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@ Trasformazioni Lineari in spazi discreti
@ Matrici

@ Matrici di una trasformazioni e Basi

@ Matrici singolari
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Il teorema spettrale




Linear Transformation in vector spaces

Linear Transformation

Linear Transformation:

Any transformation 7 of vectors x in the space is such that the transformed
vector 7'(x) lies in another (sometimes the same) vector space.
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Linear Transformation

Linear Transformation:

Any transformation 7 of vectors x in the space is such that the transformed
vector 7'(x) lies in another (sometimes the same) vector space.
A transformatin 7 : V,, — W, is said to be linear iff:

T(ax) =aT(
T(x+y)=T(x)+T(
T(ax+By) = aT(x)+BT(
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Linear Transformation in vector spaces

Linear Transformation

Linear Transformation and Basis:

The effect of linear transformation 7" from V,, to W, is entirely determined
by its effect on the basis {by, ..,b, } of the originating space V,,, thus we need
to know for a generic vector x = Q1b; + ... + o, b,,, just the vectors:

b =T(b;) Vi=1,...n thatis

n
by =T(b) =) aib;
i=1

as T(x) =T(X; aib;) = X au T(b;).
Notice that the coefficents a;;  Vi,k = 1,...,n form a square matrix A.
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Linear Transformation

Linear Transformation and Basis:

For a generic vector pair x = Y, x;b; and y = ¥, y;b;, such that T'(x) =y, it
follows.

T =Y ul(b) =Y x Y aub; =

; (but also)

Z)’ibi =Yy
L

-t
~/—
-
2
B
&
N—
[~




Linear Transformation in vector spaces

Linear Transformation

Linear Transformation and Basis:

For a generic vector pair x = Y, x;b; and y = ¥, y;b;, such that T'(x) =y, it
follows.
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from which we deduce that

yi—Zaikxk:0 Vi:1,...,n
k

as b; are all linearly independent.




Linear Transformation in vector spaces

Linear Transformation and Matrices

The operation y; = Y apxr  (Vi=1,...,n) suggests a matrix representation
with a specific vector by matrix (i.e. row by column) multiplication.



Linear Transformation in vector spaces

Linear Transformation and Matrices

The operation y; = Y apxr  (Vi=1,...,n) suggests a matrix representation
with a specific vector by matrix (i.e. row by column) multiplication. First of
all the aj;, coefficient define a square matrix A:

apn  ar Ain

azr  ax aon
A= )

apl dp2 ... dpp

while x and y are as usual column vectors:

X1 Y1
X2 y2
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Xn Yn



Linear Transformation in vector spaces

Matrices-Vector multiplications

Moreover, we see that the trasnformation T over the vector x, with 7'(x) =y,
can be expressed as follows:

1 a a2 ... din X1
y2 ar a4z ... dzp X2
Yn apl A4p2 ... App Xn

where the ith component y; of y corresponds to the component-wise
multiplication between the ith row of A and the vector x, i.e. y; = Y ; ajxXk.



Linear Transformation in vec

Matrices-Vector multiplications

Moreover, we see that the trasnformation T over the vector x, with 7'(x) =y,
can be expressed as follows:

1 a a2 ... din X1
y2 ar a4z ... dzp X2
Yn apl A4p2 ... App Xn

where the ith component y; of y corresponds to the component-wise
multiplication between the ith row of A and the vector x, i.e. y; = Y aixxy.
Notice that this also corresponds to an inner product between rows in A and
x,ie yi = (al,x).

This is also written with more synthesis:

y=Ax



Linear Transformation in vector spaces

Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices A thus represent linear transformations between vectors in a space
Vi
Every T corresponds to a matrix A and viceversa.
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Matrices and Linear Transformations

Matrices A thus represent linear transformations between vectors in a space
V.
Every T corresponds to a matrix A and viceversa.

Non singular transformations

We can ask if the inverse transformation exist for each 7.
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Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices A thus represent linear transformations between vectors in a space
Va.

Every T corresponds to a matrix A and viceversa.

Non singular transformations

We can ask if the inverse transformation exist for each 7.
A linear transformation 7T is non singular when the inverse transformation
T~ exists such that whereas y = T'(x) then x =T~ (y).




Linear Transformation in vector spaces

Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices A thus represent linear transformations between vectors in a space
Va.

Every T corresponds to a matrix A and viceversa.

Non singular transformations

We can ask if the inverse transformation exist for each 7'

A linear transformation 7T is non singular when the inverse transformation
T—! exists such that whereas y = T'(x) then x = T~ (y).

The corresponding matrices a follow the same terminology, A~! is called
the inverse matrix of A, and x = A~ ly.

