model

Crazy Coffee Machine

Assume, for example, the following state transition model:

	TP	СР
TP	0.70	0.30
СР	0.50	0.50

and let *CP* be the starting state (i.e. $\pi_{CP} = 1$, $\pi_{TP} = 0$).

Potential Use:

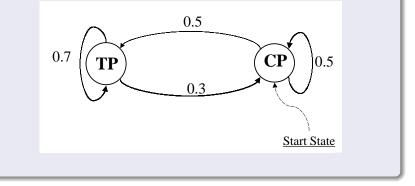
- What is the probability at time step 3 to be in state *TP*?
- What is the probability at time step *n* to be in state *TP*?
- What is the probability of the following sequence in output: (*Coffee*, *Tea*, *Coffee*)?

Introduction to Markov Models

References Exercises

Hidden Markov Models

Graphical Representation



Introduction to Markov Models

References Exercises

Hidden Markov Models

Solution to Problem 1:

$$\begin{split} P(X_3 = TP) &= (\text{given by } (CP, CP, TP) \text{ and } (CP, TP, TP)) \\ &= P(X_1 = CP) \cdot P(X_2 = CP | X_1 = CP) \cdot P(X_3 = TP | X_1 = CP, X_2 = CP) + \\ &+ P(X_1 = CP) \cdot P(X_2 = TP | X_1 = CP) \cdot P(X_3 = TP | X_1 = CP, X_2 = TP) = \\ &= P(CP)P(CP | CP)P(TP | CP, CP) + \\ P(CP)P(TP | CP)P(TP | CP, TP) = \\ &= P(CP)P(CP | CP)P(TP | CP) + P(CP)P(TP | CP)P(TP | TP) = \\ &= 1 \cdot 0.50 \cdot 0.50 + 1 \cdot 0.50 \cdot 0.70 = 0.25 + 0.35 = 0.60 \end{split}$$

Introduction to Markov Models

References Exercises

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Hidden Markov Models

Solution to Problem 2

$$P(X_{n} = TP) = \sum_{CP, p_{2}, p_{3}, \dots, TP} P(X_{1} = CP) P(X_{2} = p_{2} | X_{1} = CP) P(X_{3} = p_{3} | X_{1} = CP, X_{2} = p_{2}) \cdot \dots \cdot P(X_{n} = TP | X_{1} = CP, X_{2} = p_{2}, \dots, X_{n-1} = p_{n-1}) = \sum_{CP, p_{2}, p_{3}, \dots, TP} P(CP) P(p_{2} | CP) P(p_{3} | p_{2}) \cdot \dots \cdot P(TP | p_{n-1}) = \sum_{CP, p_{2}, p_{3}, \dots, TP} P(CP) \cdot \prod_{t=1}^{n-1} P(p_{t+1} | p_{t}) = \sum_{p_{1}, \dots, p_{n}} P(p_{1}) \cdot \prod_{t=1}^{n-1} P(p_{t+1} | p_{t})$$

Introduction to Markov Models

References Exercises

Hidden Markov Models

Solution to Problem 3:

$$P(Cof, Tea, Cof) =$$

= $P(Cof) \cdot P(Tea|Cof) \cdot P(Cof|Tea) = 1 \cdot 0.5 \cdot 0.3 = 0.15$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine

• **Hidden** Markov model: If the machine output *Tea*, *Coffee* or *Capuccino* **independently** from *CP* and *TP*.

What we need is a description of the random event of output(ting) a drink.

Introduction to Markov Models

References Exercises

Hidden Markov Models

A description of the random event of output(ting) a drink. Formally we need (for each time step *n* and for each kind of output $O = \{Tea, Cof, Cap\}$), the following conditional probabilities:

$$P(O_n = k | X_n = p_i, X_{n+1} = p_j)$$

where *k* is one of the values *Tea*, *Coffee* or *Capuccino*. This matrix is called the **output matrix** of the machine (or of its Hidden markov Model).

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine Given the following output probability for the machine

	Tea	Coffee	Capuccino
TP	0.8	0.2	0.0
CP	0.15	0.65	0.2

and let *CP* be the starting state (i.e. $\pi_{CP} = 1$, $\pi_{TP} = 0$).

