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Real-valued Vector Space

Vector Space definition:

A vector space is a set V of objects called vectors x =


x1
·
·
·

xn

= |x〉

where we can simply refer to a vector by x, or using the specific realization
called column vector, (Dirac notation |x〉)
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Real-valued Vector Space

Vector Space definition:

A vector space need to satisfy the following axioms:

Sum
To every pair, x and y, of vectors in V
there corresponds a vector x+y, called the
sum of x and y, in such a way that:

1 sum is commutative, x+ y = y+ x
2 sum is associative,

x+
(
y+ z

)
=
(
x+ y

)
+ z

3 there exist in V a unique vector Φ

(called the origin) such that
x+Φ = x ∀x ∈ V

4 ∀x ∈ V there corresponds a unique
vector −x such that x+(−x) = Φ

Scalar Multiplication

To every pair α and x, where α is a scalar
and x ∈ V , there corresponds a vector αx,
called the product of α and x, in such a
way that:

1 associativity α(βx) = (αβ )x
2 1x = x ∀x ∈ V
3 mult. by scalar is distributive wrt.

vector addition α
(
x+ y

)
= αx+αy

4 mult. by vector is distributive wrt.
scalar addition (α +β )x = αx+βx
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Vector Operations

Sum of two vector x and y

x+y = |x〉+ |y〉=


x1 + y1
·
·
·

xn + yn



Linear combination
y = c1x1 + · · ·+ cnxn

or
|y〉= c1|x1〉+ · · ·+ cn|xn〉

Multiplication by scalar α

αx = α|x〉=


αx1
·
·
·

αxn
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Linear dependence

Conditions for linear dependence

A set o vectors {x1, . . . ,xn} are linearly dependent if there a set constant
scalars c1, . . . ,cn exists, not all 0, such that:

c1x1 + · · ·+ cnxn = 0

Conditions for linear independence

A set o vectors {x1, . . . ,xn} are linearly independent if and only if the linear
condition c1x1 + · · ·+ cnxn = 0 is satisfied only when c1 = c2 = · · ·= cn = 0
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Basis

Definition:

A basis for a space is a set of n linearly independent vectors in a
n-dimensional vector space Vn.

This means that every arbitrary vector x ∈ V can be expressed as linear
combination of the basis vectors,

x = c1x1 + · · ·+ cnxn

where the ci are called the co-ordinates of x wrt. the basis set {x1, . . . ,xn}
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Inner Product

Definition:

Is a real-valued function on the cross product Vn×Vn associating with each
pair of vectors

(
x,y
)

a unique real number.
The function (., .) has the following properties:

1 (x,y) = (y,x)
2 (x,λy) = λ (x,y)
3 (x1 + x2,y) = (x1,y)+(x2,y)
4 (x,x)≥ 0 and (x,x) = 0 iff x = 0

Standard Inner Product

(x,y) =
n

∑
i=1

xiyi

Other notations

xTy where xT is the transpose of x

〈x|y〉 or sometimes 〈x||y〉 in Dirac notation
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Norm

Geometric interpretation

Geometrically the norm represent the
length of the vector

Definition

The norm id a function
||.|| from Vn to R

Euclidean Norm:

||x||=
√

(x,x) =
√

∑
n
i=1 x2

i =
(
x2

1 + · · ·+ x2
n
)1/2

Properties
1 ||x|| ≥ 0 and ||x||= 0 if and only if x = 0
2 ||αx||= |α| ||x|| for all α and x
3 ∀x,y, ||(x,y)|| ≤ ||x|| ||y|| (Cauchy-Schwartz)

A vector x ∈ Vn is a unit
vector, or normalsized,
when ||x||= 1
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From Norm to distance

In Vn we can define the distance between two vectors x and y as:

d(x,y) = ||x− y||=
√
(x− y,x− y) =

(
(x1− y1)

2 + · · ·+(xn− yn)
2
)1/2

These measure, noted sometimes as ||x− y||22, is also named Euclidean
distance.