When A~! exist for A, then A is non singular, otherwise it is called singular.




Linear Transformation in vector spaces

Matrix multiplication by a scalar and sum

oA = (aaik)




Linear Transformation in vector spaces

Matrix operations

Matrix multiplication by a scalar and sum

oA = (aaik)
A+B = (ajx) + (bix) = (aix + bix)




Linear Transformation in vector spaces

Matrix operations

Matrix multiplication by a scalar and sum

oA = (i)
A+B = (ai) + (bi) = (ai +bix)

Matrix multiplication: C = AB

2 ... Ci ajy ap ... ap by b ... bn
1 ... @y axn ... ay by byn ... by
il €2 e Cm An G ... Gm by b ... bm

where Cij = Zk aikbkj




Linear Transformation in vector spaces

Matrix operations and transformations

Matrix multiplication and transformations

Matrix multiplications are the counterpart of the compositions between
linear transformations, i.e.

ABx =y when T4 Tp(x) =y
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Matrix operations and transformations

Matrix multiplication and transformations

Matrix multiplications are the counterpart of the compositions between
linear transformations, i.e.

ABx =y when T4 Tg(x) =y

Symmetry

|
| \

Matrix multiplications are clearly non symmetric, i.e.
y=ABx#BAx=)

and correspondingly

y =TaTp(x) # TpTa(x) =y




Linear Transformation in vec

Matrix operations and transformations

The zero matrix 0 is the neutral elements with respect to the matrix sums, i.e.

VA, A+0=0+A=A

It corresponds to the unique matrix A whereas Vi,k=1,....n a; =0.



Linear Transformation in vec

Matrix operations and transformations

The zero matrix 0 is the neutral elements with respect to the matrix sums, i.e.

VA, A+0=0+A=A

It corresponds to the unique matrix A whereas Vi,k=1,....n a; =0.
For n = 3, 0 is as follows:

(=]
(=R
(=R e]



Linear Transformation in vec

Matrix operations: Identity

The identity matrix I is the neutral elements with respect to the matrix
multiplication, i.e.
VA, AI=IA=A




Linear Transformation in vec

Matrix operations: Identity

The identity matrix I is the neutral elements with respect to the matrix
multiplication, i.e.
VA, AI=IA=A

It corresponds to the matrix with all elements in the main diagonal equal to
1, e 0 elsewehere, i.e.:

=k
I(aik)5ik{ 0 i’;«ék



Linear Transformation in vec

Matrix operations: Identity

The identity matrix I is the neutral elements with respect to the matrix
multiplication, i.e.
VA, AI=IA=A

It corresponds to the matrix with all elements in the main diagonal equal to
1, e 0 elsewehere, i.e.:

1

=k
I(aik)5ik{ 0

P =
ik

For n = 3, 1 is as follows:

S O =
(=R )
— o O



Linear Transformation in vec

Change of Basis

Change of Basis

Given two alternative basis B = {by,...,b, } and B’ = {b}, ..., b}, }, such that
the square matrix C = (cjx) describe the change of the basis, i.e.

Q;czclkbl+02k22+-~-cnkl_)n Vk=1,...,n




Linear Transformation in vector spaces

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a generic vector x allows to compute the
change of basis according only to the involved basis B and B’. For every
X =Y7_ xxb; such that in the new basis B', x can be expressed by

x =Y}, x.by. then it follows that:

L= ix;cbl =) % (Zcikbi> = i xiCirb;
k=1 3 i

ik=1

from which it follows that:

n
Xi = Zx;cc,-k Vi=1,...,n
k=1
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Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a generic vector x allows to compute the
change of basis according only to the involved basis B and B’. For every
X =Y7_ xxb; such that in the new basis B', x can be expressed by

x =Y}, x.by. then it follows that:

L= ix;cbl =) % (Zcikbi> = i xiCirb;
k=1 3 i

ik=1

from which it follows that:

n
Xi = Zx;cc,-k Vi=1,...,n
k=1

The above condition suggests that C is sufficient to describe any change of
basis through the matrix vector multiplication operations:

x=Cx



Linear Transformation in vector spaces

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a matrix A can be seen by studying the case
where x,y are the expression of two vectors in a base B while their
counterpart on B’ are x’,y’, respectively. Now if A and B are such that

y =Ax and y/ = B/, then it follows that:

y= CX/ =Ax=A(CY) =ACY
(this means that)
X’ — C_IACEI

from which it follows that:

B=C'AC

The transformation of basis C is a similarity transformation and matrices A
and B are said similar.
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Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a matrix A can be seen by studying the case
where x,y are the expression of two vectors in a base B while their
counterpart on B’ are x’,y’, respectively. Now if A and B are such that

y =Ax and y/ = B/, then it follows that:

y= CX/ =Ax=A(CY) =ACY
(this means that)
X’ — C_IACEI

from which it follows that:

B=C'AC

The transformation of basis C is a similarity transformation and matrices A
and B are said similar.



