Spazi vettoriali e Trasformazioni Lineari

R. Basili

Corso di Web Mining e Retrieval a.a. 2009-10

March 25, 2010

・ロト ・御ト ・ヨト ・ヨト 三日

Outline

Outline

- Trasformazioni Lineari in spazi discreti
- Matrici
- Matrici di una trasformazioni e Basi
- Matrici singolari
- Trasposta di una matrice e proiezioni
- Autovalori ed autovettori
- Il teorema spettrale

Linear Transformation

Linear Transformation:

Any transformation *T* of vectors \underline{x} in the space is such that the transformed vector $T(\underline{x})$ lies in another (sometimes the same) vector space.

Linear Transformation

Linear Transformation:

Any transformation *T* of vectors \underline{x} in the space is such that the transformed vector $T(\underline{x})$ lies in another (sometimes the same) vector space. A transformatin $T: V_n \to W_m$ is said to be *linear* **iff**:

$$T(\alpha \underline{x}) = \alpha T(\underline{x})$$
$$T(\underline{x} + \underline{y}) = T(\underline{x}) + T(\underline{y})$$
$$T(\alpha \underline{x} + \beta \underline{y}) = \alpha T(\underline{x}) + \beta T(\underline{y})$$

Linear Transformation

Linear Transformation and Basis:

The effect of linear transformation *T* from V_n to W_m is entirely determined by its effect on the basis $\{\underline{b}_1, \dots, \underline{b}_n\}$ of the originating space V_n , thus we need to know for a generic vector $\underline{x} = \alpha_1 \underline{b}_1 + \dots + \alpha_n \underline{b}_n$, just the vectors:

$$\underline{b}'_i = T(\underline{b}_i) \qquad \forall i = 1, \dots n \text{ that is}$$
$$\underline{b}'_k = T(\underline{b}_k) = \sum_{i=1}^n a_{ik} \underline{b}_i$$

as $T(\underline{x}) = T(\sum_{i} \alpha_{i} \underline{b}_{i}) = \sum_{i} \alpha_{1} T(\underline{b}_{i})$. Notice that the coefficients $a_{ik} \quad \forall i, k = 1, ..., n$ form a square matrix **A**.

Linear Transformation

Linear Transformation and Basis:

For a generic vector pair $\underline{x} = \sum_i x_i \underline{b}_i$ and $\underline{y} = \sum_i y_i \underline{b}_i$, such that $T(\underline{x}) = \underline{y}$, it follows.

$$T(\underline{x}) = \sum_{k=1}^{n} x_k T(\underline{b}_k) = \sum_{k=1}^{n} x_k \sum_{i=1}^{n} a_{ik} \underline{b}_i =$$
$$\sum_i \left(\sum_k a_{ik} x_k \right) \underline{b}_i \text{ (but also)} =$$
$$\sum_i y_i \underline{b}_i = \underline{y}$$

Linear Transformation

Linear Transformation and Basis:

For a generic vector pair $\underline{x} = \sum_i x_i \underline{b}_i$ and $\underline{y} = \sum_i y_i \underline{b}_i$, such that $T(\underline{x}) = \underline{y}$, it follows.

$$T(\underline{x}) = \sum_{k=1}^{n} x_k T(\underline{b}_k) = \sum_{k=1}^{n} x_k \sum_{i=1}^{n} a_{ik} \underline{b}_i =$$
$$\sum_i \left(\sum_k a_{ik} x_k \right) \underline{b}_i \text{ (but also)} =$$
$$\sum_i y_i \underline{b}_i = \underline{y}$$

from which we deduce that

$$y_i - \sum_k a_{ik} x_k = 0 \qquad \forall i = 1, \dots, n$$

as \underline{b}_i are all linearly independent.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Linear Transformation and Matrices

The operation $y_i = \sum_k a_{ik} x_k$ ($\forall i = 1, ..., n$) suggests a matrix representation with a specific vector by matrix (i.e. row by column) multiplication.

