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Motivations

Quantitative Models of language structures

Linguistic structures are example of structures where
syntagmatic information is crucial for machine learning. The
most used modeling here are grammars:

1. S -> NP V
2. S -> NP
3. NP -> PN
4. NP -> N
5. NP -> Adj N
6. N -> "imposta"
7. V -> "imposta"
8. Adj -> "pesante"
9. PN -> "Pesante"
...



Overview Probability and Language Modeling Introduction to Markov Models References Exercises

Motivations

The role of Quantitative Approaches

S

NP V

PN

Pesante imposta

S

NP

NAdj

Pesante imposta

“Pesante imposta”
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Motivations

The role of Quantitative Approaches

Weighted grammars are models of (possibly limited) degrees of
grammaticality. They are meant to deal with a large range of
ambiguity problems:

1. S -> NP V .7
2. S -> NP .3
3. NP -> PN .1
4. NP -> N .6
5. NP -> Adj N .3
6. N -> imposta .6
7. V -> imposta .4
8. Adj -> Pesante .8
9. PN -> Pesante .2
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Motivations

Linguistic Ambiguity and weighted grammars

S

NP V

PN

Pesante imposta

(.7)

(.1)

(.2) (.4) (.8)

S

NP

NAdj

Pesante imposta

(.3)

(.3)

(.6)

“Pesante imposta”
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Motivations

Linguistic Ambiguity and weighted grammars

Weighted grammars allow to compute the degree of grammaticality of
different ambiguous derivations, thus supporting disambiguation:

1. S -> NP V .7
2. S -> NP .3
3. NP -> PN .1
4. NP -> N .6
5. NP -> Adj N .3
6. N -> imposta .6
7. V -> imposta .4
8. Adj -> Pesante .8
9. PN -> Pesante .2
...

prob(((Pesante)PN (imposta)V )S )= (.7 · .1 · .2 · .4) = 0.0084
prob(((Pesante)Adj (imposta)N)S )= (.3 · .3 · .8 · .6) = 0.0432
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Motivations

Syntactic Disambiguation

S
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V

portare in pelle

“portare borsa in pelle”
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VP

V

portare in pelle

NP PP

N
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S

VP

Derivation Trees for a structurally ambiguous sentence
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Motivations

Syntactic Disambiguation (cont’d)

S

NP VP

V

portare in mano

“portare borsa in mano”

NP

PP
N

borsa

NP

VP

V

portare in mano

NP PP

N
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S

VP

Derivation Trees for a second structurally ambiguous sentence.
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Motivations

Structural Disambiguation (cont’d)

S

NP VP

V

portare in pelle

“portare borsa in pelle”

NP

PP
N

borsa

NP

VP

V

portare in mano

NP PP

N

borsa

S

“portare borsa in mano”

VP

p(portare,in,pelle) << p(borsa,in,pelle)

p(borsa,in,mano) << p(portare,in,mano)

Disambiguation of structural ambiguity.
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Motivations

Tolerance to errors

NP

N PP

P

di da regalo

“vendita di articoli da regalo”

NP

PPN

articoli

NP

vendita regalo

??

NN

articoli

NP

“vendita articoli regalo”

??

vendita

An example of ungrammatical but meaningful sentence
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Motivations

Error tolerance (cont’d)

b

NP

N PP

P

di da regalo

“vendita di articoli da regalo”

NP

PPN

articoli

NP

vendita

regalo

??

NN

articoli

NP

“vendita articoli regalo”

??

vendita

p(Γ) > 0

p(∆) > 0

∆

Γ

Modeling of ungrammatical phenomena
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Probability Models for Natural Language

Probability and Language Modeling

Aims
to extend grammatical (i.e. rule-based) models with
predictive and disambiguation capabilities
to offer theoretically well founded inductive methods
to develop (not merely) quantitative models of linguistic
phenomena

Methods and Resources:
Methematical theories (e.g. Markov models)
Systematic testing/evaluation frameworks
Extended repositories of examples of language in use
Traditional linguistic resources (e.g. "models" like
dictionaries)



Overview Probability and Language Modeling Introduction to Markov Models References Exercises

Probability Models for Natural Language
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to extend grammatical (i.e. rule-based) models with
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to develop (not merely) quantitative models of linguistic
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Methods and Resources:
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Probability Models for Natural Language

