Elementi di Teoria dell'Informazione

R. Basili
Corso di Web Mining e Retrieval
a.a. 2008-9

March 19, 2010

Outline

Outline

- Information Theory
- Entropy
- Joint-Entropy and Conditional entropy
- Mutual Information
- Cross-Entropy and Norms

Information Theory

Let ξ be a discrete stochastic variable with a finite range $\Omega_{\xi}=\left\{x_{1}, \ldots, x_{M}\right\}$ and let $p_{i}=p\left(x_{i}\right)$ be the corresponding probabilities.

How much information is there in knowing the outcome of ξ ?

Information Theory

Let ξ be a discrete stochastic variable with a finite range $\Omega_{\xi}=\left\{x_{1}, \ldots, x_{M}\right\}$ and let $p_{i}=p\left(x_{i}\right)$ be the corresponding probabilities.

How much information is there in knowing the outcome of ξ ?
Or equivalently:
How much uncertainty arises if the outcome ξ is unknown?

Information Theory

Let ξ be a discrete stochastic variable with a finite range $\Omega_{\xi}=\left\{x_{1}, \ldots, x_{M}\right\}$ and let $p_{i}=p\left(x_{i}\right)$ be the corresponding probabilities．

How much information is there in knowing the outcome of ξ ？
Or equivalently：
How much uncertainty arises if the outcome ξ is unknown？
This is the information needed to specify which of the x_{i} has occurred．The problem is writing ξ ．

Information Theory

Let ξ be a discrete stochastic variable with a finite range $\Omega_{\xi}=\left\{x_{1}, \ldots, x_{M}\right\}$ and let $p_{i}=p\left(x_{i}\right)$ be the corresponding probabilities．

How much information is there in knowing the outcome of ξ ？
Or equivalently：
How much uncertainty arises if the outcome ξ is unknown？
This is the information needed to specify which of the x_{i} has occurred．The problem is writing ξ ．
Let us assume further that we only have a small set of symbols $A=\left\{a_{k}: k=1, \ldots D\right\}$ ，that is a coding alphabet．

Information Theory

Thus each x_{i} will be represented by a string over A.
Let us assume that ξ is uniformly distributed, i.e.

$$
p_{i}=\frac{1}{M} \quad \forall i=1, \ldots, M,
$$

and that the coding alphabet is exactly $A=\{0,1\}$.

Information Theory

Thus each x_{i} will be represented by a string over A.
Let us assume that ξ is uniformly distributed, i.e.

$$
p_{i}=\frac{1}{M} \quad \forall i=1, \ldots, M,
$$

and that the coding alphabet is exactly $A=\{0,1\}$.
Thus, each x_{i} will be represented by a binary number. To use N binary digits to specify which x_{i} actually occurred means:

$$
N: 2^{N-1}<M \leq 2^{N}
$$

Thus we need $N=\left\lceil\log _{2} M\right\rceil$ digits.
So what if the distribution is nonuniform, i.e., if the $p_{i} \mathrm{~s}$ are not all equal?

Information Theory

How much uncertainty does a possible outcome with probability introduce？

Information Theory

How much uncertainty does a possible outcome with probability introduce？
The basic assumption is that p_{i} will introduce equally much uncertainty regardless of the rest of the probabilities p_{j} with $j \neq i$ ．

Information Theory

How much uncertainty does a possible outcome with probability introduce?
The basic assumption is that p_{i} will introduce equally much uncertainty regardless of the rest of the probabilities p_{j} with $j \neq i$.
We can thus reduce the problem to the case where all outcomes have probability p_{i}. In this case, there are $\frac{1}{p_{i}}=M_{p_{i}}$ possible outcomes.

Information Theory

How much uncertainty does a possible outcome with probability introduce?
The basic assumption is that p_{i} will introduce equally much uncertainty regardless of the rest of the probabilities p_{j} with $j \neq i$.
We can thus reduce the problem to the case where all outcomes have probability p_{i}. In this case, there are $\frac{1}{p_{i}}=M_{p_{i}}$ possible outcomes.
Example: if $p_{i} \approx 1$ then $M_{p_{i}} \approx 1$.

Information Theory

How much uncertainty does a possible outcome with probability introduce?
We can thus reduce the problem to the case where all outcomes have probability p_{i}. In this case, there are $\frac{1}{p_{i}}=M_{p_{i}}$ possible outcomes.