・ロト・(四)・(日)・(日)・(日)・(日)

Linear Transformation and Matrices

The operation $y_i = \sum_k a_{ik} x_k$ ($\forall i = 1, ..., n$) suggests a matrix representation with a specific vector by matrix (i.e. row by column) multiplication. First of all the a_{ik} coefficient define a square matrix **A**:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

while \underline{x} and y are as usual column vectors:

$$\underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad \underline{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Matrices-Vector multiplications

Moreover, we see that the transformation *T* over the vector \underline{x} , with $T(\underline{x}) = \underline{y}$, can be expressed as follows:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

where the *i*th component y_i of \underline{y} corresponds to the component-wise multiplication between the *i*th row of **A** and the vector \underline{x} , i.e. $y_i = \sum_k a_{ik} x_k$.

Matrices-Vector multiplications

Moreover, we see that the transformation *T* over the vector \underline{x} , with $T(\underline{x}) = \underline{y}$, can be expressed as follows:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

where the *i*th component y_i of \underline{y} corresponds to the component-wise multiplication between the *i*th row of **A** and the vector \underline{x} , i.e. $y_i = \sum_k a_{ik} x_k$. Notice that this also corresponds to an inner product between rows in **A** and \underline{x} , i.e. $y_i = (\underline{a}_i^T, \underline{x})$. This is also written with more synthesis:

This is also written with more synthesis:

$$\underline{y} = \mathbf{A}\underline{x}$$

Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices **A** thus represent linear transformations between vectors in a space V_n .

Every T corresponds to a matrix \mathbf{A} and viceversa.

Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices **A** thus represent linear transformations between vectors in a space V_n .

Every T corresponds to a matrix \mathbf{A} and viceversa.

Non singular transformations

We can ask if the inverse transformation exist for each T.

Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices **A** thus represent linear transformations between vectors in a space V_n .

Every *T* corresponds to a matrix **A** and viceversa.

Non singular transformations

We can ask if the inverse transformation exist for each *T*. A linear transformation *T* is *non singular* when the inverse transformation T^{-1} exists such that whereas $y = T(\underline{x})$ then $\underline{x} = T^{-1}(y)$.

Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices **A** thus represent linear transformations between vectors in a space V_n .

Every *T* corresponds to a matrix **A** and viceversa.

Non singular transformations

We can ask if the inverse transformation exist for each *T*. A linear transformation *T* is *non singular* when the inverse transformation T^{-1} exists such that whereas $\underline{y} = T(\underline{x})$ then $\underline{x} = T^{-1}(\underline{y})$. The corresponding matrices **a** follow the same terminology, \mathbf{A}^{-1} is called the inverse matrix of **A**, and $\underline{x} = \mathbf{A}^{-1}\underline{y}$. When \mathbf{A}^{-1} exist for **A**, then **A** is *non singular*, otherwise it is called *singular*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Matrix operations

Matrix multiplication by a scalar and sum

 $\alpha \mathbf{A} = (\alpha a_{ik})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Matrix operations

Matrix multiplication by a scalar and sum

 $\boldsymbol{\alpha} \mathbf{A} = (\boldsymbol{\alpha} a_{ik})$ $\mathbf{A} + \mathbf{B} = (a_{ik}) + (b_{ik}) = (a_{ik} + b_{ik})$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Matrix operations

Matrix multiplication by a scalar and sum

 $\boldsymbol{\alpha} \mathbf{A} = (\boldsymbol{\alpha} a_{ik}) \\ \mathbf{A} + \mathbf{B} = (a_{ik}) + (b_{ik}) = (a_{ik} + b_{ik})$

Matrix multiplication: $\mathbf{C} = \mathbf{A}\mathbf{B}$

$$\begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$
$$(c_{ij}) = (a_{ik})(b_{kj})$$
where $c_{ii} = \sum_{k} a_{ik} bkj$

Matrix operations and transformations

Matrix multiplication and transformations

Matrix multiplications are the counterpart of the compositions between linear transformations, i.e.

$$\mathbf{AB}\underline{x} = \underline{y} \text{ when } T_A T_B(\underline{x}) = \underline{y}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Matrix operations and transformations

Matrix multiplication and transformations

Matrix multiplications are the counterpart of the compositions between linear transformations, i.e.

$$\mathbf{AB}\underline{x} = \underline{y} \text{ when } T_A T_B(\underline{x}) = \underline{y}$$

Symmetry

Matrix multiplications are clearly non symmetric, i.e.