Probability and Language Modeling

Signals are abstracted via symbols that are not known in
advance

Emitted signals belong to an alphabet A
Time is discrete: each time point corresponds to an emitted
signal
Sequences of symbols (w1, . . . ,wn) correspond to
sequences of time points (1, . . . ,n)

…, wi8,   wi7,    wi6,    wi5,    wi4,    wi3,   wi2,    wi1

…,     8,            7,         6,          5,           4,          3,           2,           1
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Probability Models for Natural Language

Probability and Language Modeling

A generative language model
A random variable X can be introduced so that

It assumes values wi in the alfabet A
Probability is used to describe the uncertainty on the
emitted signal

p(X = wi) wi ∈ A
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Probability Models for Natural Language

Probability and Language Modeling

A generative language model
A random variable X can be introduced so that

It assumes values wi in the alfabet A
Probability is used to describe the uncertainty on the
emitted signal

p(X = wi) wi ∈ A
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Probability Models for Natural Language

Probability and Language Modeling

A random variable X can be introduced so that
X assumes values in A at each step i, i.e. Xi = wj

probability is p(Xi = wj)

Constraints: the total probability is for each step:

∑j p(Xi = wj) = 1 ∀i

…, wi8,   wi7,    wi6,    wi5,    wi4,    wi3,   wi2,    wi1

…,     8,            7,         6,          5,           4,          3,           2,           1
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Probability Models for Natural Language

Probability and Language Modeling

Notice that time points can be represented as states of the
emitting source
An output wi can be considered as emitted in a given state
Xi by the source, and given a certain history

…, wi8,   wi7,    wi6,    wi5,    wi4,    wi3,   wi2,    wi1

…,     8,            7,         6,          5,           4,          3,           2,           1
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Probability Models for Natural Language

Probability and Language Modeling

Formally:
P(Xi = wi,Xi−1 = wi−1, . . .X1 = w1) =

= P(Xi = wi|Xi−1 = wi−1,Xi−2 = wi−2, . . . ,X1 = w1)·
P(Xi−1 = wi−1,Xi−2 = wi−2, . . . ,X1 = w1)

…, wi8,   wi7,    wi6,    wi5,    wi4,    wi3,   wi2,    wi1

…,     8,            7,         6,          5,           4,          3,           2,           1
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Probability Models for Natural Language

Probability and Language Modeling

What’s in a state
n−1 preceding words⇒ n-gram language models

…,    dog,              black,            the
…,           3,                           2,                           1

p(the,black,dog) = p(dog|the,black)

p(black|the)p(the)
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Probability Models for Natural Language

Probability and Language Modeling

What’s in a state
n−1 preceding words⇒ n-gram language models

…,    dog,              black,            the
…,           3,                           2,                           1

p(the,black,dog) = p(dog|the,black)p(black|the)p(the)
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Probability Models for Natural Language

Probability and Language Modeling

What’s in a state
preceding POS tags⇒ stochastic taggers

…,    dog,              black,            the

POS2 = Adj,  POS1 = Det

dog

p(theDT ,blackADJ,dogN) = p(dogN |theDT ,blackADJ) . . .
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Probability Models for Natural Language

Probability and Language Modeling
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Probability Models for Natural Language

Probability and Language Modeling

What’s in a state
preceding parses⇒ stochastic grammars

…,    dog,              black,            the
…,           3,                           2,                           1

dog

NP

NP                      Det

N           ADJ                            

p((theDet,(blackADJ,dogN)NP)NP) =
p(dogN |((theDet),(blackADJ,_))) . . .
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Probability Models for Natural Language

Probability and Language Modeling (2)

Expressivity
The predictivity of a statistical grammar can provide a very
good explanatory model of the source language (string)
Acquiring information from data has a clear definition,
with simple and sound induction algorithms
Simple but richer descriptions (e.g. grammatical
preferences)
Optimal Coverage (i.e. better on more important
phenomena)

Integrating Linguistic Description
Start with poor assumptions and approximate as much as
possible what is known (early evaluate only performance)
Bias the statistical model since the beginning
and check the results on a linguistic ground



Overview Probability and Language Modeling Introduction to Markov Models References Exercises
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Probability Models for Natural Language

Probability and Language Modeling (3)

Advantages: Performances
Faster Processing

Faster Design
Linguistic Adequacy

Acceptance
Psychological Plausibility
Explanatory power

Tools for further analysis of Linguistic Data
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Markov Models

Markov Models
Suppose X1,X2, ...,XT form a sequence of random variables
taking values in a countable set W = p1,p2, ...,pN (State space).