• Find the following probabilities of output from the machine

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine Given the following output probability for the machine

	Tea	Coffee	Capuccino
TP	0.8	0.2	0.0
CP	0.15	0.65	0.2

and let *CP* be the starting state (i.e. $\pi_{CP} = 1$, $\pi_{TP} = 0$).

- Find the following probabilities of output from the machine
 - (*Cappuccino*, *Coffee*) given that the state sequence is (*CP*, *TP*, *TP*)

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine Given the following output probability for the machine

	Tea	Coffee	Capuccino
TP	0.8	0.2	0.0
CP	0.15	0.65	0.2

and let *CP* be the starting state (i.e. $\pi_{CP} = 1$, $\pi_{TP} = 0$).

- Find the following probabilities of output from the machine
 - (*Cappuccino*, *Coffee*) given that the state sequence is (*CP*, *TP*, *TP*)
 - 2 (*Tea*, *Coffee*) for any state sequence

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine Given the following output probability for the machine

	Tea	Coffee	Capuccino
TP	0.8	0.2	0.0
CP	0.15	0.65	0.2

and let *CP* be the starting state (i.e. $\pi_{CP} = 1$, $\pi_{TP} = 0$).

- Find the following probabilities of output from the machine
 - (*Cappuccino*, *Coffee*) given that the state sequence is (*CP*, *TP*, *TP*)
 - 2 (*Tea*, *Coffee*) for any state sequence
 - **(a)** a generic output $O = (o_1, ..., o_n)$ for *any* state sequence

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solution for the problem 1 For the given state sequence X = (CP, TP, TP) $P(O_1 = Cap, O_2 = Cof, X_1 = CP, X_2 = TP, X_3 = TP) =$ $P(O_1 = Cap, O_2 = Cof | X_1 = CP, X_2 = TP, X_3 = TP)P(X_1 = CP, X_2 = TP, X_3 = TP)) =$ P(Cap, Cof | CP, TP, TP)P(CP, TP, TP))

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solution for the problem 1 For the given state sequence X = (CP, TP, TP) $P(O_1 = Cap, O_2 = Cof, X_1 = CP, X_2 = TP, X_3 = TP) =$ $P(O_1 = Cap, O_2 = Cof | X_1 = CP, X_2 = TP, X_3 = TP)P(X_1 = CP, X_2 = TP, X_3 = TP)) =$ P(Cap, Cof | CP, TP, TP)P(CP, TP, TP)) Now: P(Cap, Cof | CP, TP, TP) is the probability of output *Cap*, *Cof during* transitions from *CP* to *TP* and *TP* to *TP* and

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solution for the problem 1 For the given state sequence X = (CP, TP, TP) $P(O_1 = Cap, O_2 = Cof, X_1 = CP, X_2 = TP, X_3 = TP) =$ $P(O_1 = Cap, O_2 = Cof | X_1 = CP, X_2 = TP, X_3 = TP)P(X_1 = CP, X_2 =$ $TP, X_3 = TP)) =$ P(Cap, Cof | CP, TP, TP)P(CP, TP, TP)) Now: P(Cap, Cof | CP, TP, TP) is the probability of output *Cap*, *Cof during* transitions from *CP* to *TP* and *TP* to *TP* and P(CP, TP, TP) is the probability of the transition chain. Therefore,

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solution for the problem 1 For the given state sequence X = (CP, TP, TP) $P(O_1 = Cap, O_2 = Cof, X_1 = CP, X_2 = TP, X_3 = TP) =$ $P(O_1 = Cap, O_2 = Cof | X_1 = CP, X_2 = TP, X_3 = TP)P(X_1 = CP, X_2 = TP)$ $TP, X_3 = TP)) =$ P(Cap, Cof | CP, TP, TP)P(CP, TP, TP)) Now: P(Cap, Cof | CP, TP, TP) is the probability of output Cap, Cof during transitions from CP to TP and TP to TP and P(CP, TP, TP) is the probability of the transition chain. Therefore,

- = P(Cap|CP,TP)P(Cof|TP,TP) = (in our simplified model)
- $= P(Cap|CP)P(Cof|TP) = 0.2 \cdot 0.2 = 0.04$

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2

In general, for any sequence of three states $X = (X_1, X_2, X_3)$ $P(Tea, Cof | X_1, X_2, X_3) =$

