Elementi di Teoria dell'Informazione

R. Basili

Corso di Web Mining e Retrieval a.a. 2008-9

March 23, 2010

《曰》 《聞》 《臣》 《臣》 三臣

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

- Information Theory
- Entropy
- Joint-Entropy and Conditional entropy
- Mutual Information
- Cross-Entropy and Norms

How much information is there in knowing the outcome of ξ ?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How much information is there in knowing the outcome of ξ ? Or equivalently:

How much uncertainty arises if the outcome ξ is unknown?

How much information is there in knowing the outcome of ξ ? Or equivalently:

How much uncertainty arises if the outcome ξ is unknown?

This is the information needed to specify which of the x_i has occurred. The problem is writing ξ .

How much information is there in knowing the outcome of ξ ? Or equivalently:

How much uncertainty arises if the outcome ξ is unknown?

This is the information needed to specify which of the x_i has occurred. The problem is writing ξ . Let us assume further that we only have a small set of symbols $A = \{a_k : k = 1, ...D\}$, that is a *coding alphabet*.

Thus each x_i will be represented by a string over A. Let us assume that ξ is *uniformly distributed*, i.e.

$$p_i = \frac{1}{M}$$
 $\forall i = 1, ..., M,$

▲□▶▲□▶▲□▶▲□▶ □ のQで

and that the coding alphabet is exactly $A = \{0, 1\}$.

Thus each x_i will be represented by a string over A. Let us assume that ξ is *uniformly distributed*, i.e.

$$p_i = \frac{1}{M}$$
 $\forall i = 1, ..., M,$

and that the coding alphabet is exactly $A = \{0, 1\}$. Thus, each x_i will be represented by a binary number. To use N binary digits to specify which x_i actually occurred means:

$$N: 2^{N-1} < M \le 2^N$$

Thus we need $N = \lceil \log_2 M \rceil$ digits. So what if the distribution is *nonuniform*, i.e., if the p_i s are not all equal?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

How much uncertainty does a possible outcome with probability introduce?

How much uncertainty does a possible outcome with probability introduce? The basic assumption is that p_i will introduce equally much uncertainty regardless of the rest of the probabilities p_j with $j \neq i$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

How much uncertainty does a possible outcome with probability introduce?

The basic assumption is that p_i will introduce equally much uncertainty regardless of the rest of the probabilities p_j with $j \neq i$.

We can thus reduce the problem to the case where all outcomes have probability p_i . In this case, there are $\frac{1}{p_i} = M_{p_i}$ possible outcomes.

How much uncertainty does a possible outcome with probability introduce?

The basic assumption is that p_i will introduce equally much uncertainty regardless of the rest of the probabilities p_i with $j \neq i$.

We can thus reduce the problem to the case where all outcomes have probability p_i . In this case, there are $\frac{1}{p_i} = M_{p_i}$ possible outcomes.

Example: if $p_i \approx 1$ then $M_{p_i} \approx 1$.

How much uncertainty does a possible outcome with probability introduce? We can thus reduce the problem to the case where all outcomes have probability p_i . In this case, there are $\frac{1}{p_i} = M_{p_i}$ possible outcomes.

How much uncertainty does a possible outcome with probability introduce?

We can thus reduce the problem to the case where all outcomes have probability p_i . In this case, there are $\frac{1}{p_i} = M_{p_i}$ possible outcomes.

For a binary coding alphabet, we thus need

$$\log_2 M_{p_i} = \log_2 \frac{1}{p_i} = -\log_2 p_i$$

binary digits to specify that the outcome was x_i . Thus, the uncertainty introduced by p_i is in the general case

$$-\log_2 p_i$$

Uncertainty of ξ

The uncertainty introduced by the random variable ξ will be taken to be the *expectation value of the number of digits* required to specify its outcome.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Uncertainty of ξ

The uncertainty introduced by the random variable ξ will be taken to be the *expectation value of the number of digits* required to specify its outcome. This is the expectation value of $-\log_2 P(\xi)$, i.e.

$$E[-\log_2 P(\xi)] = \sum_i -p_i \log_2 p_i$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Entropy