Limited Horizon Property:
P(Xt+1 = pk|X1, ...,Xt) = P(Xt+1 = k|Xt)

Time invariant:
P(Xt+1 = pk|Xt = pl) = P(X2 = pk|X1 = pl) ∀t(> 1)

It follows that the sequence of X1,X2, ...,XT is a Markov chain.
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Representation of a Markov Chain

Markov Models: Matrix Representation
A (transition) matrix A:

aij = P(Xt+1 = pj|Xt = pi)

Note that ∀i, j aij ≥ 0 and ∀i ∑j aij = 1

Initial State description (i.e. probabilities of initial states):
πi = P(X1 = pi)

Note that ∑
n
j=1 πij = 1.
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Representation of a Markov Chain

Graphical Representation (i.e. Automata)

States as nodes with names
Transitions from states i-th and j-th as arcs labelled by
conditional probabilities P(Xt+1 = pj|Xt = pi)
Note that 0 probability arcs are omitted from the graph.

S1 S2
S1 0.70 0.30
S2 0.50 0.50
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Representation of a Markov Chain

Graphical Representation

P(X1 = p1) = 1 ← StartState
P(Xk = p3|Xk−1 = p2) = 0.7 ∀k
P(Xk = p4|Xk−1 = p1) = 0 ∀k

p1

p2

p3

p4

0.2

0.8

0.7

0.3

1.0

Start State
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Hidden Markov Models

A Simple Example of Hidden Markov Model

Crazy Coffee Machine

Two states: Tea Preferring (TP), Coffee Preferring (CP)
Switch from one state to another randomly
Simple (or visible) Markov model:
Iff the machine output Tea in TP AND Coffee in CP

What we need is a description of the random event of switching
from one state to another. More formally we need for each time
step n and couple of states pi and pj to determine following
conditional probabilities:

P(Xn+1 = pj|Xn = pi)

where pt is one of the two states TP, CP.
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Hidden Markov Models

A Simple Example of Hidden Markov Model

Crazy Coffee Machine
Assume, for example, the following state transition model:

TP CP
TP 0.70 0.30
CP 0.50 0.50

and let CP be the starting state (i.e. πCP = 1, πTP = 0).

Potential Use:
1 What is the probability at time step 3 to be in state TP?
2 What is the probability at time step n to be in state TP?
3 What is the probability of the following sequence in

output: (Coffee,Tea,Coffee)?
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Hidden Markov Models

Crazy Coffee Machine

Graphical Representation

TP CP

0.5

0.3

0.5

Start State

0.7
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Hidden Markov Models

Crazy Coffee Machine

Solution to Problem 1:
P(X3 = TP) = (given by (CP,CP,TP) and (CP,TP,TP))
= P(X1 = CP) ·P(X2 = CP|X1 = CP) ·P(X3 = TP|X1 =
CP,X2 = CP)+
+ P(X1 = CP) ·P(X2 = TP|X1 = CP) ·P(X3 = TP|X1 =
CP,X2 = TP) =
= P(CP)P(CP|CP)P(TP|CP,CP)+
P(CP)P(TP|CP)P(TP|CP,TP) =
= P(CP)P(CP|CP)P(TP|CP)+P(CP)P(TP|CP)P(TP|TP) =
= 1 ·0.50 ·0.50+1 ·0.50 ·0.70 = 0.25+0.35 = 0.60
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Hidden Markov Models

Crazy Coffee Machine

Solution to Problem 2
P(Xn = TP) =
∑CP,p2,p3,...,TP P(X1 = CP)P(X2 = p2|X1 = CP)P(X3 = p3|X1 =
CP,X2 = p2) · ... ·P(Xn = TP|X1 = CP,X2 = p2, ...,Xn−1 =
pn−1) =
= ∑CP,p2,p3,...,TP P(CP)P(p2|CP)P(p3|p2) · ... ·P(TP|pn−1) =

= ∑CP,p2,p3,...,TP P(CP) ·∏n−1
t=1 P(pt+1|pt) =

= ∑p1,...,pn P(p1) ·∏n−1
t=1 P(pt+1|pt)
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Hidden Markov Models

Crazy Coffee Machine

Solution to Problem 3:
P(Cof ,Tea,Cof ) =
= P(Cof ) ·P(Tea|Cof ) ·P(Cof |Tea) = 1 ·0.5 ·0.3 = 0.15
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Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine

Hidden Markov model: If the machine output Tea, Coffee
or Capuccino independently from CP and TP.