Properties:

d(x,y)≥ 0 and d(x,y) = 0 if and only if x = y

d(x,y) = d(y,x) symmetry
d(x,y) =≤ d(x,z)+d(z,y) triangle inequality
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From Norm to distance

An immediate consequence of Cauchy-Schwartz property is that:

−1≤ (x,y)
||x|| ||y|| ≤ 1

and therefore we can express it as:

(x,y) = ||x|| ||y||cosϕ 0≤ ϕ ≤ π

where ϕ is the angle between the two vectors x and y

Cosine distance

cosϕ =
(x,y)
||x|| ||y|| =

n

∑
i=1

xiyi√
n

∑
i=1

x2
i ·

√
n

∑
i=1

y2
i

If the vectors x, y have the norm
equal to 1 then:

cosϕ =
n

∑
i=1

xiyi = (x,y)
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Ortogonality

Definition

x and y are ortogonal if and only if (x,y) = 0

Orthonormal basis

A set of linearly independent vectors {x1, . . . ,xn} constitutes an orthonormal
basis for the space Vn if and only if

xi,xj = δij =

(
1 if i = j
0 if i 6= j

)
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Similarity

Applications to texts

Document clusters provide often a structure for organizing large bodies of
texts for efficient searching and browsing.
For example, recent advances in Internet search engines (e.g.,
http://vivisimo.com/, http://metacrawler.com/) exploit document cluster
analysis.

Document and vectors
For this purpose, a document is commonly represented as a vector consisting
of the suitably normalized frequency counts of words or terms.
Each document typically contains only a small percentage of all the words
ever used. If we consider each document as a multi-dimensional vector and
then try to cluster documents based on their word contents, the problem
differs from classic clustering scenarios in several ways.
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Text Classification

TC: Definition

Given:
a set of target categories, C = {C1, ...,Cn}:
the set T of documents,

define a function: f : T← 2C

Vector Space Model (Salton89)

Features are dimensions of a Vector Space.
Documents d and Categories Ci are mapped to vectors of feature weights (d
and Ci, respectively).
Geometric Model of f ():
A document d is assigned to a class Ci if (d,Ci)> τi
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Text Classification: Vector Space Modeling

In Vector Space Model documents words corresponds to the space
(orthonormal) basis, and individual texts are mapped into vectors ...
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Text Classification: Classification Inference

Categories are also vectors and consine similarity measures can support the
final inference about category membership, e.g. d1 ∈ C1 and d2 ∈ C2:
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The Rocchio TC model

A simple model for Text Classification

Motivation
Rocchio’s is one of the first and simple models for supervised text
classification where:

document vectors are weighted according to a standard function, called
tf · idf ,

category vectors, C1, ...,Cn, are obtained by averaging the behaviour of
the training examples.

We thus need to define a weighting function: ω(w,d) for individual words w
in documents d and a method to design a category vector, i.e. a profile, as a
linear combination of document vectors.

Similarity

Once vectors for documents and Category profiles (Ci) are made available
than the standard cosine similarity is adopted for inferencing, i.e. again a
document d is assigned to a class Ci if (d,Ci)> τi
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The Rocchio TC model

Term weighting through tf · idf

Every term w in a document d, as a feature f , receives a weight in the vector
representation d that accounts for the occurrences of w in d as well as the
occurrences in other documents of the collection.

Definition

A word w has a weight ω(w,d) in a document d defined as

ω(w,d) = ω
d
w = od

w · log
N
Nw

where:
N is the overall number of documents,
Nw is the number of documents that contain the word w and

od
w is the number of occurrences of w in d
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The Rocchio TC model

Term weighting through tf · idf

The weight ωd
w of term w in document d is called tf · idf as:

Term Frequency, tf d
w

The term frequency od
w emphasize terms that are cally relevant for a

document. Its normalizd version

tf d
w =

od
w

maxx∈dod
x

is often employed.

Inverse Document Frequency, idfw

The inverse document frequency log N
Nw

emphasizes only terms that are
relatively not frequent in the corpus, by discarding common words that are
not characterizing any specific subset of a collection. Notice how when w
occurs in every document d then Nw = N so that idfw = log N

Nw
= 0
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occurs in every document d then Nw = N so that idfw = log N

Nw
= 0
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The Rocchio TC model

Representing Categories: the Rocchio model

The last step in providing a geometric account of text categorization is
related to the represetation of a category Ci.

Definition: Category Profile

A word w has a weight Ω(w,Ci) in a document category vector Ci defined
as:

Ω(w,Ci) = Ω
i
w = max

{
0,

β

|Ti| ∑
d∈Ti

ω
d
w−

γ

|Ti| ∑
d∈Ti

ω
d
w

}
where Ti is the set of training documents classified in Ci and Ti are the set of
training document not classified in Ci
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The Rocchio TC model

Rocchio: document and category vectors

Document and Category vectors are derived from the weights assigned to all
the words in the vocabulary of a given collection.
A word is added to the vocabulary V whenever it appears in at least one
document, altough several feature selection methods can be applied.