$$\underline{y} = \mathbf{A}\mathbf{B}\underline{x} \neq \mathbf{B}\mathbf{A}\underline{x} = \underline{y}'$$

and correspondingly

$$\underline{y} = T_A T_B(\underline{x}) \neq T_B T_A(\underline{x}) = \underline{y}'$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Matrix operations and transformations

Zero Matrix

The zero matrix $\underline{0}$ is the neutral elements with respect to the matrix sums, i.e.

$$\forall \mathbf{A}, \quad \mathbf{A} + \underline{\mathbf{0}} = \underline{\mathbf{0}} + \mathbf{A} = \mathbf{A}$$

It corresponds to the unique matrix **A** whereas $\forall i, k = 1, ..., n$ $a_{ik} = 0$.

Matrix operations and transformations

Zero Matrix

The zero matrix $\underline{0}$ is the neutral elements with respect to the matrix sums, i.e.

$$\forall \mathbf{A}, \quad \mathbf{A} + \underline{\mathbf{0}} = \underline{\mathbf{0}} + \mathbf{A} = \mathbf{A}$$

It corresponds to the unique matrix **A** whereas $\forall i, k = 1, ..., n$ $a_{ik} = 0$. For $n = 3, \mathbf{0}$ is as follows:

$$\left(\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Matrix operations: Identity

Identity Matrix

The identity matrix \underline{I} is the neutral elements with respect to the matrix multiplication, i.e.

 $\forall A, \quad AI = IA = A$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Matrix operations: Identity

Identity Matrix

The identity matrix \underline{I} is the neutral elements with respect to the matrix multiplication, i.e.

 $\forall A, \quad AI = IA = A$

It corresponds to the matrix with all elements in the main diagonal equal to 1, e 0 elsewehere, i.e.:

$$\mathbf{I} = (a_{ik}) = \boldsymbol{\delta}_{ik} = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Matrix operations: Identity

Identity Matrix

The identity matrix \underline{I} is the neutral elements with respect to the matrix multiplication, i.e.

 $\forall \mathbf{A}, \quad \mathbf{A}\mathbf{I} = \mathbf{I}\mathbf{A} = \mathbf{A}$

It corresponds to the matrix with all elements in the main diagonal equal to 1, e 0 elsewehere, i.e.:

$$\mathbf{I} = (a_{ik}) = \boldsymbol{\delta}_{ik} = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$$

For n = 3, **I** is as follows:

$$\left(\begin{array}{rrrr}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$$

Change of Basis

Change of Basis

Given two alternative basis $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ and $B' = \{\underline{b}'_1, \dots, \underline{b}'_n\}$, such that the square matrix $\mathbf{C} = (c_{ik})$ describe the change of the basis, i.e.

$$\underline{b}'_{k} = c_{1k}\underline{b}_{1} + c_{2k}\underline{b}_{2} + \dots c_{nk}\underline{b}_{n} \qquad \forall k = 1, \dots, n$$

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix **C** on a generic vector \underline{x} allows to compute the change of basis according only to the involved basis *B* and *B'*. For every $\underline{x} = \sum_{k=1}^{n} x_k \underline{b}_k$ such that in the new basis *B'*, \underline{x} can be expressed by $\underline{x} = \sum_{k=1}^{n} x'_k \underline{b}'_k$, then it follows that:

$$\underline{x} = \sum_{k=1}^{n} x'_{k} \underline{b}'_{k} = \sum_{k} x'_{k} \left(\sum_{i} c_{ik} \underline{b}_{i} \right) = \sum_{i,k=1}^{n} x'_{k} c_{ik} \underline{b}_{i}$$

from which it follows that:

$$x_i = \sum_{k=1}^n x'_k c_{ik} \qquad \forall i = 1, ..., n$$

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix **C** on a generic vector \underline{x} allows to compute the change of basis according only to the involved basis *B* and *B'*. For every $\underline{x} = \sum_{k=1}^{n} x_k \underline{b}_k$ such that in the new basis *B'*, \underline{x} can be expressed by $\underline{x} = \sum_{k=1}^{n} x'_k \underline{b}'_k$, then it follows that:

