Spazi vettoriali e Trasformazioni Lineari

R. Basili
Corso di Web Mining e Retrieval a.a. 2008-9

April 10, 2009

Outline

Outline

- Trasformazioni Lineari in spazi discreti
- Matrici
- Matrici di una trasformazioni e Basi
- Matrici singolari
- Trasposta di una matrice e proiezioni
- Autovalori ed autovettori
- Il teorema spettrale

Linear Transformation

Linear Transformation:

Any transformation T of vectors \underline{x} in the space is such that the transformed vector $T(\underline{x})$ lies in another (sometimes the same) vector space. A transformatin $T: V_{n} \rightarrow W_{m}$ is said to be linear iff:

$$
\begin{array}{r}
T(\alpha \underline{x})=\alpha T(\underline{x}) \\
T(\underline{x}+\underline{y})=T(\underline{x})+T(\underline{y}) \\
T(\alpha \underline{x}+\beta \underline{y})=\alpha T(\underline{x})+\beta T(\underline{y})
\end{array}
$$

Linear Transformation

Linear Transformation and Basis:

The effect of linear transformation T from V_{n} to W_{m} is entirely determined by its effect on the basis $\left\{\underline{b}_{1}, \ldots, \underline{b}_{n}\right\}$ of the originating space V_{n}, thus we need to know for a generic vector $\underline{x}=\alpha_{1} \underline{b}_{1}+\ldots+\alpha_{n} \underline{b}_{n}$, just the vectors:

$$
\begin{array}{r}
\underline{b}_{i}^{\prime}=T\left(\underline{b}_{i}\right) \quad \forall i=1, \ldots n \text { that is } \\
\underline{b}_{k}^{\prime}=T\left(\underline{b}_{k}\right)=\sum_{i=1}^{n} a_{i k} \underline{b}_{i}
\end{array}
$$

as $T(\underline{x})=T\left(\sum_{i} \alpha_{i} \underline{b}_{i}\right)=\sum_{i} \alpha_{1} T\left(\underline{b}_{i}\right)$.
Notice that the coefficents $a_{i k} \quad \forall i, k=1, \ldots, n$ form a square matrix \mathbf{A}.

Linear Transformation

Linear Transformation and Basis:
For a generic vector pair $\underline{x}=\sum_{i} x_{i} \underline{b}_{i}$ and $\underline{y}=\sum_{i} y_{i} \underline{b}_{i}$, such that $T(\underline{x})=\underline{y}$, it follows.

$$
\begin{aligned}
T(\underline{x})=\sum_{k=1}^{n} x_{k} T\left(\underline{b}_{k}\right)=\sum_{k=1}^{n} x_{k} \sum_{i=1}^{n} a_{i k} \underline{b}_{i} & = \\
\sum_{i}\left(\sum_{k} a_{i k} x_{k}\right) \underline{b}_{i}(\text { but also }) & = \\
\sum_{i} y_{i} \underline{b}_{i} & =\underline{y}
\end{aligned}
$$

from which we deduce that

$$
y_{i}-\sum_{k} a_{i k} x_{k}=0 \quad \forall i=1, \ldots, n
$$

as \underline{b}_{i} are all linearly independent.

Linear Transformation and Matrices

The operation $y_{i}=\sum_{k} a_{i k} x_{k} \quad(\forall i=1, \ldots, n)$ suggests a matrix representation with a specific vector by matrix (i.e. row by column) multiplication. First of all the $a_{i k}$ coefficient define a square matrix \mathbf{A} :

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

while \underline{x} and \underline{y} are as usual column vectors:

$$
\underline{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \quad \underline{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

Matrices-Vector multiplications

Moreover, we see that the trasnformation T over the vector \underline{x}, with $T(\underline{x})=\underline{y}$, can be expressed as follows:

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right) \quad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

where the i th component y_{i} of \underline{y} corresponds to the component-wise multiplication between the i th row of \mathbf{A} and the vector \underline{x}, i.e. $y_{i}=\sum_{k} a_{i k} x_{k}$. Notice that this also corresponds to an inner product between rows in \mathbf{A} and \underline{x}.