P(Tea, Cof) = (as sequences are a partition for the sample space) = $\sum_{X_1, X_2, X_3} P(Tea, Cof | X_1, X_2, X_3) P(X_1, X_2, X_3)$ where

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2

In general, for any sequence of three states $X = (X_1, X_2, X_3)$ $P(Tea, Cof | X_1, X_2, X_3) =$ P(Tea, Cof) = (as sequences are a partition for the sample space)

 $=\sum_{X_1,X_2,X_3} P(Tea, Cof | X_1, X_2, X_3) P(X_1, X_2, X_3)$ where

 $P(Tea, Cof | X_1, X_2, X_3) = P(Tea | X_1, X_2) P(Cof | X_2, X_3) =$

(for the simplified model of the coffee machine)

 $= P(Tea|X_1)P(Cof|X_2)$

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2

In general, for any sequence of three states $X = (X_1, X_2, X_3)$ $P(Tea, Cof | X_1, X_2, X_3) =$

P(Tea, Cof) = (as sequences are a partition for the sample space)= $\sum_{X_1, X_2, X_3} P(Tea, Cof | X_1, X_2, X_3) P(X_1, X_2, X_3)$ where $P(Tea, Cof | X_1, X_2, X_3) = P(Tea | X_1, X_2) P(Cof | X_2, X_3) =$ (for the simplified model of the coffee machine) = $P(Tea | X_1) P(Cof | X_2)$ and (for the Markov constraint) $P(X_1, X_2, X_3) = P(X_1) P(X_2 | X_1) P(X_3 | X_2)$

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2

In general, for any sequence of three states $X = (X_1, X_2, X_3)$ $P(Tea, Cof | X_1, X_2, X_3) =$

P(Tea, Cof) = (as sequences are a partition for the sample space)

$$=\sum_{X_1,X_2,X_3} P(Tea, Cof | X_1, X_2, X_3) P(X_1, X_2, X_3)$$
 where

$$P(Tea, Cof | X_1, X_2, X_3) = P(Tea | X_1, X_2) P(Cof | X_2, X_3) =$$

(for the simplified model of the coffee machine)

$$= P(Tea|X_1)P(Cof|X_2)$$
 and (for the Markov constraint)

$$P(X_1, X_2, X_3) = P(X_1)P(X_2|X_1)P(X_3|X_2)$$

The simplified model is concerned with only the following transition chains

$$(CP, CP, CP)$$
, (CP, TP, CP) , (CP, CP, TP)
 (CP, TP, TP)

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2

In general, for any sequence of three states $X = (X_1, X_2, X_3)$ The following probability is given

P(Tea, Cof) =

 $\begin{array}{lll} P(Tea|CP)P(Cof|CP)P(CP)P(CP|CP)P(CP|CP)+ & \text{st.:} (CP,CP,CP)) \\ P(Tea|CP)P(Cof|TP)P(CP)P(TP|CP)P(CP|TP)+ & \text{st.:} (CP,TP,CP)) \\ P(Tea|CP)P(Cof|CP)P(CP)P(CP)P(TP|CP)+ & \text{st.:} (CP,CP,TP)) \\ P(Tea|CP)P(Cof|TP)P(CP)P(TP|CP)P(TP|TP) = & \text{st.:} (CP,TP,TP)) \end{array}$

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2 In general, for any sequence of three states $X = (X_1, X_2, X_3)$ The following probability is given P(Tea, Cof) =P(Tea|CP)P(Cof|CP)P(CP)P(CP|CP)P(CP|CP)+st.: (CP,CP,CP)) P(Tea|CP)P(Cof|TP)P(CP)P(TP|CP)P(CP|TP)+st.: (CP,TP,CP)) P(Tea|CP)P(Cof|CP)P(CP)P(CP|CP)P(TP|CP)+st.: (CP.CP.TP)) P(Tea|CP)P(Cof|TP)P(CP)P(TP|CP)P(TP|TP) =st.: (CP,TP,TP)) $= 0.15 \cdot 0.65 \cdot 1 \cdot 0.5 \cdot 0.5 +$ $0.15 \cdot 0.2 \cdot 1 \cdot 0.5 \cdot 0.3 +$ + $+ 0.15 \cdot 0.65 \cdot 1 \cdot 0.5 \cdot 0.5 +$ $+ 0.15 \cdot 0.2 \cdot 1.0 \cdot 0.5 \cdot 0.7 =$