$$\underline{x} = \sum_{k=1}^{n} x'_{k} \underline{b}'_{k} = \sum_{k} x'_{k} \left(\sum_{i} c_{ik} \underline{b}_{i} \right) = \sum_{i,k=1}^{n} x'_{k} c_{ik} \underline{b}_{i}$$

from which it follows that:

$$x_i = \sum_{k=1}^n x'_k c_{ik} \qquad \forall i = 1, \dots, n$$

The above condition suggests that C is sufficient to describe any change of basis through the matrix vector multiplication operations:

$$\underline{x} = \mathbf{C}\underline{x}$$

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix **C** on a matrix **A** can be seen by studying the case where $\underline{x}, \underline{y}$ are the expression of two vectors in a base *B* while their counterpart on *B'* are $\underline{x}', \underline{y}'$, respectively. Now if **A** and **B** are such that $y = \mathbf{A}\underline{x}$ and $y' = \mathbf{B}\underline{x}'$, then it follows that:

$$\underline{y} = \mathbf{C}\underline{y}' = \mathbf{A}\underline{x} = \mathbf{A}(\mathbf{C}\underline{x}') = \mathbf{A}\mathbf{C}\underline{x}'$$
(this means that)
$$\underline{y}' = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}\underline{x}'$$

from which it follows that:

$$\mathbf{B} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$$

The transformation of basis C is a *similarity transformation* and matrices A and B are said *similar*.

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix **C** on a matrix **A** can be seen by studying the case where $\underline{x}, \underline{y}$ are the expression of two vectors in a base *B* while their counterpart on *B'* are $\underline{x}', \underline{y}'$, respectively. Now if **A** and **B** are such that $y = \mathbf{A}\underline{x}$ and $y' = \mathbf{B}\underline{x}'$, then it follows that:

$$\underline{y} = \mathbf{C}\underline{y}' = \mathbf{A}\underline{x} = \mathbf{A}(\mathbf{C}\underline{x}') = \mathbf{A}\mathbf{C}\underline{x}'$$
(this means that)
$$\underline{y}' = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}\underline{x}'$$

from which it follows that:

$$\mathbf{B} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$$

The transformation of basis C is a *similarity transformation* and matrices A and B are said *similar*.

Adjont Matrix

Adjoint (Transpose) of a matrix

The adjoint \mathbf{A}^* of a matrix \mathbf{A} is the unique matrix such that

$$(\mathbf{A}^T \underline{x}, \underline{y}) = (\underline{x}, \mathbf{A}\underline{y})$$

In case **A** has real values (as always in this course) the adjoint \mathbf{A}^* is noted as \mathbf{A}^T and it is called *transpose* of matrix **A**. \mathbf{A}^T is obtained from **A** by exchanging rows and columns, i.e.

$$\mathbf{A} = (a_{ij}) \Longrightarrow \mathbf{A}^T = (a_{ji})$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Self-adjointness and Idempotence

Self-Adjoint matrices

A matrix **A** is *self-adjoint* **iff** the following holds:

$$(\mathbf{A}\underline{x},\underline{y}) = (\underline{x},\mathbf{A}\underline{y})$$

Note that the above means that when A takes only real values, then A is *symmetric*, i.e. $A = A^T$. Diagonal matrices are always self-adjoint.

Self-adjointness and Idempotence

Self-Adjoint matrices

A matrix **A** is *self-adjoint* **iff** the following holds:

$$(\mathbf{A}\underline{x},\underline{y}) = (\underline{x},\mathbf{A}\underline{y})$$

Note that the above means that when A takes only real values, then A is *symmetric*, i.e. $A = A^{T}$. Diagonal matrices are always self-adjoint.

Idempotence

A matrix **E** is idempotent **iff** the following holds:

$$\mathbf{E}\mathbf{E}\underline{x} = \mathbf{E}\underline{x} \qquad \forall \underline{x}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Projectors

Projectors

Linear transformations that are

- Idempotent (i.e. $\mathbf{E}\mathbf{E}\underline{x} = \mathbf{E}\underline{x} \qquad \forall \underline{x}$)
- Self-Adjoint: (i.e. $(\mathbf{A}\underline{x},\underline{y}) = (\underline{x},\mathbf{A}\underline{y})$

are called projectors.