This is also written with more synthesis:

$$
\underline{y}=\mathbf{A} \underline{x}
$$

Matrices and Linear Transformations

Matrices and Linear Transformations

Matrices A thus represent linear transformations between vectors in a space
V_{n}.
Every T corresponds to a matrix \mathbf{A} and viceversa.
Non singular transformations
We can ask if the inverse transformation exist for each T.
A linear transformation T is non singular when the inverse transformation T^{-1} exists such that whereas $\underline{y}=T(\underline{x})$ then $\underline{x}=T^{-1}(\underline{y})$.
The correspondng matrices a follow the same terminology, \mathbf{A}^{-1} is called the inverse matrix of \mathbf{A}, and $\underline{x}=\mathbf{A}^{-1} \underline{y}$.
When \mathbf{A}^{-1} exist for \mathbf{A}, then \mathbf{A} is \bar{n} on singular, otherwise it is called singular.

Matrix operations

Matrix multiplication by a scalar and sum

$$
\begin{aligned}
& \boldsymbol{\alpha} \mathbf{A}=\left(\alpha a_{i k}\right) \\
& \mathbf{A}+\mathbf{B}=\left(a_{i k}\right)+\left(b_{i k}\right)=\left(a_{i k}+b_{i k}\right)
\end{aligned}
$$

Matrix multiplication: $\mathbf{C}=\mathbf{A B}$

$$
\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right) \quad\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n n}
\end{array}\right)
$$

Matrix operations and transformations

Matrix multiplication and transformations

Matrix multiplications are the counterpart of the compositions between linear transformations, i.e.

$$
\mathbf{A B} \underline{x}=\underline{y} \text { when } T_{A} T_{B}(\underline{x})=\underline{y}
$$

Symmetry
Matrix multiplications are clearly non symmetric, i.e.

$$
\underline{y}=\mathbf{A} \mathbf{B} \underline{x} \neq \mathbf{B} \mathbf{A} \underline{x}=\underline{y}^{\prime}
$$

and correspondingly

$$
\underline{y}=T_{A} T_{B}(\underline{x}) \neq T_{B} T_{A}(\underline{x})=\underline{y}^{\prime}
$$

Matrix operations and transformations

Zero Matrix
The zero matrix $\underline{0}$ is the neutral elements with respect to the matrix sums, i.e.

$$
\forall \mathbf{A}, \quad \mathbf{A}+\underline{\mathbf{0}}=\underline{\mathbf{0}}+\mathbf{A}=\mathbf{A}
$$

It corresponds to the unique matrix \mathbf{A} whereas $\forall i, k=1, \ldots, n \quad a_{i k}=0$. For $n=3, \underline{\mathbf{0}}$ is as follows:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Matrix operations: Identity

Identity Matrix

The identity matrix $\underline{\mathbf{I}}$ is the neutral elements with respect to the matrix multiplication, i.e.

$$
\forall \mathbf{A}, \quad \mathbf{A I}=\mathbf{I} \mathbf{A}=\mathbf{A}
$$

It corresponds to the matrix with all elements in the main diagonal equal to 1, e 0 elsewehere, i.e.:

$$
\mathbf{I}=\left(a_{i k}\right)=\delta_{i k}=\left\{\begin{array}{cc}
1 & i=k \\
0 & i \neq k
\end{array}\right.
$$

For $n=3$, \mathbf{I} is as follows:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Change of Basis

Change of Basis

Given two alternative basis $B=\left\{\underline{b}_{1}, \ldots, \underline{b}_{n}\right\}$ and $B^{\prime}=\left\{\underline{b}_{1}^{\prime}, \ldots, \underline{b}_{n}^{\prime}\right\}$, such that the square matrix $\mathbf{C}=\left(c_{i} k\right)$ describe the change of the basis, i.e.