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2 In general, for any sequence of three states $X = (X_1, X_2, X_3)$ The following probability is given P(Tea, Cof) =P(Tea|CP)P(Cof|CP)P(CP)P(CP|CP)P(CP|CP)+st.: (CP,CP,CP)) P(Tea|CP)P(Cof|TP)P(CP)P(TP|CP)P(CP|TP)+st.: (CP,TP,CP)) P(Tea|CP)P(Cof|CP)P(CP)P(CP|CP)P(TP|CP)+st.: (CP.CP.TP)) P(Tea|CP)P(Cof|TP)P(CP)P(TP|CP)P(TP|TP) =st.: (CP,TP,TP)) $= 0.15 \cdot 0.65 \cdot 1 \cdot 0.5 \cdot 0.5 +$ $+ 0.15 \cdot 0.2 \cdot 1 \cdot 0.5 \cdot 0.3 +$ $+ 0.15 \cdot 0.65 \cdot 1 \cdot 0.5 \cdot 0.5 +$ $+ 0.15 \cdot 0.2 \cdot 1.0 \cdot 0.5 \cdot 0.7 =$ = 0.024375 + 0.0045 + 0.024375 + 0.0105 == 0.06375

▲□▶▲□▶▲□▶▲□▶ □ のQで

Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solution to the problem 3 (*Likelihood*)

In the general case, a sequence of *n* symbols $O = (o_1, ..., o_n)$ out from any sequence of n + 1 transitions $X = (p_1, ..., p_{n+1})$ can be predicted by the following probability:

$$P(O) = \sum_{p_1,...,p_{n+1}} P(O|X)P(X) =$$

$$= \sum_{p_1, \dots, p_{n+1}} P(CP) \prod_{t=1}^n P(O_t | p_t, p_{t+1}) P(p_{t+1} | p_t)$$

Advantages

Modeling linguistic tasks as Stochastic Processes

Advantages

There are several advantages to model a linguistic problem as an HMM

- It is a powerful mathematical framework for modeling
- It provides clear problems settings for different applications: estimation, decoding and model induction
- HMM-based models provides sound solutions for the above applications

We will see an example as the HMM modeling of POS tagging

Advantages

Fundamental problems for HMM

Fundamental Questions for HMM

The complexity of training and decoding can be limited by the use of optimization techniques

- Given the observation sequence O = O₁,...,O_n and a model λ = (E,T,π), how to efficiently compute P(O|λ)? (*Language Modeling*)
- Given the observation sequence O = O₁,...,O_n and a model λ = (E,T,π), how do we choose the optimal state sequence Q = q₁,...,q_n responsible of generating O ? (*Tagging/Decoding*)
- How to adjust model parameters λ = (E, T, π) so to maximize P(O|λ)? (Model Induction)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Advantages

HMM: Mathematical Methods

All the above problems can be approached by several optimization techniques able to limit the complexity.

- Language Modeling via *dynamic programming* (Forward algorithms) (O(n))
- Tagging/Decoding via *dynamic programming* (O(n)) (Viterbi)
- Parameter estimation via *entropy minimization (EM)*

A relevant issue is the availability of source data: supervised training cannot be applied always

Introduction to Markov Models

References Exercises

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

HMM and POS tagging

The task of POS tagging

POS tagging

Given a sequence of morphemes $w_1, ..., w_n$ with ambiguous syntactic descriptions (i.e.part-of-speech tags) t_j , compute the sequence of *n* POS tags $t_{j_1}, ..., t_{j_n}$ that characterize correspondingly all the words w_i .

Introduction to Markov Models

References Exercises

▲□▶▲□▶▲□▶▲□▶ □ のQで

HMM and POS tagging

The task of POS tagging

POS tagging

Given a sequence of morphemes $w_1, ..., w_n$ with ambiguous syntactic descriptions (i.e.part-of-speech tags) t_j , compute the sequence of *n* POS tags $t_{j_1}, ..., t_{j_n}$ that characterize correspondingly all the words w_i .