Category Profile, Ci

Ci =


Ωi

1
·
·
·

Ωi
M



Document Vector, d

d =


ωd

1
·
·
·

ωd
M
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The Rocchio TC model

Bidimensional View of Rocchio: training set

Given two classes of training vectors, red and blue instances:
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The Rocchio TC model

Bidimensional View of Rocchio: training

Category profiles describe the average behaviour of one class:
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The Rocchio TC model

Bidimensional View of Rocchio: novel input instances

The cosine distances with the new input instance d are inversely proportional
to the size of the angle between Ci and ud:
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The Rocchio TC model

Bidimensional View of Rocchio: classifying

As (d,Cred)< (d,Cblue) the new document d is lastly classified in the class
of blue instances.
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The Rocchio TC model

Limitation of the Rocchio: polymorphism

Prototype-based models have problems with polymorphic (i.e. disjunctive)
categories.
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Memory Based Learning

Memory-based Learning

Memory-based learning: learning is just storing the representations of the
training examples in the collection T .

Overview of MBL

The task is again:
Testing instance x:
Compute similarity between x and all examples in D.
Assign x the category of the most similar example in D.

Does not explicitly compute a generalization or category prototypes.

Variants of MBL

The general perspective of MBL is also called:
Case-based
Memory-based
Lazy learning
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Memory Based Learning

MBL as Nearest Neighborough Voting

Labeled instances provides a rich description of a newly incoming instance
within the space region close enogh to the new example.
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Memory Based Learning

k-NN classification (k=5)

Whenever only the k instances closest to the example are used the k-NN
algorithm is obtained through the voting across k labeled instances.
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Memory Based Learning

k-NN: the algorithm

For each each training example < x,c(x)>∈ D
Compute the corresponding TF-IDF vector, x, for document x.

Test instance y:
Compute TF-IDF vector y for document y.
For each < x,c(x)>∈ D

sx = cosSim(y,x) =
(y,x)
||x|| · ||y||

Sort examples x ∈ D by decreasing values of sx.
Let kNN be the set of the closest (i.e. first) k examples in D.

RETURN the majority class of examples in kNN.



Overview Vectors Inner Product and Norms Distance, similarity and classification A digression: IT Probabilistic Norms References

Memory Based Learning

Similarity

The role of similarity among vectors

In most of the examples above, document data are espressed as
high-dimensional vectors, characterized by very sparse term-by-document
matrices with positive ordinal attribute values and a significant amount of
outliers.

In such situations, one is truly faced with the ‘curse of
dimensionality’ issue since, even after feature reduction, one is left with
hundreds of dimensions per object.
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Memory Based Learning

Similarity and dimensionality reduction

Clustering can be applied to documents to redce the dimensions to take into
account. Key cluster analysis activities can be thus devised:

Clustering steps

Representation of raw objects (i.e. documents) into vectors of
properties with real-valued scores (term weights)

Definition of a proximity measure

Clustering algorithm
Evaluation
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Memory Based Learning

Similarity and Clustering

Clustering is a complex process as it requires a search within the set of all
possible subsets. A well-known example of clustering algorithm is k-mean.
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Memory Based Learning

Similarity

Clustering steps

To obtain features X ∈F from the raw objects, a suitable object
representation has to be found.

Given an objext O ∈D , we will refer to such a representation as the
feature vector x of X.
In the second step, a measure of proximity S ∈S has to be defined
between objects, i.e. S : D2→ R. The choice of similarity or distance
can have a deep impact on clustering quality.
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Memory Based Learning

Minkowski distances

Minkowski distances

The Minkowski distances Lp(x,y) defined as:

Lp(x,y) = p

√
n

∑
i=1
|xi− yi|p

are the standard metrics for geometrical problems.

Euclidean Distance

For p = 2 we obtain the Euclidean distance, d(x,y) = ‖x− y‖2
2.
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Distances and similarities

Minkowski distances

There are several possibilities for converting an Lp(x,y) distance metric (in
[0, inf), with 0 closest) into a similarity measure (in [0,1], with 1 closest) by
a monotonic decreasing function.