The entropy $H[\xi]$ of ξ is precisely the amount of uncertainty introduced by the random variable ξ and it is more often referred to a natural logarithm ln(.), so that

$$H[\xi] = E[-\ln p(\xi)] = \sum_{x_i \in \Omega_{\xi}} -p(x_i)\ln p(x_i) = \sum_{i}^{M} -p_i \ln p_i$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Example 1: Dado

In the Dado example, $\forall i = 1, ..., 6$, it follows that $p_i = \frac{1}{6}$.

$$H[\xi] = E[-\ln p(\xi)] = \sum_{x_i \in \Omega_{\xi}} -p(x_i)\ln p(x_i) = 6 \cdot \frac{1}{6}\ln 6 = 1,792$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example 1: Dado

In the Dado example, $\forall i = 1, ..., 6$, it follows that $p_i = \frac{1}{6}$.

$$H[\xi] = E[-\ln p(\xi)] = \sum_{x_i \in \Omega_{\xi}} -p(x_i)\ln p(x_i) = 6 \cdot \frac{1}{6}\ln 6 = 1,792$$

Example 2: Dado Perdente

A loosing Die: $p_1 = 1.00$, and $\forall i = 2, ..., 6, p_i = 0$.

$$H[\xi] = E[-\ln p(\xi)] = \sum_{x_i \in \Omega_{\xi}} -p(x_i) \ln p(x_i) = 1 \ln 1 = 0$$

Consequence

Given a distribution p_i (i = 1, ..., M) for a discrete random variable ξ then for any other distribution q_i (i = 1, ..., M) over the same sample space Ω_{ξ} it follows that:

$$H[\boldsymbol{\xi}] = -\sum_{i}^{M} p_{i} \ln p_{i} \leq -\sum_{i}^{M} p_{i} \ln q_{i}$$

where equality holds **iff** the two distribution are the same, i.e. $\forall i = 1, ..., M$ $p_i = q_i$

Given two random variable ξ and η :

Joint-Entropy

the *joint entropy* of ξ and η is defined as:

$$H[\xi, \eta] = -\sum_{i=1}^{M} \sum_{j=1}^{L} p(x_i, y_j) \ln p(x_i, y_j)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Given two random variable ξ and η :

Joint-Entropy

the *joint entropy* of ξ and η is defined as:

$$H[\xi, \eta] = -\sum_{i=1}^{M} \sum_{j=1}^{L} p(x_i, y_j) \ln p(x_i, y_j) = H[\eta, \xi]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Joint-Entropy

Mutual Information

Norms References

Conditional-entropy

Conditional Entropy

the *conditional entropy* $H[\xi|\eta]$ of ξ and η is defined as:

$$H[\xi|\eta] = -\sum_{j=1}^{L} p(y_j) \sum_{i=1}^{M} p(x_i|y_j) \ln p(x_i|y_j) = \\ = -\sum_{j=1}^{L} \sum_{i=1}^{M} p(x_i, y_j) \ln p(x_i|y_j)$$

▲□▶▲□▶▲□▶▲□▶ ■ のへ⊙

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Conditional and joint entropy

Conditional and Joint Entropy

The conditional and joint entropies are related just like the conditional and joint probabilities:

 $H[\xi,\eta]=H[\eta]+H[\xi|\eta]$

Conditional and joint entropy

Conditional and Joint Entropy

The conditional and joint entropies are related just like the conditional and joint probabilities:

$$H[\xi,\eta] = H[\eta] + H[\xi|\eta]$$

Conveyed Information

The *information conveyed* by η , denoted $I[\xi|\eta]$, is the reduction in entropy of ξ by finding out the outcome of η . This is defined by:

 $I[\boldsymbol{\xi}|\boldsymbol{\eta}] = H[\boldsymbol{\xi}] - H[\boldsymbol{\xi}|\boldsymbol{\eta}]$

Joint-Entropy

ヘロト 人間 とく ヨン くヨン

3

Conditional and joint entropy

Conditional and Joint Entropy

$$\begin{split} H[\xi,\eta] &= H[\eta] + H[\xi|\eta] \\ I[\xi|\eta] &= H[\eta] - H[\xi|\eta] \end{split}$$