Examples:

- Secretariat is expected to race tomorrow
- $\bullet \Rightarrow$ NNP VBZ VBN TO VB NR
- $\bullet \Rightarrow$ NNP VBZ VBN TO NN NR

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

HMM and POS tagging

HMM and POS tagging

Given a sequence of morphemes $w_1, ..., w_n$ with ambiguous syntactic descriptions (i.e.part-of-speech tags), derive the sequence of *n* POS tags $t_1, ..., t_n$ that maximizes the following probability:

$$P(w_1,...,w_n,t_1,...,t_n)$$

that is

$$(t_1,...,t_n) = argmax_{pos_1,...,pos_n} P(w_1,...,w_n,pos_1,...,pos_n)$$

HMM and POS tagging

HMM and POS tagging

Given a sequence of morphemes $w_1, ..., w_n$ with ambiguous syntactic descriptions (i.e.part-of-speech tags), derive the sequence of *n* POS tags $t_1, ..., t_n$ that maximizes the following probability:

$$P(w_1, ..., w_n, t_1, ..., t_n)$$

that is

$$(t_1,...,t_n) = argmax_{pos_1,...,pos_n} P(w_1,...,w_n,pos_1,...,pos_n)$$

Note that this is equivalent to the following: $(t_1, ..., t_n) = argmax_{pos_1,...,pos_n} P(pos_1, ..., pos_n | w_1, ..., w_n)$ as: $\frac{P(w_1, ..., w_n, pos_1, ..., pos_n)}{P(w_1, ..., w_n)} = P(pos_1, ..., pos_n | w_1, ..., w_n)$ and $P(w_1, ..., w_n)$ is the same for all the sequencies $(pos_1, ..., pos_n)$.

Introduction to Markov Models

References Exercises

▲□▶▲□▶▲□▶▲□▶ □ のQで

HMM and POS tagging

HMM and POS tagging

How to map a POS tagging problem into a HMM

The above problem

$$(t_1,...,t_n) = argmax_{pos_1,...,pos_n} P(pos_1,...,pos_n|w_1,...,w_n)$$

can be also written (Bayes law) as:

$$(t_1, \dots, t_n) =$$

argmax_{pos1},...,pos_n P(w₁, ..., w_n|pos₁, ..., pos_n)P(pos₁, ..., pos_n)

HMM and POS tagging

HMM and POS tagging

The HMM Model of POS tagging:

- HMM States are mapped into POS tags (t_i) , so that $P(t_1,...,t_n) = P(t_1)P(t_2|t_1)...P(t_n|t_{n-1})$
- HMM Output symbols are words, so that $P(w_1,...,w_n|t_1,...,t_n) = \prod_{i=1}^n P(w_i|t_i)$
- Transitions represent moves from one word to another Note that *the Markov assumption is used*
 - to model probability of a tag in position *i* (i.e. *t_i*) only by means of the preceding part-of-speech (i.e. *t_i*₋₁)
 - to model probabilities of words (i.e. w_i) based only on the tag (t_i) appearing in that position (i).

Introduction to Markov Models

References Exercises

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

HMM and POS tagging

HMM and POS tagging

The final equation is thus:

$$(t_1, ..., t_n) = argmax_{t_1, ..., t_n} P(t_1, ..., t_n | w_1, ..., w_n) = argmax_{t_1, ..., t_n} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

HMM and POS tagging

Fundamental Questions for HMM in POS tagging

- Given a model what is the probability of an output sequence, O:
 Computing Likelihood.
- Given a model and an observable output sequence O (i.e. words), how to determine the sequence of states (t₁,...,t_n) such that it is the best explanation of the observation O: *Decoding Problem*
- Given a sample of the output sequences and a space of possible models how to find out the best model, that is the model that best explains the data: *how to estimate parameters?*

HMM and POS tagging

Fundamental Questions for HMM in POS tagging

- 1. Not much relevant for POS tagging, where (w₁,...,w_n) are always known.
 Trellis and dynamic programming technique.
- 2. (Decoding) Viterbi Algorithm for evaluating P(W|O). Linear in the sequence length.
- 1. Baum-Welch (or Forward-Backward algorithm), that is a special case of Expectation Maximization estimation. Weakly supervised or even unsupervised. *Problems*: Local minima can be reached when initial data are poor.