Information Theory

How much uncertainty does a possible outcome with probability introduce?
We can thus reduce the problem to the case where all outcomes have probability p_{i}. In this case, there are $\frac{1}{p_{i}}=M_{p_{i}}$ possible outcomes.
For a binary coding alphabet, we thus need

$$
\log _{2} M_{p_{i}}=\log _{2} \frac{1}{p_{i}}=-\log _{2} p_{i}
$$

binary digits to specify that the outcome was x_{i}.
Thus, the uncertainty introduced by p_{i} is in the general case

$$
-\log _{2} p_{i}
$$

Entropy

Uncertainty of ξ

The uncertainty introduced by the random variable ξ will be taken to be the expectation value of the number of digits required to specify its outcome．

Entropy

Uncertainty of ξ
The uncertainty introduced by the random variable ξ will be taken to be the expectation value of the number of digits required to specify its outcome．
This is the expectation value of $-\log _{2} P(\xi)$ ，i．e．

$$
E\left[-\log _{2} P(\xi)\right]=\sum_{i}-p_{i} \log _{2} p_{i}
$$

Entropy

Entropy

The entropy $H[\xi]$ of ξ is precisely the amount of uncertainty introduced by the random variable ξ and it is more often referred to a natural logarithm $\ln ($.$) ，so that$

$$
H[\xi]=E[-\ln p(\xi)]=\sum_{x_{i} \in \Omega_{\xi}}-p\left(x_{i}\right) \ln p\left(x_{i}\right)=\sum_{i}^{M}-p_{i} \ln p_{i}
$$

Entropy

Example 1：Dado
In the Dado example，$\forall i=1, \ldots, 6$ ，it follows that $p_{i}=\frac{1}{6}$ ．

$$
H[\xi]=E[-\ln p(\xi)]=\sum_{x_{i} \in \Omega_{\xi}}-p\left(x_{i}\right) \ln p\left(x_{i}\right)=6 \cdot \frac{1}{6} \ln 6=1,792
$$

Entropy

Example 1: Dado
In the Dado example, $\forall i=1, \ldots, 6$, it follows that $p_{i}=\frac{1}{6}$.

$$
H[\xi]=E[-\ln p(\xi)]=\sum_{x_{i} \in \Omega_{\xi}}-p\left(x_{i}\right) \ln p\left(x_{i}\right)=6 \cdot \frac{1}{6} \ln 6=1,792
$$

Example 2: Dado Perdente

A loosing Die: $p_{1}=1.00$, and $\forall i=2, \ldots, 6, p_{i}=0$.

$$
H[\xi]=E[-\ln p(\xi)]=\sum_{x_{i} \in \Omega_{\xi}}-p\left(x_{i}\right) \ln p\left(x_{i}\right)=1 \ln 1=0
$$

Entropy

Consequence

Given a distribution $p_{i} \quad(i=1, \ldots, M)$ for a discrete random variable ξ then for any other distribution $q_{i} \quad(i=1, \ldots, M)$ over the same sample space Ω_{ξ} it follows that:

$$
H[\xi]=-\sum_{i}^{M} p_{i} \ln p_{i} \leq-\sum_{i}^{M} p_{i} \ln q_{i}
$$

where equality holds iff the two distribution are the same, i.e.
$\forall i=1, \ldots, M \quad p_{i}=q_{i}$

Given two random variable ξ and η :
Joint-Entropy
the joint entropy of ξ and η is defined as:

$$
H[\xi, \eta]=-\sum_{i=1}^{M} \sum_{j=1}^{L} p\left(x_{i}, y_{j}\right) \ln p\left(x_{i}, y_{j}\right)
$$

Joint-Entropy

Given two random variable ξ and η :
Joint-Entropy
the joint entropy of ξ and η is defined as:

$$
H[\xi, \eta]=-\sum_{i=1}^{M} \sum_{j=1}^{L} p\left(x_{i}, y_{j}\right) \ln p\left(x_{i}, y_{j}\right)=H[\eta, \xi]
$$

Conditional－entropy

Conditional Entropy

the conditional entropy $H[\xi \mid \eta]$ of ξ and η is defined as：

$$
\begin{aligned}
H[\xi \mid \eta] & =-\sum_{j=1}^{L} p\left(y_{j}\right) \sum_{i=1}^{M} p\left(x_{i} \mid y_{j}\right) \ln p\left(x_{i} \mid y_{j}\right)= \\
& =-\sum_{j=1}^{L} \sum_{i=1}^{M} p\left(x_{i}, y_{j}\right) \ln p\left(x_{i} \mid y_{j}\right)
\end{aligned}
$$