Relation between distances and similarities
For Euclidean space, we chose to relate distances d and similarities s using

s = e−d2

Consequently, the Euclidean [0,1]-normalized similarity is defined as:

s(E)(x,y) = e−‖x−y‖22
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Distances and similarities

Pearson Correlation

Pearson Correlation
In collaborative filtering, correlation is often used to predict a feature from a
highly similar mentor group of objects whose features are known.
The [0,1]-normalized Pearson correlation is defined as:

s(P)(x,y) =
1
2

(
(x− x̄)T(y− ȳ)
‖x− x̄‖2 · ‖y− ȳ‖2

+1

)
,

where x̄ denotes the average feature value of x over all dimensions.
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Distances and similarities

Pearson Correlation

Pearson Correlation
The [0,1]-normalized Pearson correlation can also be seen as a probabilistic
measure as in:

s(P)(x,y) = rxy =
∑(xi− x̄)(yi− ȳ)

(n−1)sxsy
,

where x̄ denotes the average feature value of x over all dimensions, and sx
and sy are the standard deviations of x and y, respectively.

The correlation is defined only if both of the standard deviations are finite
and both of them are nonzero. It is a corollary of the Cauchy-Schwarz
inequality that the correlation cannot exceed 1 in absolute value. The
correlation is 1 in the case of an increasing linear relationship, -1 in the case
of a decreasing linear relationship, and some value in between in all other
cases, indicating the degree of linear dependence between the variables.
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Distances and similarities

Pearson Correlation
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Distances and similarities

Jaccard Similarity

Binary Jaccard Similarity

The binary Jaccard coefficient measures the degree of overlap between two
sets and is computed as the ratio of the number of shared features of x AND
y to the number possessed by x OR y.

Example

For example, given two sets’ binary indicator vectors x = (0,1,1,0)T and
y = (1,1,0,0)T , the cardinality of their intersect is 1 and the cardinality of
their union is 3, rendering their Jaccard coefficient 1/3.

The binary Jaccard coefficient it is often used in retail market-basket
applications.
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Distances and similarities

Extended Jaccard Similarity

Extended Jaccard Similarity

The extended Jaccard coefficient is the generalized notion of the binary case
and it is computed as:

s(J)(x,y) =
xTy

‖x‖2
2 +‖y‖2

2− xTy
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Distances and similarities

Dice coefficient

Dice coefficient

Another similarity measure highly related to the extended Jaccard is the Dice
coefficient:

s(D)(x,y) =
2xTy

‖x‖2
2 +‖y‖2

2

The Dice coefficient can be obtained from the extended Jaccard coefficient

by adding xTy to both the numerator and denominator.
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Discussion

Similarity: discussion

Scale and Translation invariance
Euclidean similarity is translation invariant ...

but scale sensitive while cosine is translation sensitive but scale invariant.
The extended Jaccard has aspects of both properties as illustrated in figure.
Iso-similarity lines at s = 0.25, 0.5 and 0.75 for points x = (3,1)T and
y = (1,2)T are shown for Euclidean, cosine, and the extended Jaccard.
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Discussion

Similarity: discussion

Thus, for s(J)→ 0, extended Jaccard behaves like the cosine measure, and
for s(J)→ 1, it behaves like the Euclidean distance
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Discussion

Similarity: discussion

Similarity in Clustering

In traditional Euclidean k-means clustering the optimal cluster representative
c` minimizes the sum of squared error criterion, i.e.,

c` = argmin
z̄∈F ∑

xj∈C`

‖xj− z̄‖2
2

Any convex distance-based objective can be translated and extended to the
similarity space.
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Discussion

Similarity: discussion

Swtiching from distances to similarity

Consider the generalized objective function f (C`, z̄) given a cluster C` and a
representative z̄:

f (C`, z̄) = ∑
xj∈C`

d(xj, z̄)
2 = ∑

xj∈C`

‖x− z̄‖2
2.

We use the transformation s = e−d2
to express the objective in terms of

similarity rather than distance:

f (C`, z̄) = ∑
xj∈C`

− log(s(xj, z̄))



Overview Vectors Inner Product and Norms Distance, similarity and classification A digression: IT Probabilistic Norms References

Discussion

Similarity: discussion

Switching from distances to similarity

Finally, we simplify and transform the objective using a strictly monotonic
decreasing function. Instead of minimizing f (C`, z̄), we maximize

f ′(C`, z̄) = e−f (C`,z̄)

Thus, in the similarity space, the least squared error representative c` ∈F

for a cluster C` satisfies:

c` = argmax
z̄∈F ∏

xj∈C`

s(xj, z̄)

Using the concave evaluation function f ′, we can obtain optimal
representatives for non-Euclidean similarity spaces S .
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Discussion

Similarity: discussion

To illustrate the values of the evaluation function f ′({x1,x2},z) are used to
shade the background in the figure below.