HMM and POS tagging

HMM and POS tagging

Advantages for adopting HMM in POS tagging

- An elegant and sound theory
- Training algorithms:
 - Estimation via EM (Baum-Welch)
 - Unsupervised (or possibly weakly supervised)
- Fast Inference algorithms: Viterbi algorithm Linear wrt the sequence length (O(n))
- Sound methods for comparing different models and estimations
 - (e.g. cross-entropy)

Introduction to Markov Models

References Exercises

Forward Algorithm and Viterbi

In computing the likelihood P(O) of an observation we need to sum up the probability of all paths in a Markov model. Brute force computation is not applicable in most cases. The forward algorithm is an application of dynamic programming.

Introduction to Markov Models

Forward Algorithm and Viterbi

Forward algorithm

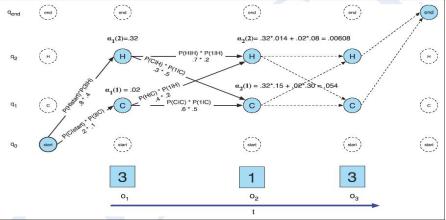


Figure 6.6 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $\alpha_t(j)$ for two states at two time steps. The computation in each cell follows Eq '6.11: $\alpha_t(j) = \sum_{i=1}^{N-1} \alpha_{t-1}(i)a_{ij}b_j(o_t)$. The resulting probability expressed in each cell is Eq' 6.10: $\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j|\lambda)$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Forward Algorithm and Viterbi

HMM and POS tagging: Forward Algorithm

function FORWARD(observations of len T, state-graph) returns forward-probability

 $\begin{array}{l} num-states \leftarrow \mathsf{NUM-OF-STATES}(state-graph)\\ \text{Create a probability matrix } forward[num-states+2,T+2]\\ forward[0,0] \leftarrow 1.0\\ \text{for each time step } t \ \text{from 1 to } T \ \text{do}\\ \text{for each time step } t \ \text{from 1 to } T \ \text{do}\\ for each state s \ \text{from 1 to } num-states \ \text{do}\\ forward[s,t] \leftarrow \sum_{1 \le d' \le num-states} t \ \text{forward}[s',t-1] * a_{s',s} * b_s(o_t)\\ \text{return the sum of the probabilities in the final column of forward} \end{array}$

Figure 6.8 The forward algorithm; we've used the notation *forward*[*s*,*t*] to represent $\alpha_t(s)$.

1. Initialization:

(6.12)
$$\alpha_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

2. Recursion (since states 0 and N are non-emitting):

(6.13)
$$\alpha_t(j) = \sum_{i=1}^{N-1} \alpha_{t-1}(i) a_{ij} b_j(o_t); \quad 1 < j < N, 1 < t < T$$

3. Termination:

$$P(O|\lambda) = \alpha_T(N) = \sum_{i=2}^{N-1} \alpha_T(i) a_{iN}$$

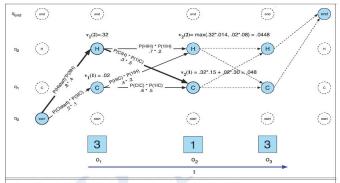
(6.14)

Forward Algorithm and Viterbi

Viterbi algorithm In decoding we need to find the most likely state sequence given an

observation O. The Viterbi algorithm follows the same approach (dynamic programming) of the Forward.

Viterbi scores are attached to each possible state in the sequence.



The Viterbi trellis for computing the best path through the hidden state space for the ice-cream Figure 6.9 eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $v_t(j)$ for two states at two time steps. The computation in each cell follows Eq. 6.10: $v_t(i) = \max_{1 \le i \le N-1} v_{t-1}(i) q_{ij} b_j(o_t)$ The resulting probability expressed in each cell is Eq. 6.16: $v_t(j) = P(q_0, q_1, \dots, q_{t-1}, o_1, o_2, \dots, o_t, q_t = j|\lambda).$

Forward Algorithm and Viterbi

HMM and POS tagging: the Viterbi Algorithm

function VITERBI(observations of len T, state-graph) returns best-path

```
\begin{array}{l} num-states \leftarrow \text{NUM-OF-STATES}(state-graph)\\ \text{Create a path probability matrix viterbi[num-states+2,T+2]}\\ viterbi[0,0] \leftarrow 1.0\\ \text{for each time step t from 1 to T do}\\ \text{for each state s from 1 to num-states do}\\ viterbi[s,t] \leftarrow \max_{1 \le s' \le num-states} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})\\ backpointer[s,t] \leftarrow \arg viterbi[s',t-1] * a_{s',s}\\ 1 \le s' \le num-states in final column of viterbi[l and extended to the state of the st
```

