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Linear Transformation

Linear Transformation:

Any transformation T of vectors x in the space is such that the transformed
vector T(x) lies in another (sometimes the same) vector space.

A transformatin T : Vn→Wm is said to be linear iff:

T(αx) = αT(x)
T(x+ y) = T(x)+T(y)

T(αx+βy) = αT(x)+βT(y)
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Linear Transformation

Linear Transformation and Basis:

The effect of linear transformation T from Vn to Wm is entirely determined
by its effect on the basis {b1, ..,bn} of the originating space Vn, thus we need
to know for a generic vector x = α1b1 + ...+αnbn, just the vectors:

b′i = T(bi) ∀i = 1, ...n that is

b′k = T(bk) =
n

∑
i=1

aikbi

as T(x) = T(∑i αibi) = ∑i α1T(bi).
Notice that the coefficents aik ∀i,k = 1, ...,n form a square matrix A.
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Linear Transformation

Linear Transformation and Basis:

For a generic vector pair x = ∑i xibi and y = ∑i yibi, such that T(x) = y, it
follows.

T(x) =
n

∑
k=1

xkT(bk) =
n

∑
k=1

xk

n

∑
i=1

aikbi =

∑
i

(
∑
k

aikxk

)
bi (but also) =

∑
i

yibi = y

from which we deduce that

yi−∑
k

aikxk = 0 ∀i = 1, ...,n

as bi are all linearly independent.
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Linear Transformation and Matrices

The operation yi = ∑k aikxk (∀i = 1, ...,n) suggests a matrix representation
with a specific vector by matrix (i.e. row by column) multiplication.

First of
all the aik coefficient define a square matrix A:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


while x and y are as usual column vectors:

x =


x1
x2
...

xn

 y =


y1
y2
...

yn


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Matrices-Vector multiplications

Moreover, we see that the trasnformation T over the vector x, with T(x) = y,
can be expressed as follows:

y1
y2
...

yn

 =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann




x1
x2
...

xn


where the ith component yi of y corresponds to the component-wise
multiplication between the ith row of A and the vector x, i.e. yi = ∑k aikxk.

Notice that this also corresponds to an inner product between rows in A and
x, i.e. yi = (aT

i ,x).
This is also written with more synthesis:

y = Ax
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Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices A thus represent linear transformations between vectors in a space
Vn.
Every T corresponds to a matrix A and viceversa.

Non singular transformations

We can ask if the inverse transformation exist for each T .
A linear transformation T is non singular when the inverse transformation
T−1 exists such that whereas y = T(x) then x = T−1(y).
The corresponding matrices a follow the same terminology, A−1 is called
the inverse matrix of A, and x = A−1y.
When A−1 exist for A, then A is non singular, otherwise it is called singular.
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Matrix operations

Matrix multiplication by a scalar and sum

αA = (αaik)

A+B = (aik)+(bik) = (aik +bik)

Matrix multiplication: C = AB


c11 c12 . . . c1n
c21 c22 . . . c2n

...
...

. . .
...

cn1 cn2 . . . cnn

 =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann




b11 b12 . . . b1n
b21 b22 . . . b2n

...
...

. . .
...

bn1 bn2 . . . bnn


(cij) = (aik)(bkj)

where cij = ∑k aikbkj
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Matrix operations and transformations

Matrix multiplication and transformations

Matrix multiplications are the counterpart of the compositions between
linear transformations, i.e.

ABx = y when TATB(x) = y

Symmetry

Matrix multiplications are clearly non symmetric, i.e.

y = ABx 6= BAx = y′

and correspondingly

y = TATB(x) 6= TBTA(x) = y′
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Matrix operations and transformations

Zero Matrix
The zero matrix 0 is the neutral elements with respect to the matrix sums, i.e.

∀A, A+0 = 0+A = A

It corresponds to the unique matrix A whereas ∀i,k = 1, ...,n aik = 0.

For n = 3, 0 is as follows:  0 0 0
0 0 0
0 0 0


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Matrix operations: Identity

Identity Matrix

The identity matrix I is the neutral elements with respect to the matrix
multiplication, i.e.