What we need is a description of the random event of
output(ting) a drink.
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Hidden Markov Models

Crazy Coffee Machine

A description of the random event of output(ting) a drink.
Formally we need (for each time step n and for each kind of
output O = {Tea,Cof ,Cap}), the following conditional
probabilities:

P(On = k|Xn = pi,Xn+1 = pj)

where k is one of the values Tea, Coffee or Capuccino.
This matrix is called the output matrix of the machine (or of
its Hidden markov Model).
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Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine
Given the following output probability for the machine

Tea Coffee Capuccino
TP 0.8 0.2 0.0
CP 0.15 0.65 0.2

and let CP be the starting state (i.e. πCP = 1, πTP = 0).

Find the following probabilities of output from the
machine

1 (Cappuccino,Coffee) given that the state sequence is
(CP,TP,TP)

2 (Tea,Coffee) for any state sequence
3 a generic output O = (o1, ...,on) for any state sequence
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Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solution for the problem 1 For the given state sequence
X = (CP,TP,TP)
P(O1 = Cap,O2 = Cof ,X1 = CP,X2 = TP,X3 = TP) =
P(O1 = Cap,O2 = Cof |X1 = CP,X2 = TP,X3 = TP)P(X1 = CP,X2 =
TP,X3 = TP)) =
P(Cap,Cof |CP,TP,TP)P(CP,TP,TP))

Now:
P(Cap,Cof |CP,TP,TP) is the probability of output Cap,Cof during
transitions from CP to TP and TP to TP
and P(CP,TP,TP) is the probability of the transition chain.
Therefore,
= P(Cap|CP,TP)P(Cof |TP,TP) =(in our simplified model)
= P(Cap|CP)P(Cof |TP) = 0.2 ·0.2 = 0.04
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Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2
In general, for any sequence of three states X = (X1,X2,X3)
P(Tea,Cof |X1,X2,X3) =
P(Tea,Cof ) = (as sequences are a partition for the sample space)
= ∑X1,X2,X3

P(Tea,Cof |X1,X2,X3)P(X1,X2,X3) where

P(Tea,Cof |X1,X2,X3) = P(Tea|X1,X2)P(Cof |X2,X3) =
(for the simplified model of the coffee machine )
= P(Tea|X1)P(Cof |X2) and (for the Markov constraint)
P(X1,X2,X3) = P(X1)P(X2|X1)P(X3|X2)
The simplified model is concerned with only the following transition
chains
(CP,CP,CP), (CP,TP,CP), (CP,CP,TP)
(CP,TP,TP)
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Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2
In general, for any sequence of three states X = (X1,X2,X3)
The following probability is given

P(Tea,Cof ) =
P(Tea|CP)P(Cof |CP)P(CP)P(CP|CP)P(CP|CP)+ st.: (CP,CP,CP))
P(Tea|CP)P(Cof |TP)P(CP)P(TP|CP)P(CP|TP)+ st.: (CP,TP,CP))
P(Tea|CP)P(Cof |CP)P(CP)P(CP|CP)P(TP|CP)+ st.: (CP,CP,TP))
P(Tea|CP)P(Cof |TP)P(CP)P(TP|CP)P(TP|TP) = st.: (CP,TP,TP))

= 0.15 ·0.65 ·1 ·0.5 ·0.5+
+ 0.15 ·0.2 ·1 ·0.5 ·0.3+
+ 0.15 ·0.65 ·1 ·0.5 ·0.5+
+ 0.15 ·0.2 ·1.0 ·0.5 ·0.7 =

= 0.024375+0.0045+0.024375+0.0105 =
= 0.06375
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Hidden Markov Models

A Simple Example of Hidden Markov Model (2)

Solution to the problem 3 (Likelihood)
In the general case, a sequence of n symbols O = (o1, ...,on) out
from any sequence of n+1 transitions X = (p1, ...,pn+1)
can be predicted by the following probability:

P(O) = ∑p1,...,pn+1
P(O|X)P(X) =

= ∑p1,...,pn+1
P(CP)∏

n
t=1 P(Ot|pt,pt+1)P(pt+1|pt)
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Advantages