Backtrace from highest probability state in final column of viterbi[] and return path

Figure 6.10 Viterbi algorithm for finding optimal sequence of tags. Given an observation sequence and an HMM $\lambda = (A, B)$, the algorithm returns the state-path through the HMM which assigns maximum likelihood to the observation sequence. Note that states 0 and N+1 are non-emitting *start* and *end* states.

▲□▶▲□▶▲□▶▲□▶ □ のQで

About Parameter Estimation for POS

HMM and POS tagging: Parameter Estimation

Supervised methods in tagged data sets:

- Output probs: $P(w_i|p^j) = \frac{C(w_i,p^j)}{C(p^j)}$
- Transition probs: $P(p^i|p^j) = \frac{C(p^i \text{ follows } p^j)}{C(p^j)}$
- Smoothing: $P(w_i|p^j) = \frac{C(w_i,p^j)+1}{C(p^j)+K^i}$ (see Manning& Schutze, Chapter 6)

About Parameter Estimation for POS

HMM and POS tagging: Parameter Estimation

Unsupervised (few tagged data available):

- With a dictionary: $P(w_i|p^j)$ are early estimated from *D*, while $P(p^i|p^j)$ are randomly assigned
- With equivalence classes u_L , (Kupiec92):

$$P(w^{i}|p^{L}) = \frac{\frac{|L|C(u^{L})|}{\sum_{u_{L'}} \frac{C(u^{L'})}{|L'|}}}{\sum_{u_{L'}} \frac{C(u^{L'})}{|L'|}}$$

For example, if $L = \{noun, verb\}$ then
 $u_{L} = \{cross, drive, \ldots\}$

About Parameter Estimation for POS

A survey of the Baum-Welch method

The learning Problem

Given a HMM $\lambda = (E, T, \pi)$ and an observation history $Z = (z_1, z_2, ..., z_t)$, and a new HMM $\lambda' = (E', T', \pi')$ that explains the observations at least as well, or possibly better, i.e., such that $Pr[Z|\lambda'] \ge Pr[Z|\lambda]$.

- Ideally, we would like to find the model that **maximizes** $Pr[Z|\lambda]$; however, this is in general an intractable problem.
- We will be satisfied with an algorithm that converges to local maxima of such probability.
- Notice that in order for learning to be effective, we need **lots of data**, i.e., many, long observation histories!

About Parameter Estimation for POS

Baum-Welch method: Expectation of (state) counts

- Let us define: γ_k(s) = Pr[X_k = s|Z, λ]
 i.e., γ_k(s) is the probability that the system is at state s at the *k*-th time step, given the observation sequence Z and the model λ.
- We already know how to compute this, e.g., using smoothing:

$$\gamma_k(s) = \frac{\alpha_k(s)\beta_k(s)}{\Pr[X_k = s|Z,\lambda]} = \frac{\alpha_k(s)\beta_k(s)}{\sum_{s \in S} \alpha_t(s)}$$

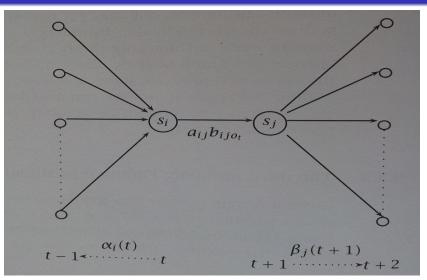
New concept: how many times is the state trajectory expected to transition from state *s*?
 E[# of transitions from *s*] = Σ^{t-1}_{k=1} γ_k(s)

Introduction to Markov Models

References Exercises

About Parameter Estimation for POS

The forward backward probabilities



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

About Parameter Estimation for POS

Baum-Welch method: Expectation of (transitions) counts

- We have that $\xi_k(q,s) = \eta_k \alpha_k(q) T_{q,s} E_{s,z_{k+1}} \beta_{k+1}(s)$ where η_k is a normalization factor, such that $\sum_{q,s} \xi_k(q,s) = 1$.
- New concept: how many times it the state trajectory expected to transition *from* state *q* to state *s*?
 E[# of transitions from *q* to *s*] = Σ^{t-1}_{k=1} ξ_k(q,s)