Projectors

Projectors

Linear transformations that are

- Idempotent (i.e. $\mathbf{E}\mathbf{E}\underline{x} = \mathbf{E}\underline{x} \qquad \forall \underline{x}$)
- Self-Adjoint: (i.e. $(\mathbf{A}\underline{x},\underline{y}) = (\underline{x},\mathbf{A}\underline{y})$

are called projectors.

Examples

Some noticeable examples of projectors are already known:

- (Null Matrix) The operator <u>O</u> is a projector: it maps every vector <u>x</u> in the null vector <u>O</u>.
- (Identity) The operator \underline{I} is a projector: it maps every vector \underline{x} into itself.

Projectors are applications between a vector space V_n and one of its subspaces: as $\underline{0}$ and $\underline{1}$ are part of this subspace it has still the properties of being a vector space.

Projectors

1-dimensional projections

Given a basis $B = \{\underline{b}_i\}$, for every \underline{b}_i a projector \mathbf{P}_i can be built, that maps any $\underline{x} = \sum_i x_i \underline{b}_i$ in the subspace generated (or spanned) by \underline{b}_i , i.e.

$$\mathbf{P}_i \underline{x} = x_i \underline{b}_i$$

Projectors

1-dimensional projections

Given a basis $B = \{\underline{b}_i\}$, for every \underline{b}_i a projector \mathbf{P}_i can be built, that maps any $\underline{x} = \sum_i x_i \underline{b}_i$ in the subspace generated (or spanned) by \underline{b}_i , i.e.

$$\mathbf{P}_i \underline{x} = x_i \underline{b}_i$$

If *B* is an orthonormal basis, \mathbf{P}_i are a collection of orthogonal projectors:

- every vector in the space spanned by \underline{b}_i will be projected into itself
- every vector orthogonal to \underline{b}_i will be projected into the null vector, $\underline{0}$.
- Every vector \underline{x} is the sum of a vector \underline{x}_i in the subspace spanned by \underline{b}_i and a vector \underline{x}^{\perp} in the subspace orthogonal to \underline{b}_i , i.e. $\underline{x} = \underline{x}_i + \underline{x}^{\perp}$.

Projectors

1-dimensional projections: example

Let $B = \{\underline{b}_i, i = 1, ..., n\}$ be an orthonormal basis, and $\underline{x} = \sum_i x_i \underline{b}_i$ be a normalized vector, i.e. $\|\underline{x}\| = 1$ (or $\sum_i |x_i|^2 = 1$). It is of course true that, when \mathbf{P}_i is the projector relative to \underline{b}_i , then $\mathbf{P}_i \underline{x} = x_i$. As

 $\begin{array}{rcl} (\underline{x}, \mathbf{P}_i \underline{x}) &=& (\underline{x}, \mathbf{P}_i \mathbf{P}_i \underline{x}) & (\text{Idempotence}) \\ &=& (\mathbf{P}_i \underline{x}, \mathbf{P}_i \underline{x}) & (\text{Self-adjointness}) \\ &=& (x_i \underline{b}_i, x_i \underline{b}_i) \\ &=& x_i^2 (\underline{b}_i, \underline{b}_i) = |x_i|^2 \end{array}$

Projectors

1-dimensional projections: example

Let $B = \{\underline{b}_i, i = 1, ..., n\}$ be an orthonormal basis, and $\underline{x} = \sum_i x_i \underline{b}_i$ be a normalized vector, i.e. $\|\underline{x}\| = 1$ (or $\sum_i |x_i|^2 = 1$). It is of course true that, when \mathbf{P}_i is the projector relative to \underline{b}_i , then $\mathbf{P}_i \underline{x} = x_i$. As

 $\begin{array}{rcl} (\underline{x}, \mathbf{P}_i \underline{x}) &=& (\underline{x}, \mathbf{P}_i \mathbf{P}_i \underline{x}) & (\text{Idempotence}) \\ &=& (\mathbf{P}_i \underline{x}, \mathbf{P}_i \underline{x}) & (\text{Self-adjointness}) \\ &=& (x_i \underline{b}_i, x_i \underline{b}_i) \\ &=& x_i^2 (\underline{b}_i, \underline{b}_i) = |x_i|^2 \end{array}$

then the base *B* establishes through projectors \mathbf{P}_i , a probability distribution in the individual spaces spanned by \mathbf{P}_i .