Conditional and joint entropy

Conditional and Joint Entropy

$$\begin{split} H[\xi,\eta] &= H[\eta] + H[\xi|\eta] \\ I[\xi|\eta] &= H[\eta] - H[\xi|\eta] \end{split}$$

Consequences

Note that:

$$\begin{split} I[\xi|\eta] &= H[\xi] - H[\xi|\eta] = H[\xi] - (H[\xi,\eta] - H[\eta]) = \\ &= H[\xi] + H[\eta] - H[\xi,\eta] = H[\xi] + H[\eta] - H[\eta,\xi] = \\ &= H[\eta] + H[\xi] - H[\eta,\xi] = H[\eta] - H[\eta|\xi] = \\ &= I[\eta|\xi] \end{split}$$

Given two random variable ξ and η :

Mutual Information

the *mutual information* between ξ and η is defined as:

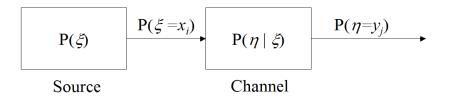
$$MI[\xi,\eta] = E[\ln \frac{P(\xi,\eta)}{P(\xi) \cdot P(\eta)}] =$$

=
$$\sum_{(x,y)\in\Omega_{(\xi,\eta)}} f_{(\xi,\eta)}(x,y) \ln \frac{f_{(\xi,\eta)}(x,y)}{f_{\xi}(x) \cdot f_{\eta}(y)}$$

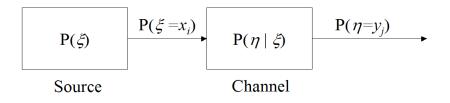
▲□▶▲□▶▲□▶▲□▶ □ のQで

Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is available.

Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is available.



Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is available.



How much information about the source output x_i does an observer gain by knowing the channel output y_j ?

Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is known, in fact:

Mutual Information

$$MI[\xi,\eta] = H[\xi] - H[\xi|\eta] =$$

=
$$\sum_{(x,y)\in\Omega_{(\xi,\eta)}} f_{(\xi,\eta)}(x,y) \ln \frac{f_{(\xi,\eta)}(x,y)}{f_{\xi}(x) \cdot f_{\eta}(y)}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is known, in fact:

Mutual Information

$$MI[\xi,\eta] = H[\xi] - H[\xi|\eta] =$$

=
$$\sum_{(x,y)\in\Omega_{(\xi,\eta)}} f_{(\xi,\eta)}(x,y) \ln \frac{f_{(\xi,\eta)}(x,y)}{f_{\xi}(x) \cdot f_{\eta}(y)}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Mutual Information

MI and H

$MI[\xi,\eta] = H[\xi] - H[\xi|\eta]$

loint-Entropy

Mutual Information

Norms Reference

▲□▶▲□▶▲□▶▲□▶ □ のQで

Mutual Information

MI and H

$$\begin{split} &MI[\xi,\eta]=H[\xi]-H[\xi|\eta]\\ &H[\xi,\eta]=H[\eta,\xi]\\ &H[\xi,\eta]=H[\eta]+H[\xi|\eta], \end{split}$$

Joint-Entropy

Mutual Information

orms Reference

Mutual Information

MI and H

$$\begin{split} &MI[\xi,\eta] = H[\xi] - H[\xi|\eta] \\ &H[\xi,\eta] = H[\eta,\xi] \\ &H[\xi,\eta] = H[\eta] + H[\xi|\eta], \end{split}$$

$$H[\xi|\eta] = H[\xi,\eta] - H[\eta]$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Joint-Entropy

Mutual Information

orms References

Mutual Information

MI and H

$$egin{aligned} &MI[\xi,\eta] = H[\xi] - H[\xi|\eta] \ &H[\xi,\eta] = H[\eta,\xi] \ &H[\xi,\eta] = H[\eta] + H[\xi|\eta], \ &H[\xi|\eta], \end{aligned}$$

$$H[\xi|\eta] = H[\xi,\eta] - H[\eta]$$

Symmetry

Note that mutual information is symmetric in ξ and η , that is $MI[\xi, \eta] = MI[\eta, \xi]$, as

$$H[\xi] - H[\xi|\eta] = H[\xi] + H[\eta] - H[\xi,\eta] = H[\eta] - H[\eta|\xi]$$

▲□▶▲□▶▲□▶▲□▶ ■ のへの

oint-Entropy

Pointwise Mutual Information

Another way to look to mutual information is about the individual values (i.e. outcomes) $\xi = x_i$ and $\eta = y_j$.