About Parameter Estimation for POS

Baum-Welch algorithm

- Based on the probability estimates and expectations computed so far, using the original HMM model λ = (E, T, π), we can construct a new model λ' = (E', T', π') (notice that the two models share the states and observations):
- The new initial condition distribution is the one obtained by smoothing: π'_s = γ₁(s)
- The entries of the new transition matrix can be obtained as follows: $T'_{q,s} = \frac{E[\# \text{ of transitions from } q \text{ to } s]}{E[\# \text{ of transitions from } q]} = \frac{\sum_{k=1}^{t-1} \xi_k(q,s)}{\sum_{k=1}^{t-1} \gamma_k(s)}$

About Parameter Estimation for POS

Baum-Welch algorithm

- The entries of the new observation matrix can be obtained as follows: M'_{sm} = <u>E[# of times in state s, when the observation was m]</u> = <u>E[# of times in state s]</u> = <u>\sum \frac{\sum k(s) 1(z_k = m)}{\sum k(s)}}

 </u>
- It can be shown [Baum et al., 1970] that the new model λ' is such that
 - $Pr[Z|\lambda'] \ge Pr[Z|\lambda]$, as desired.
 - *Pr*[Z|λ'] = *Pr*[Z|λ] only if λ is a critical point of the likelihood function

$$f(\boldsymbol{\lambda}) = \Pr[\boldsymbol{Z}|\boldsymbol{\lambda}]$$

Introduction to Markov Models

References Exercises

About Parameter Estimation for POS

Other Approaches to POS tagging

• Church (1988):

 $\prod_{i=n}^{3} P(w_i|t_i) P(t_{i-2}|t_{i-1},t_i) \text{ (backward)}$ Estimation from tagged corpus (Brown) No HMM training Performances: >95%

• De Rose (1988):

 $\prod_{i=1}^{n} P(w_i|t_i) P(t_{i-1}|t_i) \text{ (forward)}$ Estimation from tagged corpus (Brown) No HMM training Performance: 95%

• Merialdo et al.,(1992), ML estimation vs. Viterbi training Propose an incremental approach: small tagging and then Viterbi training

•
$$\prod_{i=1}^{n} P(w_i|t_i) P(t_{i+1}|t_i,w_i)$$
 ???

POS tagging: References

- F. Jelinek, Statistical methods for speech recognition, Cambridge, Mass.: MIT Press, 1997.
- Manning & Schutze, Foundations of Statistical Natural Language Processing, MIT Press, Chapter 6.
- Church (1988), A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text, http://acl.ldc.upenn.edu/A/A88/A88-1019.pdf
- Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
- Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, IT-13(2), 260-269.
- Parameter Estimation (slides): http://jan.stanford.edu/fsnlp/statest/henke-ch6.ppt

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other References

- "Introduction to Information Retrieval", Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze, Cambridge University Press. 2008. Chapter 12. http://www-csli.stanford.edu/ hinrich/information-retrieval-book.
- Rabiner, Lawrence. "First Hand: The Hidden Markov Model". IEEE Global History Network. Retrieved 2 October 2013. at http://www.ieeeghn.org/wiki/index.php/ First-Hand:The_Hidden_Markov_Model
- Applet at: http://www.cs.umb.edu/ srevilak/viterbi/

Exercise

Consider a two-bit register. The register has four possible states: 00, 01, 10 and 11. Initially, at time 0, the contents of the register is chosen at random to be one of these four states, each with equal probability. At each time step, beginning at time 1, the register is randomly manipulated as follows: with probability 1/2, the register is left unchanged; with probability 1/4, the two bits of the register are exchanged (e.g., 01 becomes 10); and with probability 1/4, the right bit is flipped (e.g., 01 becomes 00). After the register has been manipulated in this fashion, the left bit is observed. Suppose that on the first three time steps, we observe 0, 0, 1.

- Show how the register can be formulated as an HMM. What is the probability of transitioning from every state to every other state? What is the probability of observing each output (0 or 1) in each state?
- What is the probability of being in each state at time *t* after observing only the first *t* bits, for t = 1, 2, 3.