Elementi di probabilitá e Statistica

R. Basili

Corso di Web Mining e Retrieval a.a. 2008-9

March 10, 2010

《曰》 《聞》 《臣》 《臣》 三臣

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

Outline

- Introduzione
- Elementi di base nella teoria della probabilitá
- Spazio di Campionamento
- Variabili stocastiche
- Funzioni di distribuzione
- Sommario

▲□▶▲□▶▲□▶▲□▶ □ のQで

Elementary Probability Theory

Outline

- Sample Space
- Probability Measures
- Independence
- Conditional Probabilities
- Bayesian Inversion
- Partitions

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Sample Space

Sample Space

The sample space is a set of elementary outcomes. An event is a subset of the sample space. Sample spaces are often denoted by Ω and events are often called A, B, C, \dots

Sample Space

Sample Space

The sample space is a set of elementary outcomes. An event is a subset of the sample space. Sample spaces are often denoted by Ω and events are often called A, B, C, \dots

Example

Dado. $\Omega = \{'1', '2', ..., '6'\}$

- Un tiro del dado in cui si ottiene '1' da' luogo all'evento {'1'}:
- "Il risultato é meno di 4" consiste nell'evento: $\{'1', '2', '3'\}$
- il numero totale di eventi coincide con il numero totale di sottoinsiemi di Ω.

• Nota:
$$'1' \neq \{'1'\}$$

Probability Measures

Una funzione *P* a valori reali sullo spazio degli eventi 2^{Ω} e' una funzione di probabilitá **sse**:

Axioms1) $0 \le P(A) \le 1$ $\forall A \in 2^{\Omega}$

Probability Measures

Una funzione *P* a valori reali sullo spazio degli eventi 2^{Ω} e' una funzione di probabilitá **sse**:

Axioms1) $0 \le P(A) \le 1$ $\forall A \in 2^{\Omega}$ 2) $P(\Omega) = 1$

Probability Measures

Una funzione *P* a valori reali sullo spazio degli eventi 2^{Ω} e' una funzione di probabilitá **sse**:

Axioms

1)
$$0 \le P(A) \le 1$$
 $\forall A \in 2^{\Omega}$
2) $P(\Omega) = 1$
3) $\forall A, B \in 2^{\Omega}$ $(A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B))$

Probability Measures

Una funzione *P* a valori reali sullo spazio degli eventi 2^{Ω} e' una funzione di probabilitá **sse**:

Axioms

1)
$$0 \le P(A) \le 1$$
 $\forall A \in 2^{\Omega}$
2) $P(\Omega) = 1$
3) $\forall A, B \in 2^{\Omega}$ $(A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B))$

Esempio di Ω : "Il risultato di un tiro di dado e' minore di 7".

Overview

Basic Statistics

Stochastic Variables

Selected Probability Distributions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Probability Measures

Data la funzione $P: 2^{\Omega} \rightarrow [0, 1]$

•
$$P(A \setminus B) = P(A) - P(A \cap B)$$

Probability Measures

Data la funzione
$$P: 2^{\Omega} \rightarrow [0, 1]$$

•
$$P(A \setminus B) = P(A) - P(A \cap B)$$

•
$$A \subseteq B \Rightarrow P(A) \le P(B)$$

Probability Measures

Data la funzione
$$P: 2^{\Omega} \rightarrow [0, 1]$$

•
$$P(A \setminus B) = P(A) - P(A \cap B)$$

•
$$A \subseteq B \Rightarrow P(A) \le P(B)$$

•
$$P(\bar{A}) = 1 - P(A)$$

Probability Measures

Data la funzione
$$P: 2^{\Omega} \rightarrow [0, 1]$$

•
$$P(A \setminus B) = P(A) - P(A \cap B)$$

•
$$A \subseteq B \Rightarrow P(A) \le P(B)$$

•
$$P(\bar{A}) = 1 - P(A)$$

•
$$P(\emptyset) = 0$$

Probability Measures

Data la funzione
$$P: 2^{\Omega} \rightarrow [0, 1]$$

•
$$P(A \setminus B) = P(A) - P(A \cap B)$$

•
$$A \subseteq B \Rightarrow P(A) \le P(B)$$

•
$$P(\bar{A}) = 1 - P(A)$$

•
$$P(\emptyset) = 0$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Probability Measures

La situazione in cui due eventi $A \in B$ occorrono insieme ammette una probabilita' pari a $P(A \cap B)$. La conoscenza di un evento B cambia la nostra aspettativa (e quindi la probabilita') di un secondo evento A. Quando questo non avviene allora i due eventi si dicono *indipendenti*.