Linear Transformation in vector spaces

Adjont Matrix

Adjoint (Transpose) of a matrix

The adjoint A* of a matrix A is the unique matrix such that

(ATxy) = (x,Ay)

In case A has real values (as always in this course) the adjoint A* is noted as
AT and it is called transpose of matrix A. AT is obtained from A by
exchanging rows and columns, i.e.

A = (ay) = AT = (a)




Linear Transformation in vec

Self-adjointness and Idempotence

Self-Adjoint matrices
A matrix A is self-adjoint iff the following holds:

(Ax,y) = (x,Ay)

Note that the above means that when A takes only real values, then A is
symmetric, i.e. A = AT. Diagonal matrices are always self-adjoint.




Linear Transformation in vec

Self-adjointness and Idempotence

A matrix A is self-adjoint iff the following holds:

(Ax,y) = (x,Ay)

Note that the above means that when A takes only real values, then A is
symmetric, i.e. A = AT. Diagonal matrices are always self-adjoint.

A matrix E is idempotent iff the following holds:




Linear Transformation in vec

Projectors

Linear transformations that are
o Idempotent (i.e. EEx = Ex Vx)
o Self-Adjoint: (i.e. (Ax,y) = (x,Ay)

are called projectors.




Linear Transformation in vector spaces

Projectors

Projectors

Linear transformations that are
o Idempotent (i.e. EEx = Ex Vx)
o Self-Adjoint: (i.e. (Ax,y) = (x,Ay)

are called projectors.

Examples

Some noticeable examples of projectors are already known:

@ (Null Matrix) The operator O is a projector: it maps every vector x in
the null vector 0.

o (Identity) The operator I is a projector: it maps every vector x into itself.

Projectors are applications between a vector space V,, and one of its
subspaces: as 0 and 1 are part of this subspace it has still the properties of
being a vector space.




Linear Transformation in vector spaces

Projectors

1-dimensional projections

Given a basis B = {b;}, for every b; a projector P; can be built, that maps any
X = Y;x;b; in the subspace generated (or spanned) by b;, i.e.

Pix = x;b;




Linear Transformation in vector spaces

Projectors

1-dimensional projections
Given a basis B = {b;}, for every b; a projector P; can be built, that maps any
X = Y;x;b; in the subspace generated (or spanned) by b;, i.e.

Pix = x;b;

If B is an orthonormal basis, P; are a collection of orthogonal projectors:
@ every vector in the space spanned by b; will be projected into itself
@ every vector orthogonal to b; will be projected into the null vector, 0.

e Every vector x is the sum of a vector x; in the subspace spanned by b;
and a vector x* in the subspace orthogonal to b;, i.e. x = x; Il




Linear Transformation in vector spaces

Projectors

1-dimensional projections: example

Let B={b;, i=1,...,n} be an orthonormal basis, and x = Y ; x;b; be a
normalized vector, i.e. [|x|| = 1 (or ¥; |x;|*> = 1). It is of course true that,
when P; is the projector relative to b;, then Pix = x;. As

(x,Px) = (x,PPx) (Idempotence)
(Pix ,x) (Self-adjointness)
= (xibj,xib;)
x; (b b) il




Linear Transformation in vector spaces

Projectors

1-dimensional projections: example

Let B={b;, i=1,...,n} be an orthonormal basis, and x = Y ; x;b; be a
normalized vector, i.e. [|x|| = 1 (or ¥; |x;|*> = 1). It is of course true that,
when P; is the projector relative to b;, then Pix = x;. As

(x,Px) = (x,PPx) (Idempotence)
(Pix ,x) (Self-adjointness)
= (xibj,xib;)
x; (b b) il

then the base B establishes through projectors P;, a probability distribution
in the individual spaces spanned by P;.

Selecting a base B is like deciding about a specific point of view on the
space, and its ability to represent vectors (as representations for objects) x.




Linear Transformation in vec

Projectors and probabilty distributions

1-dimensional projections and probabilities

Notice how it is also true that a given normalized vector x € V,, determines a
probability distibution in different subspaces generated by the P;.

This function depends on x € V,, and ranges in the set of spaces L; of V,,, as
follows:

te(Li) = (Pix, Pix) = [Pix|?




Linear Transformation in vector spaces

Projectors and probabilty distributions

1-dimensional projections and probabilities

Notice how it is also true that a given normalized vector x € V,, determines a
probability distibution in different subspaces generated by the P;.