$$
\underline{b}_{k}^{\prime}=c_{1 k} \underline{b}_{1}+c_{2 k} \underline{b}_{2}+\ldots c_{n k} \underline{b}_{n} \quad \forall k=1, \ldots, n
$$

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix \mathbf{C} on a generic vector \underline{x} allows to compute the change of basis according only to the involved basis B and B^{\prime}. For every $\underline{x}=\sum_{k=1}^{n} x_{k} \underline{b}_{k}$ such that in the new basis $B^{\prime}, \underline{x}$ can be expressed by $\underline{x}=\sum_{k=1}^{n} x_{k}^{\prime} \underline{b}_{k}^{\prime}$, then it follows that:

$$
\underline{x}=\sum_{k=1}^{n} x_{k}^{\prime} \underline{b}_{k}^{\prime}=\sum_{k} x_{k}^{\prime}\left(\sum_{i} c_{i k} \underline{b}_{i}\right)=\sum_{i, k=1}^{n} x_{k}^{\prime} c_{i k} \underline{b}_{i}
$$

from which it follows that:

$$
x_{i}=\sum_{k=1}^{n} x_{k}^{\prime} c_{i k} \quad \forall i=1, \ldots, n
$$

The above condition suggests that \mathbf{C} is sufficient to describe any change of basis through the matrix vector mutliplication operations:

$$
\underline{x}=\mathbf{C} \underline{x}^{\prime}
$$

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix \mathbf{C} on a matrix \mathbf{A} can be seen by studying the case where $\underline{x}, \underline{y}$ are the expression of two vectors in a base B while their counterpart on B^{\prime} are $\underline{x}^{\prime}, \underline{y}^{\prime}$, respectively. Now if \mathbf{A} and \mathbf{B} are such that $\underline{y}=\mathbf{A} \underline{x}$ and $\underline{y}^{\prime}=\mathbf{B} \underline{x}^{\prime}$, then it follows that:

$$
\begin{array}{r}
\underline{y}=\mathbf{C} \underline{y}^{\prime}=\mathbf{A} \underline{x}=\mathbf{A}\left(\mathbf{C} \underline{x}^{\prime}\right)=\mathbf{A C} \underline{x}^{\prime} \\
\text { (this means that) } \\
\underline{y}^{\prime}=\mathbf{C}^{-1} \mathbf{A C} \underline{x}^{\prime}
\end{array}
$$

from which it follows that:

$$
\mathbf{B}=\mathbf{C}^{-1} \mathbf{A C}
$$

The transformation of basis \mathbf{C} is a similarity transformation and matrices \mathbf{A} and \mathbf{C} are said similar.

Adjont Matrix

Adjoint (Transpose) of a matrix
The adjoint \mathbf{A}^{*} of a matrix \mathbf{A} is the unique matrix such that

$$
\left(\mathbf{A}^{T} \underline{x}, \underline{y}\right)=(\underline{x}, \mathbf{A} \underline{y})
$$

In case \mathbf{A} has real values (as always in this course) the adjoint \mathbf{A}^{*} is noted as \mathbf{A}^{T} and it is called transpose of matrix $\mathbf{A} . \mathbf{A}^{T}$ is obtained from \mathbf{A} by exchanging rows and columns, i.e.

$$
\mathbf{A}=\left(a_{i j}\right) \Longrightarrow \mathbf{A}^{T}=\left(a_{j i}\right)
$$

Self-adjointness and Idempotence

Self-Adjoint matrices
A matrix \mathbf{A} is self-adjoint iff the following holds:

$$
(\mathbf{A} \underline{x}, \underline{y})=(\underline{x}, \mathbf{A} \underline{y})
$$

Note that the above means that when \mathbf{A} takes only real values, then \mathbf{A} is symmetric, i.e. $\mathbf{A}=\mathbf{A}^{T}$. Diagonal matrices are always self-adjoint.