Modeling linguistic tasks as Stochastic Processes

Advantages
There are several advantages to model a linguistic problem as
an HMM

It is a powerful mathematical framework for modeling
It provides clear problems settings for different
applications: estimation, decoding and model induction
HMM-based models provides sound solutions for the
above applications

We will see an example as the HMM modeling of POS tagging
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Advantages

Fundamental problems for HMM

Fundamental Questions for HMM
The complexity of training and decoding can be limited by the
use of optimization techniques

Given the observation sequence O = O1, ...,On and a
model λ = (E,T,π), how to efficiently compute P(O|λ )?
(Language Modeling)
Given the observation sequence O = O1, ...,On and a
model λ = (E,T,π), how do we choose the optimal state
sequence Q = q1, ...,qn responsible of generating O ?
(Tagging/Decoding)
How to adjust model parameters λ = (E,T,π) so to
maximize P(O|λ )? (Model Induction)
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Advantages

HMM: Mathematical Methods

All the above problems can be approached by several
optimization techniques able to limit the complexity.

Language Modeling via dynamic programming (Forward
algorithms) (O(n))
Tagging/Decoding via dynamic programming (O(n))
(Viterbi)
Parameter estimation via entropy minimization (EM)

A relevant issue is the availability of source data: supervised
training cannot be applied always
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HMM and POS tagging

The task of POS tagging

POS tagging
Given a sequence of morphemes w1, ...,wn with ambiguous
syntactic descriptions (i.e.part-of-speech tags) tj, compute the
sequence of n POS tags tj1, ..., tjn that characterize
correspondingly all the words wi.

Examples:
Secretariat is expected to race tomorrow
⇒ NNP VBZ VBN TO VB NR

⇒ NNP VBZ VBN TO NN NR
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HMM and POS tagging

HMM and POS tagging

Given a sequence of morphemes w1, ...,wn with ambiguous
syntactic descriptions (i.e.part-of-speech tags), derive the
sequence of n POS tags t1, ..., tn that maximizes the following
probability:

P(w1, ...,wn, t1, ..., tn)

that is

(t1, ..., tn) = argmaxpos1,...,posnP(w1, ...,wn,pos1, ...,posn)

Note that this is equivalent to the following:
(t1, ..., tn) = argmaxpos1,...,posnP(pos1, ...,posn|w1, ...,wn)

as: P(w1,...,wn,pos1,...,posn)
P(w1,...,wn)

= P(pos1, ...,posn|w1, ...,wn)

and P(w1, ...,wn) is the same for all the sequencies (pos1, ...,posn).
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HMM and POS tagging

HMM and POS tagging

How to map a POS tagging problem into a HMM
The above problem

(t1, ..., tn) = argmaxpos1,...,posnP(pos1, ...,posn|w1, ...,wn)

can be also written (Bayes law) as:

(t1, ..., tn) =
argmaxpos1,...,posnP(w1, ...,wn|pos1, ...,posn)P(pos1, ...,posn)
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HMM and POS tagging

HMM and POS tagging

The HMM Model of POS tagging:
HMM States are mapped into POS tags (ti), so that
P(t1, ..., tn) = P(t1)P(t2|t1)...P(tn|tn−1)

HMM Output symbols are words, so that
P(w1, ...,wn|t1, ..., tn) = ∏

n
i=1 P(wi|ti)

Transitions represent moves from one word to another
Note that the Markov assumption is used

to model probability of a tag in position i (i.e. ti) only by
means of the preceeding part-of-speech (i.e. ti−1)
to model probabilities of words (i.e. wi) based only on the
tag (ti) appearing in that position (i).
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HMM and POS tagging

HMM and POS tagging

The final equation is thus:

(t1, ..., tn) = argmaxt1,...,tnP(t1, ..., tn|w1, ...,wn) =

argmaxt1,...,tn ∏
n
i=1 P(wi|ti)P(ti|ti−1)
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HMM and POS tagging

Fundamental Questions for HMM in POS tagging

1 Given a model what is the probability of an output
sequence, O:
Computing Likelihood.

2 Given a model and an observable output sequence O (i.e.
words), how to determine the sequence of states (t1, ..., tn)
such that it is the best explanation of the observation O:
Decoding Problem

3 Given a sample of the output sequences and a space of
possible models how to find out the best model, that is the
model that best explains the data:
how to estimate parameters?