Selecting a base *B* is like *deciding about a specific point of view on the space*, and its ability to represent vectors (as representations for objects) \underline{x} .

Projectors and probabilty distributions

1-dimensional projections and probabilities

Notice how it is also true that a given normalized vector $\underline{x} \in V_n$ determines a probability distibution in different subspaces generated by the \mathbf{P}_i . This function depends on $\underline{x} \in V_n$ and ranges in the set of spaces L_i of V_n , as follows:

$$\mu_{\underline{x}}(L_i) = (\mathbf{P}_i \underline{x}, \mathbf{P}_i \underline{x}) = |\mathbf{P}_i \underline{x}|^2$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Projectors and probabilty distributions

1-dimensional projections and probabilities

Notice how it is also true that a given normalized vector $\underline{x} \in V_n$ determines a probability distibution in different subspaces generated by the \mathbf{P}_i . This function depends on $\underline{x} \in V_n$ and ranges in the set of spaces L_i of V_n , as follows:

$$\boldsymbol{\mu}_{\underline{x}}(L_i) = (\mathbf{P}_i \underline{x}, \mathbf{P}_i \underline{x}) = |\mathbf{P}_i \underline{x}|^2$$

Properties of μ_x

- $\mu_{\underline{x}}(\underline{0}) = 0$
- $\mu_{\underline{x}}(V_n) = 1$
- μ_x(L_i ⊕ L_j) = μ_x(L_i) + μ_x(L_j), whenever L_i ∩ L_j = Ø. L_i ⊕ L_j is the smallest subspace of V_n that contains both L_i and L_j.

Eigenvalues and eigenvectors

Eigenvectors

An eigenvector <u>x</u> for a matrix **A** is a non-zero vector for which a scalar $\lambda \in \Re$ exists such that

$$\mathbf{A}\underline{x} = \lambda \underline{x}$$

The value of the scalar λ is called eigenvalue of **A** associated to <u>x</u>, and correspond to the scaling factor along the direction of <u>x</u>.

Example

$$\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \text{ and } \underline{x} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

<u>x</u> is an eigenvector of **A** and $\lambda = 2$ is its eigenvalue.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Eigenvalues, eigenvectors and some properties

Eigenvalues, eigenvectors: Some Consequences

When a matrix \mathbf{A} has an eigenvector \underline{x} it must satisfy the following condition:

$$\mathbf{A}\underline{x} = \lambda \underline{x}$$

We can rewrite the condition $A\underline{x} = \lambda \underline{x}$ as

$$(\mathbf{A} - \lambda \mathbf{I} \underline{x}) = \underline{0}$$

where I is the Identity matrix.

In order for a non-zero vector \underline{x} to satisfy this equation, $\mathbf{A} - \lambda \mathbf{I}$ must not be *invertible*(see next slide).

The consequence is that the determinant of $\mathbf{A} - \lambda \mathbf{I}$ must equal 0. This function is $p(\lambda) = det(\mathbf{A} - \lambda \mathbf{I})$, called the *characteristic polynomial* of \mathbf{A} . The eigenvalues of \mathbf{A} are simply the roots of the characteristic polynomial of \mathbf{A} .

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Eigenvalues, eigenvectors and some properties: Proof

$\mathbf{A} - \lambda \mathbf{I}$ must not be invertible: Why?

 $\mathbf{A} - \lambda \mathbf{I}$ must not be invertible, as otherwise, if $\mathbf{A} - \lambda \mathbf{I}$ has an inverse, and

$$(\mathbf{A} - \lambda \mathbf{I})^{-1} (\mathbf{A} - \lambda \mathbf{I}) \underline{x} = (\mathbf{A} - \lambda \mathbf{I})^{-1} \underline{0} \underline{x}$$
$$\mathbf{I} \underline{x} = \underline{0}.$$

the zero vector is derived. This is not admissibile as, by definition, $\underline{x} \neq \underline{0}$.