The maximum likelihood representative of x1 and x2 is marked with a ?.
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Discussion

Similarity: discussion

For cosine similarity all points on the equi-similarity are optimal
representatives. In a maximum likelihood interpretation, we constructed the
distance similarity transformation such that

p(z̄|c`)∼ s(z̄,c`)
Consequently, we can use the dual interpretations of probabilities in
similarity space S and errors in distance space R.



Overview Vectors Inner Product and Norms Distance, similarity and classification A digression: IT Probabilistic Norms References

Information Theory

Let ξ be a discrete stochastic variable with a finite range Ωξ = {x1, ...,xM}
and let pi = p(xi) be the corresponding probabilities.

How much information is there in knowing the outcome of ξ ?

Or equivalently:

How much uncertainty arises if the outcome ξ is unknown?

This is the information needed to specify which of the xi has occurred. The
problem is writing ξ .
Let us assume further that we only have a small set of symbols
A = {ak : k = 1, ...D}, that is a coding alphabet.
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Entropy

Uncertainty of ξ

The uncertainty introduced by the random variable ξ will be taken to be the
expectation value of the number of digits required to specify its outcome.

This is the expectation value of − log2 P(ξ ), i.e.

E[− log2 P(ξ )] = ∑
i
−pi log2 pi
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This is the expectation value of − log2 P(ξ ), i.e.

E[− log2 P(ξ )] = ∑
i
−pi log2 pi
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Entropy

Entropy

The entropy H[ξ ] of ξ is precisely the amount of uncertainty introduced by
the random variable ξ and it is more often referred to a natural logarithm
ln(.), so that

H[ξ ] = E[− lnp(ξ )] = ∑
xi∈Ωξ

−p(xi) lnp(xi) =
M

∑
i
−pi lnpi
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Entropy

Example 1: Dado

In the Dado example, ∀i = 1, ...,6, it follows that pi =
1
6 .

H[ξ ] = E[− lnp(ξ )] = ∑
xi∈Ωξ

−p(xi) lnp(xi) = 6 · 1
6

ln6 = 1,792

Example 2: Dado Perdente

A loosing Die: p1 = 1.00, and ∀i = 2, ...,6, pi = 0.

H[ξ ] = E[− lnp(ξ )] = ∑
xi∈Ωξ

−p(xi) lnp(xi) = 1ln1 = 0
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Entropy

Consequence

Given a distribution pi (i = 1, , ...,M) for a discrete random variable ξ then
for any other distribution qi (i = 1, , ...,M) over the same sample space Ωξ

it follows that:

H[ξ ] =−
M

∑
i

pi lnpi ≤−
M

∑
i

pi lnqi

where equality holds iff the two distribution are the same, i.e.
∀i = 1, ...,M pi = qi
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Joint-Entropy

Given two random variable ξ and η :

Joint-Entropy

the joint entropy of ξ and η is defined as:

H[ξ ,η ] =−
M

∑
i=1

L

∑
j=1

p(xi,yj) lnp(xi,yj)

= H[η ,ξ ]
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Conditional-entropy

Conditional Entropy

the conditional entropy H[ξ |η ] of ξ and η is defined as:

H[ξ |η ] = −
L

∑
j=1

p(yj)
M

∑
i=1

p(xi|yj) lnp(xi|yj) =

= −
L

∑
j=1

M

∑
i=1

p(xi,yj) lnp(xi|yj)
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Conditional and joint entropy

Conditional and Joint Entropy

The conditional and joint entropies are related just like the conditional and
joint probabilities:

H[ξ ,η ] = H[η ]+H[ξ |η ]

Conveyed Information

The information conveyed by η , denoted I[ξ |η ], is the reduction in entropy
of ξ by finding out the outcome of η . This is defined by:

I[ξ |η ] = H[ξ ]−H[ξ |η ]
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Mutual Information

Mutual Information

Given two random variable ξ and η :

Mutual Information

the mutual information between ξ and η is defined as:

MI[ξ ,η ] = E[ln
P(ξ ,η)

P(ξ ) ·P(η)
] =

= ∑
(x,y)∈Ω(ξ ,η)

f(ξ ,η)(x,y) ln
f(ξ ,η)(x,y)
fξ (x) · fη(y)
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Mutual Information

Mutual Information

Mutual Information measures the amount of information about a random
variable ξ an observer receives when the outcome of a random variable η is
available.