Overview Probability and Language Modeling Introduction to Markov Models References Exercises

HMM and POS tagging

Fundamental Questions for HMM in POS tagging

1. Not much relevant for POS tagging, where (w1, ...,wn)
are always known.
Trellis and dynamic programming technique.
2. (Decoding) Viterbi Algorithm for evaluating P(W|O).
Linear in the sequence length.
1. Baum-Welch (or Forward-Backward algorithm), that is
a special case of Expectation Maximization estimation.
Weakly supervised or even unsupervised.
Problems: Local minima can be reached when initial data
are poor.



Overview Probability and Language Modeling Introduction to Markov Models References Exercises

HMM and POS tagging

HMM and POS tagging

Advantages for adopting HMM in POS tagging

An elegant and sound theory
Training algorithms:

Estimation via EM (Baum-Welch)
Unsupervised (or possibly weakly supervised)

Fast Inference algorithms: Viterbi algorithm
Linear wrt the sequence length (O(n))
Sound methods for comparing different models and
estimations
(e.g. cross-entropy)
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Forward Algorithm and Viterbi

Forward algorithm

In computing the likelihood P(O) of an observation we need to
sum up the probability of all paths in a Markov model. Brute
force computation is not applicable in most cases.
The forward algorithm is an application of dynamic
programming.
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Forward Algorithm and Viterbi

Forward algorithm
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Forward Algorithm and Viterbi

HMM and POS tagging: Forward Algorithm



Overview Probability and Language Modeling Introduction to Markov Models References Exercises

Forward Algorithm and Viterbi

Viterbi algorithm
In decoding we need to find the most likely state sequence given an
observation O. The Viterbi algorithm follows the same approach
(dynamic programming) of the Forward.
Viterbi scores are attached to each possible state in the sequence.



Overview Probability and Language Modeling Introduction to Markov Models References Exercises

Forward Algorithm and Viterbi

HMM and POS tagging: the Viterbi Algorithm
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About Parameter Estimation for POS

HMM and POS tagging: Parameter Estimation

Supervised methods in tagged data sets:

Output probs: P(wi|pj) = C(wi,pj)
C(pj)

Transition probs: P(pi|pj) = C(pi follows pj)
C(pj)

Smoothing: P(wi|pj) = C(wi,pj)+1
C(pj)+Ki

(see Manning& Schutze, Chapter 6)
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About Parameter Estimation for POS

HMM and POS tagging: Parameter Estimation

Unsupervised (few tagged data available):

With a dictionary: P(wi|pj) are early estimated from D,
while P(pi|pj) are randomly assigned
With equivalence classes uL, (Kupiec92):

P(wi|pL) =
1
|L|C(uL)

∑uL′
C(uL′ )
|L′|

For example, if L ={noun, verb} then
uL = {cross,drive, . . .}



Overview Probability and Language Modeling Introduction to Markov Models References Exercises

About Parameter Estimation for POS

A survey of the Baum-Welch method

The learning Problem

Given a HMM λ = (E,T,π) and an observation history
Z = (z1,z2, ...,zt), and a new HMM λ ′ = (E′,T ′,π ′) that
explains the observations at least as well, or possibly better, i.e.,
such that Pr[Z|λ ′]≥ Pr[Z|λ ] .

Ideally, we would like to find the model that maximizes
Pr[Z|λ ]; however, this is in general an intractable problem.
We will be satisfied with an algorithm that converges to
local maxima of such probability.
Notice that in order for learning to be effective, we need
lots of data, i.e., many, long observation histories!
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About Parameter Estimation for POS

Baum-Welch method: Expectation of (state)
counts

Let us define: γk(s) = Pr[Xk = s|Z,λ ]
i.e., γk(s) is the probability that the system is at state s at
the k-th time step, given the observation sequence Z and
the model λ .
We already know how to compute this, e.g., using
smoothing:
γk(s) =

αk(s)βk(s)
Pr[Xk=s|Z,λ ] =

αk(s)βk(s)
∑s∈S αt(s)

New concept: how many times is the state trajectory
expected to transition from state s?
E[# of transitions from s] = ∑

t−1
k=1 γk(s)
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About Parameter Estimation for POS

The forward backward probabilities
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About Parameter Estimation for POS