This function depends on x € V,, and ranges in the set of spaces L; of V,,, as
follows:

te(Li) = (Pix, Pix) = [Pix|?

Properties of Ly

° 1x(0)=0

o t(Vy)=1

o U (Li®Lj) = pe(Li) + px(Lj), whenever L;NL; = 0. L; ® L; is the
smallest subspace of V, that contains both L; and L;.




Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Eigenvectors

An eigenvector x for a matrix A is a non-zero vector for which a scalar
A € R exists such that

Ax=Ax

The value of the scalar A is called eigenvalue of A associated to x, and
correspond to the scaling factor along the direction of x.

am (22) s
(25) (3) = (5) = 2(3)

x is an eigenvector of A and A = 2 is its eigenvalue.

Example

|&=

I
A/~
w W
~_




Eigenvalues a

Eigenvalues, eigenvectors and some properties

Eigenvalues, eigenvectors: Some Consequences

When a matrix A has an eigenvector x it must satisfy the following condition:
Ax=Ax
We can rewrite the condition Ax = Ax as

(A—AL) =0

where I is the Identity matrix.

In order for a non-zero vector x to satisfy this equation, A — AI must not be
invertible(see next slide).

The consequence is that the determinant of A — AT must equal 0. This
function is p(A) = det(A — A1), called the characteristic polynomial of A.
The eigenvalues of A are simply the roots of the characteristic polynomial of
A.



Eigenvalues a

Eigenvalues, eigenvectors and some properties: Proof

A — A must not be invertible: Why?

A — AI must not be invertible, as otherwise, if A — AI has an inverse, and

(A—AD)"Y(A—ADx (A—AD)"lox
Ix = 0.

the zero vector is derived. This is not admissibile as, by definition, x # 0.




Eigenvalues a

Eigenvalues and eigenvectors

An example: computing eigenvalues

LetA—< _21 :411 >.Then

PA)=(2=-2A)(-1-2)=(-4)(-1) =2 -4 -6 = (1 -3)(A +2)

The eigenvectors are then the solution of the linear equation system given by
(A—ADx=0.

Given the first eigenvalue A; =3, (A —3I)x =

—x1; —4x;

—X1 — 4XQ =
This suggests that all vectors of the form oux; are eigenvectors with
1T = (—4,1). The span of the vector (—4,1)7 is the eigenspace
corresponding to A; = 3. Correspondingly, the span of the vector

x, = (1,1)7 corresponds to the eigenspace of A, = —2.
Notice that x; and x, are linearly independent, so they can form a basis.

0 gives the following system:
0
0




Eigenvalues a

Eigenvalues and eigenvectors

Eigenvectors of Symmetric matrices

A symmetric non singular real-valued matrix A is such that A = A”, and on
two dimensions, this means that :

i) ai,an#0
ii) ajp =dadx —=a

In order for A to have two real eigenvalues the following must hold:

p()L) = (6111 —l)(azz —A) —(12 =
A% — (a1 +an)A +ajan—a* =0

from which eigenvalues are distinct iff:

(a1 —ax)*+4a* >0

The above inequality is always satisfied, with the 0 case only when A =1.




Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix A has » distinct eigenvectors x; with all real-valued and
distinct eigenvalues 4;, it is called non-degenerate.
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Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix A has » distinct eigenvectors x; with all real-valued and
distinct eigenvalues 4;, it is called non-degenerate.
A non degenerate matrix A has all the eigenvectors mutually orthogonal.

In fact, given two any eigenvectors x; # x,, with Ax; = A;x; (i=1,2),it
follows that

A (x1,52) = (Axy, %) = (x1,Ax2) = Ao (x),X,)
from which it follows that (M —22)(x,x,)=0

However as A; # A,, and x,, x, were arbitrarily chosen, the result is that

2
Vij=1,..n (xi,x,-):{ gzln oy



Eigenvalues and eigenvectors

Spectral Theorem

Spectral theorem

For every self-adjoint matrix A on a finite dimensional inner product space
Vy, there correspond real valued numbers ¢, ..., o, and orthonormal
projections Ej, ..., E,,with » < n, such that:

o (1) all oy are pairwise distinct

@ (2) all E; are not null (i.e. Vj,E; # 0
e (3) Z;=1 E; =1

o A= 2;21 oyE;

Notice that the set of self-adjoint matrices whenever the underlying field is
the set of real numbers consists of the set of symmetric matrices. The
spectral theorem suggests that a possible basis where to diagonalize them is
always available through their eigenvectors.

Applications: document similarity matrices where a;; = sim(d;, d;).
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