How much information about the source output xi does an observer gain by
knowing the channel output yj?
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Mutual Information

Mutual Information

Mutual Information measures the amount of information about a random
variable ξ an observer receives when the outcome of a random variable η is
known, in fact:

Mutual Information

MI[ξ ,η ] = H[ξ ]−H[ξ |η ] =

= ∑
(x,y)∈Ω(ξ ,η)

f(ξ ,η)(x,y) ln
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Mutual Information

Pointwise Mutual Information

Another way to look to mutual information is about the individual values
(i.e. outcomes) ξ = xi and η = yj.

Pointwise Mutual Information

Given the two random variable ξ and η : the pointwise mutual information
between ξ = xi and η = yj is defined as:

MI[xi,yj] = f(ξ ,η)(xi,yj) ln
f(ξ ,η)(xi,yj)

fξ (xi) · fη(yj)
= P(xi,yj) ln

P(xi,yj)

P(xi) ·P(yj)
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Mutual Information

Pointwise Mutual Information

Pointwise Mutual Information (pmi)

MI[xi,yj] = P(xi,yj) ln
P(xi,yj)

P(xi) ·P(yj)

Use of the pmi

If MI[xi,yj]>> 0, there is a strong correlation between xi and yj
If MI[xi,yj]<< 0, there is a strong negative correlation.
When MI[xi,yj]≈ 0 the two outcomes are almost independent.
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Probabilstic Norms

Cross-entropy

Cross-entropy

If we have two distributions (collections of probabilities) p(x) and q(x) on
Ωξ , then the cross entropy of p with respect to q is given by:

Hp[q] =− ∑
x∈Ωξ

p(x) lnq(x)

Minimality

Hp[q] =− ∑
x∈Ωξ

p(x) lnq(x)≥− ∑
x∈Ωξ

p(x) lnp(x) ∀q

implies that the cross entropy of a distribution q w.r.t. another distribution p
is minimal when q is identical to p.
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Probabilstic Norms

Cross-entropy as a Norm

Cross-entropy

Hp[q] =− ∑
x∈Ωξ

p(x) lnq(x)

Relative Entropy (or Kullback-Leibler distance)

D[p||q] = ∑
x∈Ωξ

p(x) ln
p(x)
q(x)

= Hp[q]−H[p]
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Probabilstic Norms

Cross-entropy as a Norm

Cross-entropy
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Probabilstic Norms

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

D[p||q] = ∑
x∈Ωξ

p(x) ln
p(x)
q(x)

= Hp[q]−H[p]

KL distance: properties

D[p||q]≥ 0 ∀q

D[p||q] = 0 iff q = p
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Probabilstic Norms

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

D[p||q] = ∑
x∈Ωξ

p(x) ln
p(x)
q(x)

= Hp[q]−H[p]

KL distance as a norm?
Unfortunately, as

D[p||q] 6= D[q||p]

the KL distance is not a valid metric in the classical terms. It is a measure of
the dissimilarity between p and q.
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Probabilstic Norms

Norms, Similarity and Learning

Why ranking probability distributions is necessary?

During a learning process we need to figure out the circumstances (i.e. the state
of affairs of the world) under which a certain concept/class/property manifest.

This make a direct reference to the probability of some (stochastic) event.
Stochastic events are used to describe circumstances and properties.
Moreover, learning proceeds from experience, i.e. known facts or previous
classified examples, to rules, i.e. probability joint distributions over decisions
and circumstances
Learning in general means to induce the proper probability distributions
from the known examples. There are several many ways to do it!!!



Overview Vectors Inner Product and Norms Distance, similarity and classification A digression: IT Probabilistic Norms References

Probabilstic Norms

Norms, Similarity and Learning

Why ranking probability distributions is necessary?

During a learning process we need to figure out the circumstances (i.e. the state
of affairs of the world) under which a certain concept/class/property manifest.
This make a direct reference to the probability of some (stochastic) event.
Stochastic events are used to describe circumstances and properties.

Moreover, learning proceeds from experience, i.e. known facts or previous
classified examples, to rules, i.e. probability joint distributions over decisions
and circumstances
Learning in general means to induce the proper probability distributions
from the known examples. There are several many ways to do it!!!