∀A, AI = IA = A

It corresponds to the matrix with all elements in the main diagonal equal to
1, e 0 elsewehere, i.e.:

I = (aik) = δik =
{

1 i = k
0 i 6= k

For n = 3, I is as follows:  1 0 0
0 1 0
0 0 1


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Change of Basis

Change of Basis

Given two alternative basis B = {b1, ...,bn} and B′ = {b′1, ...,b′n}, such that
the square matrix C = (cik) describe the change of the basis, i.e.

b′k = c1kb1 + c2kb2 + ...cnkbn ∀k = 1, ...,n
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Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a generic vector x allows to compute the
change of basis according only to the involved basis B and B′. For every
x = ∑

n
k=1 xkbk such that in the new basis B′, x can be expressed by

x = ∑
n
k=1 x′kb′k, then it follows that:

x =
n

∑
k=1

x′kb′k = ∑
k

x′k

(
∑

i
cikbi

)
=

n

∑
i,k=1

x′kcikbi

from which it follows that:

xi =
n

∑
k=1

x′kcik ∀i = 1, ...,n

The above condition suggests that C is sufficient to describe any change of
basis through the matrix vector multiplication operations:

x = Cx′
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Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a matrix A can be seen by studying the case
where x,y are the expression of two vectors in a base B while their
counterpart on B′ are x′,y′, respectively. Now if A and B are such that
y = Ax and y′ = Bx′, then it follows that:

y = Cy′ = Ax = A(Cx′) = ACx′

(this means that)
y′ = C−1ACx′

from which it follows that:

B = C−1AC

The transformation of basis C is a similarity transformation and matrices A
and B are said similar.
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Adjont Matrix

Adjoint (Transpose) of a matrix

The adjoint A∗ of a matrix A is the unique matrix such that

(ATx,y) = (x,Ay)

In case A has real values (as always in this course) the adjoint A∗ is noted as
AT and it is called transpose of matrix A. AT is obtained from A by
exchanging rows and columns, i.e.

A = (aij) =⇒ AT = (aji)
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Self-adjointness and Idempotence

Self-Adjoint matrices

A matrix A is self-adjoint iff the following holds:

(Ax,y) = (x,Ay)

Note that the above means that when A takes only real values, then A is
symmetric, i.e. A = AT . Diagonal matrices are always self-adjoint.

Idempotence

A matrix E is idempotent iff the following holds:

EEx = Ex ∀x
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Projectors

Projectors

Linear transformations that are
Idempotent (i.e. EEx = Ex ∀x )
Self-Adjoint: (i.e. (Ax,y) = (x,Ay)

are called projectors.

Examples

Some noticeable examples of projectors are already known:
(Null Matrix) The operator O is a projector: it maps every vector x in
the null vector 0.
(Identity) The operator I is a projector: it maps every vector x into itself.

Projectors are applications between a vector space Vn and one of its
subspaces: as 0 and 1 are part of this subspace it has still the properties of
being a vector space.



Overview Linear Transformation in vector spaces Eigenvalues and eigenvectors References

Projectors

Projectors

Linear transformations that are
Idempotent (i.e. EEx = Ex ∀x )
Self-Adjoint: (i.e. (Ax,y) = (x,Ay)

are called projectors.

Examples

Some noticeable examples of projectors are already known:
(Null Matrix) The operator O is a projector: it maps every vector x in
the null vector 0.
(Identity) The operator I is a projector: it maps every vector x into itself.

Projectors are applications between a vector space Vn and one of its
subspaces: as 0 and 1 are part of this subspace it has still the properties of
being a vector space.



Overview Linear Transformation in vector spaces Eigenvalues and eigenvectors References

Projectors

1-dimensional projections

Given a basis B = {bi}, for every bi a projector Pi can be built, that maps any
x = ∑i xibi in the subspace generated (or spanned) by bi, i.e.

Pix = xibi

If B is an orthonormal basis, Pi are a collection of orthogonal projectors:
every vector in the space spanned by bi will be projected into itself
every vector orthogonal to bi will be projected into the null vector, 0.
Every vector x is the sum of a vector xi in the subspace spanned by bi
and a vector x⊥ in the subspace orthogonal to bi, i.e. x = xi + x⊥.
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Projectors

1-dimensional projections: example

Let B = {bi, i = 1, ...,n} be an orthonormal basis, and x = ∑i xibi be a
normalized vector, i.e. ‖x‖= 1 (or ∑i |xi|2 = 1). It is of course true that,
when Pi is the projector relative to bi, then Pix = xi. As

(x,Pix) = (x,PiPix) (Idempotence)
= (Pix,Pix) (Self-adjointness)
= (xibi,xibi)
= x2

i (bi,bi) = |xi|2

then the base B establishes through projectors Pi, a probability distribution
in the individual spaces spanned by Pi.
Selecting a base B is like deciding about a specific point of view on the
space, and its ability to represent vectors (as representations for objects) x.
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Projectors and probabilty distributions

1-dimensional projections and probabilities

Notice how it is also true that a given normalized vector x ∈ Vn determines a
probability distibution in different subspaces generated by the Pi.
This function depends on x ∈ Vn and ranges in the set of spaces Li of Vn, as
follows:

µx(Li) = (Pix,Pix) = |Pix|2

Properties of µx

µx(0) = 0
µx(Vn) = 1
µx(Li⊕Lj) = µx(Li)+ µx(Lj), whenever Li∩Lj = /0. Li⊕Lj is the
smallest subspace of Vn that contains both Li and Lj.
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Eigenvalues and eigenvectors

Eigenvectors

An eigenvector x for a matrix A is a non-zero vector for which a scalar
λ ∈ℜ exists such that

Ax = λx

The value of the scalar λ is called eigenvalue of A associated to x, and
correspond to the scaling factor along the direction of x.