Conditional and joint entropy

Conditional and Joint Entropy

The conditional and joint entropies are related just like the conditional and joint probabilities：

$$
H[\xi, \eta]=H[\eta]+H[\xi \mid \eta]
$$

Conditional and joint entropy

Conditional and Joint Entropy

The conditional and joint entropies are related just like the conditional and joint probabilities：

$$
H[\xi, \eta]=H[\eta]+H[\xi \mid \eta]
$$

Conveyed Information

The information conveyed by η ，denoted $I[\xi \mid \eta]$ ，is the reduction in entropy of ξ by finding out the outcome of η ．This is defined by：

$$
I[\xi \mid \eta]=H[\xi]-H[\xi \mid \eta]
$$

Conditional and joint entropy

Conditional and Joint Entropy

$$
\begin{gathered}
H[\xi, \eta]=H[\eta]+H[\xi \mid \eta] \\
I[\xi \mid \eta]=H[\eta]-H[\xi \mid \eta]
\end{gathered}
$$

Conditional and joint entropy

Conditional and Joint Entropy

$$
\begin{gathered}
H[\xi, \eta]=H[\eta]+H[\xi \mid \eta] \\
I[\xi \mid \eta]=H[\eta]-H[\xi \mid \eta]
\end{gathered}
$$

Consequences
Note that:

$$
\begin{aligned}
I[\xi \mid \eta] & =H[\xi]-H[\xi \mid \eta]=H[\xi]-(H[\xi, \eta]-H[\eta])= \\
& =H[\xi]+H[\eta]-H[\xi, \eta]=H[\xi]+H[\eta]-H[\eta, \xi]= \\
& =H[\eta]+H[\xi]-H[\eta, \xi]=H[\eta]-H[\eta \mid \xi]= \\
& =I[\eta \mid \xi]
\end{aligned}
$$

Mutual Information

Given two random variable ξ and η :
Mutual Information
the mutual information between ξ and η is defined as:

$$
\begin{aligned}
M I[\xi, \eta] & =E\left[\ln \frac{P(\xi, \eta)}{P(\xi) \cdot P(\eta)}\right]= \\
& =\sum_{(x, y) \in \Omega_{(\xi, \eta)}} f_{(\xi, \eta)}(x, y) \ln \frac{f_{(\xi, \eta)}(x, y)}{f_{\xi}(x) \cdot f_{\eta}(y)}
\end{aligned}
$$

Mutual Information

Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is available.

Mutual Information

Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is available.

Mutual Information

Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is available.

How much information about the source output x_{i} does an observer gain by knowing the channel output y_{j} ?

Mutual Information

Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is known, in fact:

Mutual Information

$$
\begin{aligned}
M I[\xi, \eta] & =H[\xi]-H[\xi \mid \eta]= \\
& =\sum_{(x, y) \in \Omega_{(\xi, \eta)}} f_{(\xi, \eta)}(x, y) \ln \frac{f_{(\xi, \eta)}(x, y)}{f_{\xi}(x) \cdot f_{\eta}(y)}
\end{aligned}
$$

Mutual Information

Mutual Information measures the amount of information about a random variable ξ an observer receives when the outcome of a random variable η is known, in fact:

Mutual Information

$$
\begin{aligned}
M I[\xi, \eta] & =H[\xi]-H[\xi \mid \eta]= \\
& =\sum_{(x, y) \in \Omega_{(\xi, \eta)}} f_{(\xi, \eta)}(x, y) \ln \frac{f_{(\xi, \eta)}(x, y)}{f_{\xi}(x) \cdot f_{\eta}(y)}
\end{aligned}
$$

Mutual Information

MI and H
$M I[\xi, \eta]=H[\xi]-H[\xi \mid \eta]$

Mutual Information

$$
\begin{aligned}
& M I \text { and } H \\
& M I[\xi, \eta]=H[\xi]-H[\xi \mid \eta] \\
& H[\xi, \eta]=H[\eta, \xi] \\
& H[\xi, \eta]=H[\eta]+H[\xi \mid \eta],
\end{aligned}
$$

Mutual Information

MI and H
$M I[\xi, \eta]=H[\xi]-H[\xi \mid \eta]$
$H[\xi, \eta]=H[\eta, \xi]$
$H[\xi, \eta]=H[\eta]+H[\xi \mid \eta]$,
$H[\xi \mid \eta]=H[\xi, \eta]-H[\eta]$