Eigenvalues and eigenvectors

An example: computing eigenvalues

Let
$$\mathbf{A} = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$$
. Then
 $p(\lambda) = (2 - \lambda)(-1 - \lambda) - (-4)(-1) = \lambda^2 - \lambda - 6 = (\lambda - 3)(\lambda + 2)$
The eigenvectors are then the solution of the linear equation system given by
 $(\mathbf{A} - \lambda \mathbf{I})\underline{x} = \underline{0}$.
Given the first eigenvalue $\lambda_1 = 3$, $(\mathbf{A} - 3\mathbf{I})\underline{x} = \underline{0}$ gives the following system:
 $\begin{cases} -x_1 - 4x_2 = 0 \\ -x_1 - 4x_2 = 0 \end{cases}$

This suggests that all vectors of the form $\alpha \underline{x}_1$ are eigenvectors with $\underline{x}_1^T = (-4, 1)$. The span of the vector $(-4, 1)^T$ is the **eigenspace** corresponding to $\lambda_1 = 3$. Correspondingly, the span of the vector $\underline{x}_2 = (1, 1)^T$ corresponds to the eigenspace of $\lambda_2 = -2$. Notice that \underline{x}_1 and \underline{x}_2 are linearly independent, so they can form a basis.

Eigenvalues and eigenvectors

Eigenvectors of Symmetric matrices

A symmetric non singular real-valued matrix \mathbf{A} is such that $\mathbf{A} = \mathbf{A}^T$, and on two dimensions, this means that :

i)
$$a_{11}, a_{22} \neq 0$$

ii) $a_{12} = a_{21} = a$

In order for A to have two real eigenvalues the following must hold:

$$p(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) - a^2 = = \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a^2 = 0$$

from which eigenvalues are distinct iff:

$$(a_{11} - a_{22})^2 + 4a^2 \ge 0$$

The above inequality is always satisfied, with the 0 case only when A = I.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix **A** has *n* distinct eigenvectors \underline{x}_i with all real-valued and distinct eigenvalues λ_i , it is called *non-degenerate*.

Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix **A** has *n* distinct eigenvectors \underline{x}_i with all real-valued and distinct eigenvalues λ_i , it is called *non-degenerate*.

A non degenerate matrix A has all the eigenvectors mutually orthogonal.

In fact, given two any eigenvectors $\underline{x}_1 \neq \underline{x}_2$, with $\mathbf{A}\underline{x}_i = \lambda_i \underline{x}_i$ (i = 1, 2), it follows that

$$\begin{split} \lambda_1(\underline{x}_1,\underline{x}2) &= (\mathbf{A}\underline{x}_1,\underline{x}_2) = (\underline{x}_1,\mathbf{A}\underline{x}2) = \lambda_2(\underline{x}_1,\underline{x}_2) \\ \text{from which it follows that} \qquad & (\lambda_1 - \lambda_2)(\underline{x}_1,\underline{x}_2) = 0 \end{split}$$

However as $\lambda_1 \neq \lambda_2$, and $\underline{x}_1, \underline{x}_2$ were arbitrarily chosen, the result is that

$$\forall i, j = 1, ..., n \qquad (\underline{x}_i, \underline{x}_j) = \begin{cases} \|\underline{x}_i\|^2 & i = j \\ 0 & i \neq j \end{cases}$$

Spectral Theorem

Spectral theorem

For every self-adjoint matrix **A** on a finite dimensional inner product space V_n , there correspond real valued numbers $\alpha_1, ..., \alpha_r$, and orthonormal projections $\mathbf{E}_1, ..., \mathbf{E}_r$, with $r \leq n$, such that:

- (1) all α_l are *pairwise distinct*
- (2) all \mathbf{E}_j are not null (i.e. $\forall j, \mathbf{E}_j \neq \mathbf{0}$
- (3) $\sum_{j=1}^{r} \mathbf{E}_j = \mathbf{I}$
- (4) $\mathbf{A} = \sum_{j=1}^{r} \alpha_j \mathbf{E}_j$

Notice that the set of self-adjoint matrices whenever the underlying field is the set of real numbers consists of the set of symmetric matrices. The spectral theorem suggests that a possible basis where to diagonalize them is always available through their eigenvectors.

Applications: document similarity matrices where $a_{ij} = sim(d_i, d_j)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Vectors, Operations, Norms and Distances

K. Van Rijesbergen, The Geometry of Information Retrieval, CUP Press, 2004. Chapter 4.