Idempotence
A matrix \mathbf{A} is idempotent iff the following holds:

$$
\mathbf{E E} \underline{x}=\mathbf{E} \underline{x} \quad \forall \underline{x}
$$

Projectors

Projectors

Linear transformations that are

- Idempotent (i.e. $\mathbf{E E} \underline{x}=\mathbf{E} \underline{x} \quad \forall \underline{x})$
- Self-Adjoint: (i.e. $(\mathbf{A} \underline{x}, \underline{y})=(\underline{x}, \mathbf{A} \underline{y})$
are called projectors.

Examples

Some noticeable examples of projectors are alrady known:

- (Null Matrix) The operator $\underline{\mathbf{O}}$ is a projector: it maps every vector \underline{x} in the null vector $\underline{0}$.
- (Idenity) The operator \underline{I} is a projector: it maps every vector \underline{x} into itself.

Projectors are applications between a vector space V_{n} and one of its subspaces: as $\underline{0}$ and $\underline{1}$ are part of this subspace it has still the properties of being a vector space.

Projectors

1-dimensional projections
Given a basis $B=\left\{\underline{b}_{i}\right\}$, for every \underline{b}_{i} a projector \mathbf{P}_{i} can be built, that maps any $\underline{x}=\sum_{i} x_{i} \underline{b}_{i}$ in the subspace generated (or spanned) by \underline{b}_{i}, i.e.

$$
\mathbf{P}_{i} \underline{x}=x_{i} \underline{b}_{i}
$$

If B is an orthonormal basis, \mathbf{P}_{i} are a collection of orthogonal projectors:

- every vector in the space spanned by \underline{b}_{i} will be projected into itself
- every vector orthogonal to \underline{b}_{i} will be projected into the null vector, $\underline{0}$.
- Every vector \underline{x} is the sum of a vector \underline{x}_{i} in the subspace spanned by \underline{b}_{i} and a vector \underline{x}^{\perp} in the subspace orthogonal to \underline{b}_{i}, i.e. $\underline{x}=\underline{x}_{i}+\underline{x}^{\perp}$.

Projectors

1-dimensional projections: example
Let $B=\left\{\underline{b}_{i}, \quad i=1, \ldots, n\right\}$ be an orthonormal basis, and $\underline{x}=\sum_{i} x_{i} \underline{b}_{i}$ be a normalized vector, i.e. $\|\underline{x}\|=1$ (or $\sum_{i}\left|x_{i}\right|^{2}=1$). It is of course true that, when \mathbf{P}_{i} is the projector relative to \underline{b}_{i}, then $\mathbf{P}_{i} \underline{x}=x_{i}$. As

$$
\begin{array}{rlr}
\left(\underline{x}, \mathbf{P}_{i} \underline{x}\right) & =\left(\underline{x}, \mathbf{P}_{i} \mathbf{P}_{i} \underline{x}\right) \quad & \text { (Idempotence) } \\
& =\left(\mathbf{P}_{i} \underline{x}, \mathbf{P}_{i} \underline{x}\right) \quad \text { (Self-adjointness) } \\
& =\left(x_{i} \underline{b}_{i}, x_{i} \underline{b}_{i}\right) \\
& =x_{i}^{2}\left(\underline{b}_{i}, \underline{b}_{i}\right)=\left|x_{i}\right|^{2}
\end{array}
$$

then the base B establishes through projectors \mathbf{P}_{i}, a probability distribution in the individual spaces spanned by \mathbf{P}_{i}. Selecting a base B is like deciding about a specific point of view on the space, and its ability to represent vectors (as representations for objects) \underline{x}.

Projectors and probabilty distributions

1-dimensional projections and probabilities
Notice how it is also true that a given normalized vector $\underline{x} \in V_{n}$ determines a probability distibution in different subspaces generated by the \mathbf{P}_{i}.
This function depends on $\underline{x} \in V_{n}$ and ranges in the set of spaces L_{i} of V_{n}, as follows:

$$
\mu_{\underline{x}}\left(L_{i}\right)=\left(\mathbf{P}_{i} \underline{x}, \mathbf{P}_{i} \underline{x}\right)=\left|\mathbf{P}_{i \underline{x}}\right|^{2}
$$

Properties of $\mu_{\underline{x}}$

- $\mu_{\underline{x}}(\underline{0})=0$
- $\mu_{\underline{x}}\left(V_{n}\right)=1$
- $\mu_{\underline{x}}\left(L_{i} \oplus L_{j}\right)=\mu_{\underline{x}}\left(L_{i}\right)+\mu_{\underline{x}}\left(L_{j}\right)$, whenever $L_{i} \cap L_{j}=\emptyset . L_{i} \oplus L_{j}$ is the smallest subspace of V_{n} that contains both L_{i} and L_{j}.