Joint-Entropy

・ロ・・ 日・・ 日・・ 日・・ つくつ

Pointwise Mutual Information

Another way to look to mutual information is about the individual values (i.e. outcomes) $\xi = x_i$ and $\eta = y_j$.

Pointwise Mutual Information

Given the two random variable ξ and η : the *pointwise mutual information* between $\xi = x_i$ and $\eta = y_j$ is defined as:

$$MI[x_i, y_j] = f_{(\xi, \eta)}(x_i, y_j) \ln \frac{f_{(\xi, \eta)}(x_i, y_j)}{f_{\xi}(x_i) \cdot f_{\eta}(y_j)}$$

Joint-Entropy

Pointwise Mutual Information

Another way to look to mutual information is about the individual values (i.e. outcomes) $\xi = x_i$ and $\eta = y_j$.

Pointwise Mutual Information

Given the two random variable ξ and η : the *pointwise mutual information* between $\xi = x_i$ and $\eta = y_j$ is defined as:

$$MI[x_i, y_j] = f_{(\xi, \eta)}(x_i, y_j) \ln \frac{f_{(\xi, \eta)}(x_i, y_j)}{f_{\xi}(x_i) \cdot f_{\eta}(y_j)} = P(x_i, y_j) \ln \frac{P(x_i, y_j)}{P(x_i) \cdot P(y_j)}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

int-Entropy

Mutual Information

ヘロト 人間 とくほとくほとう

3

Norms Reference

Pointwise Mutual Information

Pointwise Mutual Information (pmi)

$$MI[x_i, y_j] = P(x_i, y_j) \ln \frac{P(x_i, y_j)}{P(x_i) \cdot P(y_j)}$$

Joint-Entropy

Mutual Information

ms References

Pointwise Mutual Information

Pointwise Mutual Information (pmi)

$$MI[x_i, y_j] = P(x_i, y_j) \ln \frac{P(x_i, y_j)}{P(x_i) \cdot P(y_j)}$$

Use of the pmi

If $MI[x_i, y_j] >> 0$, there is a strong correlation between x_i and y_j If $MI[x_i, y_j] << 0$, there is a strong negative correlation. When $MI[x_i, y_j] \approx 0$ the two outcomes are almost independent.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへぐ

Perplexity

The *perplexity* of a random variable ξ is the exponential of its entropy, i.e.

 $Perp[\xi] = e^{H[\xi]}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Perplexity

The *perplexity* of a random variable ξ is the exponential of its entropy, i.e.

$$Perp[\xi] = e^{H[\xi]}$$

Example

Predicting the next *w* of a sequence of *n* words $w_k \in Dict$:

$$P(\xi_n = w | \xi_{n-1} = w_{n-1}, \xi_{n-2} = w_{n-2}, \dots, \xi_1 = w_1)$$

What is $Perp[(\xi_n, ..., \xi_1)]$? OSS: In case of a uniform distribution $P(\xi_n = w|...) = \frac{1}{|Dict|}$...

Cross-entropy

If we have two distributions (collections of probabilities) p(x) and q(x) on Ω_{ξ} , then the *cross entropy* of *p* with respect to *q* is given by:

$$H_p[q] = -\sum_{x \in \Omega_{\xi}} p(x) \ln q(x)$$

Cross-entropy

If we have two distributions (collections of probabilities) p(x) and q(x) on Ω_{ξ} , then the *cross entropy* of *p* with respect to *q* is given by:

$$H_p[q] = -\sum_{x \in \Omega_{\xi}} p(x) \ln q(x)$$

Minimality

$$H_p[q] = -\sum_{x \in \Omega_{\xi}} p(x) \ln q(x) \ge -\sum_{x \in \Omega_{\xi}} p(x) \ln p(x) \quad \forall q$$

implies that the cross entropy of a distribution q w.r.t. another distribution p is **minimal** when q is identical to p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