Example

A =
(

0 2
2 0

)
and x =

(
3
3

)
(

0 2
2 0

) (
3
3

)
=

(
6
6

)
= 2

(
3
3

)
x is an eigenvector of A and λ = 2 is its eigenvalue.
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Eigenvalues, eigenvectors and some properties

Eigenvalues, eigenvectors: Some Consequences

When a matrix A has an eigenvector x it must satisfy the following condition:

Ax = λx

We can rewrite the condition Ax = λx as

(A−λ Ix) = 0

where I is the Identity matrix.

In order for a non-zero vector x to satisfy this equation, A−λ I must not be
invertible(see next slide).
The consequence is that the determinant of A−λ I must equal 0. This
function is p(λ ) = det(A−λ I), called the characteristic polynomial of A.
The eigenvalues of A are simply the roots of the characteristic polynomial of
A.
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Eigenvalues, eigenvectors and some properties: Proof

A−λ I must not be invertible: Why?

A−λ I must not be invertible, as otherwise, if A−λ I has an inverse, and

(A−λ I)−1(A−λ I)x = (A−λ I)−10x

Ix = 0.

the zero vector is derived. This is not admissibile as, by definition, x 6= 0.
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Eigenvalues and eigenvectors

An example: computing eigenvalues

Let A =
(

2 −4
−1 −1

)
. Then

p(λ ) = (2−λ )(−1−λ )− (−4)(−1) = λ 2−λ −6 = (λ −3)(λ +2)
The eigenvectors are then the solution of the linear equation system given by
(A−λ I)x = 0.
Given the first eigenvalue λ1 = 3, (A−3I)x = 0 gives the following system:{

−x1−4x2 = 0
−x1−4x2 = 0

This suggests that all vectors of the form αx1 are eigenvectors with
xT

1 = (−4,1). The span of the vector (−4,1)T is the eigenspace
corresponding to λ1 = 3. Correspondingly, the span of the vector
x2 = (1,1)T corresponds to the eigenspace of λ2 =−2.
Notice that x1 and x2 are linearly independent, so they can form a basis.
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Eigenvalues and eigenvectors

Eigenvectors of Symmetric matrices

A symmetric non singular real-valued matrix A is such that A = AT , and on
two dimensions, this means that :

i) a11,a22 6= 0
ii) a12 = a21 = a

In order for A to have two real eigenvalues the following must hold:

p(λ ) = (a11−λ )(a22−λ )−a2 =
= λ

2− (a11 +a22)λ +a11a22−a2 = 0

from which eigenvalues are distinct iff:

(a11−a22)2 +4a2 ≥ 0

The above inequality is always satisfied, with the 0 case only when A = I.
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Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix A has n distinct eigenvectors xi with all real-valued and
distinct eigenvalues λi, it is called non-degenerate.

A non degenerate matrix A has all the eigenvectors mutually orthogonal.

In fact, given two any eigenvectors x1 6= x2, with Axi = λixi (i = 1,2), it
follows that

λ1(x1,x2) = (Ax1,x2) = (x1,Ax2) = λ2(x1,x2)
from which it follows that (λ1−λ2)(x1,x2) = 0

However as λ1 6= λ2, and x1, x2 were arbitrarily chosen, the result is that

∀i, j = 1, ...,n (xi,xj) =
{
‖xi‖2 i = j
0 i 6= j
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Eigenvalues and eigenvectors
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Spectral Theorem

Spectral theorem

For every self-adjoint matrix A on a finite dimensional inner product space
Vn, there correspond real valued numbers α1, ...,αr, and orthonormal
projections E1, ...,Er,with r ≤ n, such that:

(1) all αl are pairwise distinct

(2) all Ej are not null (i.e. ∀j,Ej 6= 0
(3) ∑

r
j=1 Ej = I

(4) A = ∑
r
j=1 αjEj

Notice that the set of self-adjoint matrices whenever the underlying field is
the set of real numbers consists of the set of symmetric matrices. The
spectral theorem suggests that a possible basis where to diagonalize them is
always available through their eigenvectors.
Applications: document similarity matrices where aij = sim(di,dj).
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