Eigenvalues and eigenvectors

Eigenvectors

An eigenvector \underline{x} for a matrix \mathbf{A} is a non-zero vector for which a scalar $\lambda \in \mathfrak{R}$ exists such that

$$
\mathbf{A} \underline{x}=\lambda \underline{x}
$$

The value of the scalar λ is called eigenvalue of \mathbf{A} associated to \underline{x}, and correspond to the scaling factor along the direction of \underline{x}.

Example

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right) \text { and } \quad \underline{x}=\binom{3}{3} \\
\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right)\binom{3}{3}=\binom{6}{6}=2\binom{3}{3}
\end{gathered}
$$

\underline{x} is an eigenvector of \mathbf{A} and $\lambda=2$ is its eigenvalue.

Eigenvalues, eigenvectors and some properties

Eigenvalues, eigenvectors: Some Consequences
When a matrix \mathbf{A} has an eigenvector \underline{x} it must satisfy the following condition:

$$
\mathbf{A} \underline{x}=\lambda \underline{x}
$$

We can rewrite the condition $\mathbf{A} \underline{x}=\lambda \underline{x}$ as

$$
(\mathbf{A}-\lambda \mathbf{I} \underline{\mathbf{x}})=\underline{0}
$$

where \mathbf{I} is the Identity matrix.
In order for a non-zero vector \underline{x} to satisfy this equation, $\mathbf{A}-\boldsymbol{\lambda} \mathbf{I}$ must not be invertible(see next slide).
The consequence is that the determinant of $\mathbf{A}-\lambda \mathbf{I}$ must equal 0 . This function is $p(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$, called the characteristic polynomial of \mathbf{A}. The eigenvalues of \mathbf{A} are simply the roots of the characteristic polynomial of A.

Eigenvalues, eigenvectors and some properties: Proof

$\mathbf{A}-\lambda \mathbf{I}$ must not be invertible: Why?
$\mathbf{A}-\lambda \mathbf{I}$ must not be invertible, as otherwise, if $\mathbf{A}-\lambda \mathbf{I}$ has an inverse, and

$$
\begin{aligned}
(\mathbf{A}-\lambda \mathbf{I})^{-1}(\mathbf{A}-\lambda \mathbf{I}) \underline{x} & =(\mathbf{A}-\lambda \mathbf{I})^{-1} \underline{0 x} \\
\mathbf{I} \underline{x} & =0
\end{aligned}
$$

the zero vector is derived. This is not admissibile as, by definition, $\underline{x} \neq \underline{0}$.

Eigenvalues and eigenvectors

An example: computing eigenvalues
Let $\mathbf{A}=\left(\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right)$. Then
$p(\lambda)=(2-\lambda)(-1-\lambda)-(-4)(-1)=\lambda^{2}-\lambda-6=(\lambda-3)(\lambda+2)$
The eigenvectors are then the solution of the linear equation system given by $(\mathbf{A}-\lambda \mathbf{I}) \underline{x}=\underline{0}$.
Given the first eigenvalue $\lambda_{1}=3,(\mathbf{A}-3 \mathbf{I}) \underline{x}=\underline{0}$ gives the following system:

$$
\left\{\begin{array}{l}
-x_{1}-4 x_{2}=0 \\
-x_{1}-4 x_{2}=0
\end{array}\right.
$$

This suggests that all vectors of the form $\alpha \underline{x}_{1}$ are eigenvectors with $\underline{x}_{1}^{T}=(-4,1)$. The span of the vector $(-4,1)^{T}$ is the eigenspace corresponding to $\lambda_{1}=3$. Correspondingly, the span of the vector $\underline{x}_{2}=(1,1)^{T}$ corresponds to the eigenspace of $\lambda_{2}=-2$.
Notice that \underline{x}_{1} and \underline{x}_{2} are linearly independent, so they can form a basis.