Independence

A is independent from $B \iff P(A \cap B) = P(A) \cdot P(B)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Probability Measures

Conditional Probabilities

The probability of *A* given an event *B* is written as P(A|B) and it is given by: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Probability Measures

Conditional Probabilities

The probability of *A* given an event *B* is written as P(A|B) and it is given by: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Formula like P(A) are often called *priors* or *a priori* probabilities as nothing is known about *A*, while P(A|B) are called *posteriors* (or *a posteriori*) probabilities, as *B* adds information to *A*.

Probability Measures

Conditional Probabilities

The probability of *A* given an event *B* is written as P(A|B) and it is given by: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Formula like P(A) are often called *priors* or *a priori* probabilities as nothing is known about A,

while P(A|B) are called *posteriors* (or *a posteriori*) probabilities, as *B* adds information to *A*. Note that:

- $P(A|A) = 1, P(A|\bar{A}) = 0$
- If A and B are independent: $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$

Bayesian Inversion

The probability P(A|B) can be more difficult to estimate than P(B|A). A way to invert the conditional probability P(A|B) is known as **Bayes rule**:

э

Bayesian Inversion

The probability P(A|B) can be more difficult to estimate than P(B|A). A way to invert the conditional probability P(A|B) is known as **Bayes rule**:

Bayesian Inversion

As
$$P(A|B) \cdot P(B) = P(A \cap B) = P(B|A) \cdot P(A)$$

then it follows that:
 $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B)}$

Bayesian Inversion

The probability P(A|B) can be more difficult to estimate than P(B|A). A way to invert the conditional probability P(A|B) is known as **Bayes rule**:

Bayesian Inversion

As
$$P(A|B) \cdot P(B) = P(A \cap B) = P(B|A) \cdot P(A)$$

then it follows that:
 $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B)}$
In the Bayes formula

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

the posteriors P(B|A) are used instead of P(A|B).

Partitions

When a partion in *n* events A_i (i = 1, ..., n) is available for Ω , i.e. $\Omega = \bigcup_{i=1}^n A_i$

$$\begin{cases} \mathbf{\Omega} = \bigcup_{i=1}^{n} A_i \\ \forall i \neq j \quad A_i \cap A_j = \mathbf{0} \end{cases}$$

◆□▶ ◆■▶ ◆ ■▶ ◆ ■▶ ○ ■ ○ ○ ○ ○

Partitions

When a partion in *n* events A_i (i = 1, ..., n) is available for Ω , i.e. $\begin{cases} \Omega = \bigcup_{i=1}^n A_i \\ \forall i \neq j \quad A_i \cap A_j = \emptyset \end{cases}$

then:

$$P(B) = P(B \cap \Omega) = P(B \cap (\bigcup_{i=1}^{n} A_i)) = P(\bigcup_{i=1}^{n} (B \cap A_i)) =$$

Partitions

When a partion in *n* events A_i (i = 1, ..., n) is available for Ω , i.e. $\begin{cases} \Omega = \bigcup_{i=1}^n A_i \\ \forall i \neq j \quad A_i \cap A_j = \emptyset \end{cases}$

then:

$$P(B) = P(B \cap \Omega) = P(B \cap (\bigcup_{i=1}^{n} A_i)) = P(\bigcup_{i=1}^{n} (B \cap A_i)) =$$
$$= \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

(ロト・日本)・モン・モン・モー のへの

▲□▶▲□▶▲□▶▲□▶ □ のQで

Stochastic Variables

Stochastic Variables

- Distribution Functions
- Probability Measures
- Discrete and Continuous Stochastic Variables
- Frequency Function
- Expectation Value
- Variance
- Two dimensional Stochastic Variables

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Stochastic Variable

Sample space of a stochastic variable

A stochastic or random variable ξ is a function from a sample space Ω to the set of real numbers *R*. Thus if $u \in \Omega$ then $\xi(u) \in R$.

Stochastic Variable

Sample space of a stochastic variable

A stochastic or random variable ξ is a function from a sample space Ω to the set of real numbers *R*. Thus if $u \in \Omega$ then $\xi(u) \in R$.

In the "Dado" example, the image of ξ is $\{1, ..., 6\}$, and $\xi('1') = 1, ..., \xi('6') = 6$.