Overview Vectors Inner Product and Norms Distance, similarity and classification A digression: IT Probabilistic Norms References

Probabilstic Norms

Norms, Similarity and Learning

Why ranking probability distributions is necessary?

During a learning process we need to figure out the circumstances (i.e. the state
of affairs of the world) under which a certain concept/class/property manifest.
This make a direct reference to the probability of some (stochastic) event.
Stochastic events are used to describe circumstances and properties.
Moreover, learning proceeds from experience, i.e. known facts or previous
classified examples, to rules, i.e. probability joint distributions over decisions
and circumstances

Learning in general means to induce the proper probability distributions
from the known examples. There are several many ways to do it!!!



Overview Vectors Inner Product and Norms Distance, similarity and classification A digression: IT Probabilistic Norms References

Probabilstic Norms

Norms, Similarity and Learning

Why ranking probability distributions is necessary?

During a learning process we need to figure out the circumstances (i.e. the state
of affairs of the world) under which a certain concept/class/property manifest.
This make a direct reference to the probability of some (stochastic) event.
Stochastic events are used to describe circumstances and properties.
Moreover, learning proceeds from experience, i.e. known facts or previous
classified examples, to rules, i.e. probability joint distributions over decisions
and circumstances
Learning in general means to induce the proper probability distributions
from the known examples. There are several many ways to do it!!!



Overview Vectors Inner Product and Norms Distance, similarity and classification A digression: IT Probabilistic Norms References

Probabilstic Norms

Norms, Similarity and Learning

Why ranking probability distributions is necessary?

During a learning process we need to figure out the circumstances (i.e. the state
of affairs of the world) under which a certain concept/class/property manifest.
This make a direct reference to the probability of some (stochastic) event.
Stochastic events are used to describe circumstances and properties.
Moreover, learning proceeds from experience, i.e. known facts or previous
classified examples, to rules, i.e. probability joint distributions over decisions
and circumstances
Learning in general means to induce the proper probability distributions
from the known examples. There are several many ways to do it!!!



Overview Vectors Inner Product and Norms Distance, similarity and classification A digression: IT Probabilistic Norms References

Probabilstic Norms

Norms, Similarity and Learning

Why ranking probability distributions is necessary?

Consequences. In general, we need to compare different inductive hypothesis
(IH), that are different probability distributions qi of the same decision,

In order to do it, we measure the agreement of our hypothesis with the
observations (i.e. a pool of annotated data kept aside, the held out, to validate
the different qi)
The result is an estimate of the similarity between the probability qi induced at
the i-th learning stage with the probability p characterizing the known
examples.
The KL divergence D[p||q] = Hp(q)−H(p) can be the suitable dissimilarity
function.
The probability q̂ (such that q̂ minimizes ∀iD[p||qi]) is returned.
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Probabilstic Norms

Further similarity measures

Vector similarities
Grefenstette (fuzzy) set-oriented similarity for capturing dependency
relations (head words)

Distributional (Probabilstic) similarities

Lin similarity (commonalities) (Dice like)

sim(x,y) =
2 · logP(common(x,y))

logP(x)+ logP(y)

Jensen-Shannon total divergence to the mean:

A(p,q) = D(p‖p+q
2

)+D(q‖p+q
2

)

α-skewed divergence (Lee, 1999): sα(p,q) = D(p‖αp+(1−α)q)
(α = 0,1 or 0.01)
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Vector Space Modeling References

Vectors, Operations, Norms and Distances

K. Van Rijesbergen, The Geometry of Information Retrieval, CUP Press,
2004.

Distances and Similarities
Alexander Strehl, Relationship-based Clustering and Cluster Ensembles for
High-dimensional Data Mining, PhD Dissertation, University of Texas at
Austin, 2002. URL:
http://www.lans.ece.utexas.edu/∼strehl/diss/htdi.html.

Nice collection of code and definitions

Sam- string metrics. URL:
http://www.dcs.shef.ac.uk/∼sam/stringmetrics.html.
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Probability and Information References

Elementary Information Theory

in (Krenn & Samuelsson, 1997), Brigitte Krenn, Christer Samuelsson,
The Linguist’s Guide to Statistics Don’t Panic, Univ. of Saarlandes,
1997.
URL: http://nlp.stanford.edu/fsnlp/dontpanic.pdf
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