Eigenvalues and eigenvectors

Eigenvectors of Symmetric matrices
A symmetric non singular real-valued matrix \mathbf{A} is such that $\mathbf{A}=\mathbf{A}^{T}$, and on two dimensions, this means that :

$$
\begin{array}{ll}
\text { i) } \quad a_{11}, a_{22} \neq 0 \\
\text { ii) } & a_{12}=a_{21}=a
\end{array}
$$

In order for \mathbf{A} to have two real eigenvalues the following must hold:

$$
\begin{aligned}
p(\lambda) & =\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a^{2}= \\
& =\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+a_{11} a_{22}-a^{2}=0
\end{aligned}
$$

from which eigenvalues are distinct iff:

$$
\left(a_{11}-a_{22}\right)^{2}+4 a^{2} \geq 0
$$

The above inequality is always satisfied, with the 0 case only when $\mathbf{A}=\mathbf{I}$.

Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix A has n distinct eigenvectors x_{i} with all real-valued and distinct eigenvalues λ_{i}, it is called non-degenerate.
A non degenerate matrix \mathbf{A} has all the eigenvectors mutually orthogonal.
In fact, given two any eigenvectors $\underline{x}_{1} \neq \underline{x}_{2}$, with $\mathbf{A} \underline{x}_{i}=\lambda_{i} \underline{x}_{i} \quad(i=1,2)$, it follows that

$$
\lambda_{1}\left(\underline{x}_{1}, \underline{x} 2\right)=\left(\mathbf{A} \underline{x}_{1}, \underline{x}_{2}\right)=\left(\underline{x}_{1}, \mathbf{A} \underline{x} 2\right)=\lambda_{2}\left(\underline{x}_{1}, \underline{x}_{2}\right)
$$

from which it follows that $\quad\left(\lambda_{1}-\lambda_{2}\right)\left(\underline{x}_{1}, \underline{x}_{2}\right)=0$
However as $\lambda_{1} \neq \lambda_{2}$, and $\underline{x}_{1}, \underline{x}_{2}$ were arbitrarily chosen, the result is that

$$
\forall i, j=1, \ldots, n \quad\left(\underline{x}_{i}, \underline{x}_{j}\right)= \begin{cases}\left\|\underline{x}_{i}\right\|^{2} & i=j \\ 0 & i \neq j\end{cases}
$$

Spectral Theorem

Spectral theorem

For every self-adjoint matrix \mathbf{A} on a finite dimensional inner product space V_{n}, there correspond real valued numbers $\alpha_{1}, \ldots, \alpha_{r}$, and orthonormal projections $\mathbf{E}_{1}, \ldots, \mathbf{E}_{r}$, with $r \leq n$, such that:

- (1) all α_{l} are pairwise distinct
-(2) all \mathbf{E}_{j} are not null (i.e. $\forall j, \mathbf{E}_{j} \neq \mathbf{0}$
- (3) $\sum_{j=1}^{r} \mathbf{E}_{j}=\mathbf{I}$
- (4) $\mathbf{A}=\sum_{j=1}^{r} \alpha_{j} \mathbf{E}_{j}$

Notice that the set of self-adjoint matrices whenever the underlying field is the set of real numbers consists of the set of symmetric matrices. the spectral theorem suggests that a possible basis where to diagonalize them is always available through their eigenvectors.
Applications: document similarity matrices where $a_{i j}=\operatorname{sim}\left(d_{i}, d_{j}\right)$.

References

Vectors, Operations, Norms and Distances
K. Van Rijesbergen, The Geometry of Information Retrieval, CUP Press, 2004. Chapter 4.