/ Joi

it-Entropy

Mutual Informatio

Norms Refere

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Cross-entropy as a Norm

Cross-entropy

$$H_p[q] = -\sum_{x \in \Omega_{\xi}} p(x) \ln q(x)$$

Joi

Entropy

Mutual Information

Norms References

Cross-entropy as a Norm

Cross-entropy

$$H_p[q] = -\sum_{x \in \Omega_{\xi}} p(x) \ln q(x)$$

Relative Entropy (or Kullback-Leibler distance)

$$D[p||q] = \sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)} = H_p[q] - H[p]$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

t-Entropy

Mutual Informatio

Norms References

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

$$D[p||q] = \sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)} = H_p[q] - H[p]$$

KL distance: properties

 $D[p||q] \ge 0 \quad \forall q$

・ロト・日本・日本・日本・日本・日本

t-Entropy

Mutual Informatio

Norms References

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

$$D[p||q] = \sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)} = H_p[q] - H[p]$$

KL distance: properties

$$D[p||q] \geq 0 \quad \forall q$$

$$D[p||q] = 0 \qquad \text{iff } q = p$$

・ロト・日本・日本・日本・日本・日本

t-Entropy

Mutual Informatic

Norms Refer

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

$$D[p||q] = \sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)} = H_p[q] - H[p]$$

int-Entropy

Mutual Information

Norms References

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

$$D[p||q] = \sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)} = H_p[q] - H[p]$$

KL distance as a norm?

Unfortunately, as

$D[p||q] \neq D[q||p]$

the KL distance is *not* a valid metric in the classical terms. It is a *measure of the dissimilarity* between p and q.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Norms, Similarity and Learning

Why ranking probability distributions is necessary?

• During a learning process we need to figure out the circumstances (i.e. the state of affairs of the world) under which a certain concept/class/property manifest.

(日)

Norms, Similarity and Learning

- During a learning process we need to figure out the circumstances (i.e. the state of affairs of the world) under which a certain concept/class/property manifest.
- This make a direct reference to the probability of some (stochastic) event. Stochastic events are used to describe circumstances and properties.

- During a learning process we need to figure out the circumstances (i.e. the state of affairs of the world) under which a certain concept/class/property manifest.
- This make a direct reference to the probability of some (stochastic) event. Stochastic events are used to describe circumstances and properties.
- Moreover, learning proceeds from experience, i.e. known facts or previous classified examples, to rules, i.e. probability joint distributions over *decisions* and *circumstances*

- During a learning process we need to figure out the circumstances (i.e. the state of affairs of the world) under which a certain concept/class/property manifest.
- This make a direct reference to the probability of some (stochastic) event. Stochastic events are used to describe circumstances and properties.
- Moreover, learning proceeds from experience, i.e. known facts or previous classified examples, to rules, i.e. probability joint distributions over *decisions* and *circumstances*
- Learning in general means to induce the proper probability distributions from the known examples. There are several many ways to do it!!!

- During a learning process we need to figure out the circumstances (i.e. the state of affairs of the world) under which a certain concept/class/property manifest.
- This make a direct reference to the probability of some (stochastic) event. Stochastic events are used to describe circumstances and properties.
- Moreover, learning proceeds from experience, i.e. known facts or previous classified examples, to rules, i.e. probability joint distributions over *decisions* and *circumstances*
- Learning in general means to induce the proper probability distributions from the known examples. There are several many ways to do it!!!

イロト 不得 とくほ とくほう

Norms, Similarity and Learning

Why ranking probability distributions is necessary?

• **Consequences.** In general, we need to compare different inductive hypothesis (*IH*), that are different probability distributions *q_i* of the same decision,

- **Consequences.** In general, we need to compare different inductive hypothesis (*IH*), that are different probability distributions *q_i* of the same decision,
- In order to do it, we measure the agreement of our hypothesis with the observations (i.e. a pool of annotated data kept aside, the *held out*, to validate the different q_i)

- **Consequences.** In general, we need to compare different inductive hypothesis (*IH*), that are different probability distributions *q_i* of the same decision,
- In order to do it, we measure the agreement of our hypothesis with the observations (i.e. a pool of annotated data kept aside, the *held out*, to validate the different q_i)
- The result is an estimate of the similarity between the probability *q_i* induced at the *i*-th learning stage with the probability *p* characterizing the known examples.