Mutual Information

MI and H
$M I[\xi, \eta]=H[\xi]-H[\xi \mid \eta]$
$H[\xi, \eta]=H[\eta, \xi]$
$H[\xi, \eta]=H[\eta]+H[\xi \mid \eta], \quad H[\xi \mid \eta]=H[\xi, \eta]-H[\eta]$

Symmetry

Note that mutual information is symmetric in ξ and η ，that is $M I[\xi, \eta]=M I[\eta, \xi]$ ，as

$$
H[\xi]-H[\xi \mid \eta]=H[\xi]+H[\eta]-H[\xi, \eta]=H[\eta]-H[\eta \mid \xi]
$$

Pointwise Mutual Information

Another way to look to mutual information is about the individual values（i．e．outcomes）$\xi=x_{i}$ and $\eta=y_{j}$ ．

Pointwise Mutual Information

Another way to look to mutual information is about the individual values (i.e. outcomes) $\xi=x_{i}$ and $\eta=y_{j}$.
Pointwise Mutual Information
Given the two random variable ξ and η : the pointwise mutual information between $\xi=x_{i}$ and $\eta=y_{j}$ is defined as:

$$
M I\left[x_{i}, y_{j}\right]=f_{(\xi, \eta)}\left(x_{i}, y_{j}\right) \ln \frac{f_{(\xi, \eta)}\left(x_{i}, y_{j}\right)}{f_{\xi}\left(x_{i}\right) \cdot f_{\eta}\left(y_{j}\right)}
$$

Pointwise Mutual Information

Another way to look to mutual information is about the individual values (i.e. outcomes) $\xi=x_{i}$ and $\eta=y_{j}$.

Pointwise Mutual Information

Given the two random variable ξ and η : the pointwise mutual information between $\xi=x_{i}$ and $\eta=y_{j}$ is defined as:
$M I\left[x_{i}, y_{j}\right]=f_{(\xi, \eta)}\left(x_{i}, y_{j}\right) \ln \frac{f_{(\xi, \eta)}\left(x_{i}, y_{j}\right)}{f_{\xi}\left(x_{i}\right) \cdot f_{\eta}\left(y_{j}\right)}=P\left(x_{i}, y_{j}\right) \ln \frac{P\left(x_{i}, y_{j}\right)}{P\left(x_{i}\right) \cdot P\left(y_{j}\right)}$

Pointwise Mutual Information

Pointwise Mutual Information (pmi)

$$
M I\left[x_{i}, y_{j}\right]=P\left(x_{i}, y_{j}\right) \ln \frac{P\left(x_{i}, y_{j}\right)}{P\left(x_{i}\right) \cdot P\left(y_{j}\right)}
$$

Pointwise Mutual Information

Pointwise Mutual Information (pmi)

$$
M I\left[x_{i}, y_{j}\right]=P\left(x_{i}, y_{j}\right) \ln \frac{P\left(x_{i}, y_{j}\right)}{P\left(x_{i}\right) \cdot P\left(y_{j}\right)}
$$

Use of the pmi

If $M I\left[x_{i}, y_{j}\right] \gg 0$, there is a strong correlation between x_{i} and y_{j}
If $M I\left[x_{i}, y_{j}\right] \ll 0$, there is a strong negative correlation.
When $M I\left[x_{i}, y_{j}\right] \approx 0$ the two outcomes are almost independent.

Perplexity
The perplexity of a random variable ξ is the exponential of its entropy，i．e．

$$
\operatorname{Perp}[\xi]=e^{H[\xi]}
$$

Perplexity

Perplexity

The perplexity of a random variable ξ is the exponential of its entropy，i．e．

$$
\operatorname{Perp}[\xi]=e^{H[\xi]}
$$

Example
Predicting the next w of a sequence of n words $w_{k} \in$ Dict：

$$
P\left(\xi_{n}=w \mid \xi_{n-1}=w_{n-1}, \xi_{n-2}=w_{n-2}, \ldots, \xi_{1}=w_{1}\right)
$$

What is $\operatorname{Perp}\left[\left(\xi_{n}, \ldots, \xi_{1}\right)\right]$ ？
OSS：In case of a uniform distribution $P\left(\xi_{n}=w \mid \ldots\right)=\frac{1}{\mid \text { Dict } \mid} \ldots$