Baum-Welch method: Expectation of (transitions)
counts

In much the same vein, let us define
ξk(q,s) = Pr[Xk = q,Xk+1 = s|Z,λ ] (i.e., ξk(q,s) is the
probability of being at state q at time k, and at state s at
time k+1, given the observations and the current HMM
model)
We have that ξk(q,s) = ηkαk(q)Tq,sEs,zk+1βk+1(s) where
ηk is a normalization factor, such that ∑q,s ξk(q,s) = 1.
New concept: how many times it the state trajectory
expected to transition from state q to state s?
E[# of transitions from q to s] = ∑

t−1
k=1 ξk(q,s)
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About Parameter Estimation for POS

Baum-Welch algorithm

Based on the probability estimates and expectations
computed so far, using the original HMM model
λ = (E,T,π), we can construct a new model
λ ′ = (E′,T ′,π ′) (notice that the two models share the
states and observations):
The new initial condition distribution is the one obtained
by smoothing: π ′s = γ1(s)
The entries of the new transition matrix can be obtained as
follows: T ′q,s =

E[# of transitions from q to s]
E[# of transitions from q] =

∑
t−1
k=1 ξk(q,s)

∑
t−1
k=1 γk(s)
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About Parameter Estimation for POS

Baum-Welch algorithm

The entries of the new observation matrix can be obtained
as follows:
M′sm = E[# of times in state s, when the observation was m]

E[# of times in state s] =

=
∑

t
k=1 γk(s)1(zk=m)

∑
t
k=1 γk(s)

It can be shown [Baum et al., 1970] that the new model λ ′

is such that
Pr[Z|λ ′]≥ Pr[Z|λ ], as desired.
Pr[Z|λ ′] = Pr[Z|λ ] only if λ is a critical point of the
likelihood function

f (λ ) = Pr[Z|λ ]
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About Parameter Estimation for POS

Other Approaches to POS tagging

Church (1988):
∏

3
i=n P(wi|ti)P(ti−2|ti−1, ti) (backward)

Estimation from tagged corpus (Brown)
No HMM training
Performances: > 95%
De Rose (1988):
∏

n
i=1 P(wi|ti)P(ti−1|ti) (forward)

Estimation from tagged corpus (Brown)
No HMM training Performance: 95%
Merialdo et al.,(1992), ML estimation vs. Viterbi training
Propose an incremental approach: small tagging and then
Viterbi training

∏
n
i=1 P(wi|ti)P(ti+1|ti,wi) ???
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POS tagging: References

F. Jelinek, Statistical methods for speech recognition, Cambridge, Mass.: MIT Press,
1997.

Manning & Schutze, Foundations of Statistical Natural Language Processing, MIT
Press, Chapter 6.

Church (1988), A Stochastic Parts Program and Noun Phrase Parser for Unrestricted
Text, http://acl.ldc.upenn.edu/A/A88/A88-1019.pdf

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2), 257-286.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory, IT-13(2),
260-269.

Parameter Estimation (slides):
http://jan.stanford.edu/fsnlp/statest/henke-ch6.ppt
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Other References

"Introduction to Information Retrieval", Christopher D. Manning, Prabhakar Raghavan
and Hinrich Schu̧tze, Cambridge University Press. 2008. Chapter 12.
http://www-csli.stanford.edu/ hinrich/information-retrieval-book.html.

Rabiner, Lawrence. "First Hand: The Hidden Markov Model". IEEE Global History
Network. Retrieved 2 October 2013. at
http://www.ieeeghn.org/wiki/index.php/

First-Hand:The_Hidden_Markov_Model

Applet at: http://www.cs.umb.edu/ srevilak/viterbi/
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Exercise

Consider a two-bit register. The register has four possible states: 00, 01, 10 and 11. Initially, at
time 0, the contents of the register is chosen at random to be one of these four states, each with
equal probability. At each time step, beginning at time 1, the register is randomly manipulated
as follows: with probability 1/2, the register is left unchanged; with probability 1/4, the two
bits of the register are exchanged (e.g., 01 becomes 10); and with probability 1/4, the right bit
is flipped (e.g., 01 becomes 00). After the register has been manipulated in this fashion, the left
bit is observed. Suppose that on the first three time steps, we observe 0, 0, 1.

Show how the register can be formulated as an HMM. What is the probability of
transitioning from every state to every other state? What is the probability of observing
each output (0 or 1) in each state?

What is the probability of being in each state at time t after observing only the first t bits,
for t = 1,2,3.
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