- **Consequences.** In general, we need to compare different inductive hypothesis (*IH*), that are different probability distributions *q_i* of the same decision,
- In order to do it, we measure the agreement of our hypothesis with the observations (i.e. a pool of annotated data kept aside, the *held out*, to validate the different q_i)
- The result is an estimate of the similarity between the probability *q_i* induced at the *i*-th learning stage with the probability *p* characterizing the known examples.
- The KL divergence $D[p||q] = H_p(q) H(p)$ can be the suitable dissimilarity function.

- **Consequences.** In general, we need to compare different inductive hypothesis (*IH*), that are different probability distributions *q_i* of the same decision,
- In order to do it, we measure the agreement of our hypothesis with the observations (i.e. a pool of annotated data kept aside, the *held out*, to validate the different q_i)
- The result is an estimate of the similarity between the probability *q_i* induced at the *i*-th learning stage with the probability *p* characterizing the known examples.
- The KL divergence D[p||q] = H_p(q) − H(p) can be the suitable dissimilarity function.
- The probability \hat{q} such that $\hat{q} = argmax_i D[p||q_i]$ is returned.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Overview	Information Theory	Entropy	Joint-Entropy	Mutual Information	Norms	Keterences
Norn	ı					
Wh	nat makes a fur	iction a r	norm? Any	binary mapping	g m	

between a set of objects $D \times D$ and the real numbes is a norm **iff**:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Axioms

• (*Positive*) $m(X, Y) \ge 0$ $\forall X, Y \in D$ whereas $m(X, Y) = 0 \rightarrow X = Y.$

Overview	Information Theory	Entropy	Joint-Entropy	Mutual Information	Norms	References
λ7						
Norm	,					

What makes a function a norm? Any binary mapping m between a set of objects $D \times D$ and the real numbes is a norm **iff**:

▲□▶▲□▶▲□▶▲□▶ □ のQで

Axioms

- (*Positive*) $m(X, Y) \ge 0$ $\forall X, Y \in D$ whereas $m(X, Y) = 0 \rightarrow X = Y$.
- (Simmetry) m(X, Y) = m(Y, X) $\forall X, Y \in D$

Overview	Information Theory	Entropy	Joint-Entropy	Mutual Information	Norms	References
Norm						

What makes a function a norm? Any binary mapping m between a set of objects $D \times D$ and the real numbes is a norm **iff**:

Axioms

- (*Positive*) $m(X, Y) \ge 0$ $\forall X, Y \in D$ whereas $m(X, Y) = 0 \rightarrow X = Y$.
- (Simmetry) m(X, Y) = m(Y, X) $\forall X, Y \in D$
- (Triangle inequality) $m(X,Y) \le m(X,Z) + m(Z,Y)$ $\forall X, Y, Z \in D$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Overview	Information Theory	Joint-Entropy	Mutual Information	Norms	References
Norm					

What makes a function a norm? Any binary mapping m between a set of objects $D \times D$ and the real numbes is a norm **iff**:

Axioms

- (*Positive*) $m(X, Y) \ge 0$ $\forall X, Y \in D$ whereas $m(X, Y) = 0 \rightarrow X = Y$.
- (Simmetry) m(X, Y) = m(Y, X) $\forall X, Y \in D$
- (Triangle inequality) $m(X,Y) \le m(X,Z) + m(Z,Y)$ $\forall X, Y, Z \in D$

Euclidean Norm

$$\sqrt[2]{\sum_{x\in\Omega(\xi)}(p(x)-q(x))^2}$$

Elementary Information Theory

 in (Krenn & Samuelsson, 1997), Brigitte Krenn, Christer Samuelsson, *The Linguist's Guide to Statistics Don't Panic*, Univ. of Saarlandes, 1997. URL:

http://nlp.stanford.edu/fsnlp/dontpanic.pdf

▲□▶▲□▶▲□▶▲□▶ □ のQで