Cross-entropy

Cross-entropy

If we have two distributions (collections of probabilities) $p(x)$ and $q(x)$ on Ω_{ξ}, then the cross entropy of p with respect to q is given by:

$$
H_{p}[q]=-\sum_{x \in \Omega_{\xi}} p(x) \ln q(x)
$$

Cross-entropy

Cross-entropy

If we have two distributions (collections of probabilities) $p(x)$ and $q(x)$ on Ω_{ξ}, then the cross entropy of p with respect to q is given by:

$$
H_{p}[q]=-\sum_{x \in \Omega_{\xi}} p(x) \ln q(x)
$$

Minimality

$$
H_{p}[q]=-\sum_{x \in \Omega_{\xi}} p(x) \ln q(x) \geq-\sum_{x \in \Omega_{\xi}} p(x) \ln p(x) \quad \forall q
$$

implies that the cross entropy of a distribution q w.r.t. another distribution p is minimal when q is identical to p.

Cross-entropy as a Norm

Cross-entropy

$$
H_{p}[q]=-\sum_{x \in \Omega_{\xi}} p(x) \ln q(x)
$$

Cross-entropy as a Norm

Cross-entropy

$$
H_{p}[q]=-\sum_{x \in \Omega_{\xi}} p(x) \ln q(x)
$$

Relative Entropy (or Kullback-Leibler distance)

$$
D[p \| q]=\sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)}=H_{p}[q]-H[p]
$$

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

$$
D[p \| q]=\sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)}=H_{p}[q]-H[p]
$$

KL distance: properties

$$
D[p \| q] \geq 0 \quad \forall q
$$

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

$$
D[p \| q]=\sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)}=H_{p}[q]-H[p]
$$

KL distance: properties

$$
\begin{gathered}
D[p \| q] \geq 0 \quad \forall q \\
D[p \| q]=0 \quad \text { iff } q=p
\end{gathered}
$$

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

$$
D[p \| q]=\sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)}=H_{p}[q]-H[p]
$$

Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

$$
D[p \| q]=\sum_{x \in \Omega_{\xi}} p(x) \ln \frac{p(x)}{q(x)}=H_{p}[q]-H[p]
$$

KL distance as a norm?
Unfortunately, as

$$
D[p \| q] \neq D[q \| p]
$$

the KL distance is not a valid metric in the classical terms. It is a measure of the dissimilarity between p and q.

Norm

What makes a function a norm？

Norm

What makes a function a norm？Any binary mapping m between a set of objects $D \times D$ and the real numbes is a norm iff：

Axioms
－（Positive）$m(X, Y) \geq 0 \quad \forall X, Y \in D$ whereas $m(X, Y)=0 \rightarrow X=Y$ ．

Norm

What makes a function a norm? Any binary mapping m between a set of objects $D \times D$ and the real numbes is a norm iff:

Axioms

- (Positive) $m(X, Y) \geq 0 \quad \forall X, Y \in D$ whereas $m(X, Y)=0 \rightarrow X=Y$.
- (Simmetry) $m(X, Y)=m(Y, X) \quad \forall X, Y \in D$

Norm

What makes a function a norm? Any binary mapping m between a set of objects $D \times D$ and the real numbes is a norm iff:

Axioms

- (Positive) $m(X, Y) \geq 0 \quad \forall X, Y \in D$ whereas $m(X, Y)=0 \rightarrow X=Y$.
- (Simmetry) $m(X, Y)=m(Y, X) \quad \forall X, Y \in D$
- (Triangle inequality)

$$
m(X, Y) \leq m(X, Z)+m(Z, Y) \quad \forall X, Y, Z \in D
$$

Norm

What makes a function a norm? Any binary mapping m between a set of objects $D \times D$ and the real numbes is a norm iff:

Axioms

- (Positive) $m(X, Y) \geq 0 \quad \forall X, Y \in D$ whereas $m(X, Y)=0 \rightarrow X=Y$.
- (Simmetry) $m(X, Y)=m(Y, X) \quad \forall X, Y \in D$
- (Triangle inequality)

$$
m(X, Y) \leq m(X, Z)+m(Z, Y) \quad \forall X, Y, Z \in D
$$

Euclidean Norm

$$
\sqrt[2]{\sum_{x \in \Omega(\xi)}(p(x)-q(x))^{2}}
$$

References

Elementary Information Theory

- in (Krenn \& Samuelsson, 1997), Brigitte Krenn, Christer Samuelsson, The Linguist's Guide to Statistics Don't Panic, Univ. of Saarlandes, 1997.
URL:
http://nlp.stanford.edu/fsnlp/dontpanic.pdf