Overview

Stochastic Variables

Figure 1.3: $P(\xi \in A)$ is defined through $P(\xi^{-1}(A)) = P(\{u : \xi(u) \in A\}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Stochastic Variables

Sample space of a stochastic variable

The image of the sample space Ω in *R* under the random variable ξ , i.e. the range of ξ , is called *the sample space of the stochastic variable* ξ and is denoted by Ω_{ξ} . In short, $\Omega_{\xi} = \xi(\Omega)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Distribution Function

Distribution Function

Let *A* be a subset of *R* and consider the inverse image of *A* under ξ , i.e. $\xi^{-1}(A) = \{u \in \Omega : \xi(u) \in A\} \subseteq \Omega$.

Distribution Function

Distribution Function

Let *A* be a subset of *R* and consider the inverse image of *A* under ξ , i.e. $\xi^{-1}(A) = \{u \in \Omega : \xi(u) \in A\} \subseteq \Omega$. We will let $P(\xi \in A)$ denote the probability of this set, i.e. $P(\xi^{-1}(A)) = P(\{u : \xi(u) \in A\}) = P(\xi \in A).$

Distribution Function

Distribution Function

Let A be a subset of R and consider the inverse image of A under ξ , i.e. $\xi^{-1}(A) = \{u \in \Omega : \xi(u) \in A\} \subset \Omega$. We will let $P(\xi \in A)$ denote the probability of this set, i.e. $P(\xi^{-1}(A)) = P(\{u : \xi(u) \in A\}) = P(\xi \in A).$ If A is the interval $(-\infty, x]$ then the real-valued function F denoted by $F(x) = P(\{u : \xi(u) < x\}) = P(\xi < x) \qquad \forall x \in R$ is called the *distribution function of the random variable* ξ . Sometimes F is denoted F_{ξ} to indicate that it is the distribution function of the particular random variable ξ .

Overview

Stochastic Variables

Figure 1.3: $P(\xi \in A)$ is defined through $P(\xi^{-1}(A)) = P(\{u : \xi(u) \in A\}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Distribution Function

Figure 1.4: Fair die: Graph of the distribution function.

Frequency Function

Frequency Function

Another way of seeing the distribution of a random variable is through its *frequency function*, f, given by:

- Discrete Case: $f(x) = P(\xi = x)$
- Continuous Case: $f(x) = F'(x) = \frac{dF(x)}{dx}$

In order to explicit the reference to the random variable ξf is often denoted as f_{ξ} .

Overview

Basic Statistics

Stochastic Variables

Selected Probability Distributions

Frequency Function

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Frequency Function and Probabilities

Frequency and Distribution Function

The probability distribution of a random variable ξ can be computed from its frequency function f_{ξ} as follows:

- Discrete Case: $P(\xi \in A) = \sum_{x \in A} f_{\xi}(x)$
- Continuous Case: $P(\xi \in A) = \int_A f_{\xi}(x) dx$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Frequency Function and Probabilities

Consequences

• Discrete Case:

$$P(\Omega_{\xi}) = \sum_{x \in \Omega_{\xi}} f_{\xi}(x) = 1$$

• Continuous Case:

$$P(\Omega_{\xi}) = \int_{-\infty}^{+\infty} f_{\xi}(x) dx = 1$$

Expectation

Expectation or Mean value

A way to summaize the distribution of a random variable is through its *expectation value*, or statistical mean, $E[\xi]$, given by: Discrete Case:

$$E[\xi] = \sum_{x \in \Omega_{\xi}} x \cdot f_{\xi}(x) = \sum_{i} x_i \cdot f_{\xi}(x_i)$$

• Continuous Case:

$$E[\xi] = \int_{-\infty}^{+\infty} x \cdot f_{\xi}(x) dx$$

In both cases $E[\xi]$ is often denoted by μ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶▲□▶▲□▶▲□▶ □ のQで

Variance

Variance

A second aspect is to express how much is the mean value of a random variable is representative of the entire distribution. This is given by the notion of standard deviation or, more commonly, the *variance Var*[ξ]:

▲□▶▲□▶▲□▶▲□▶ □ のQで

Variance

Variance

A second aspect is to express how much is the mean value of a random variable is representative of the entire distribution. This is given by the notion of standard deviation or, more commonly, the *variance Var*[ξ]:

• Discrete Case:

$$Var[\xi] = \sum_{x \in \Omega_{\xi}} (x - \mu)^2 \cdot f_{\xi}(x) = \sum_i (x_i - \mu)^2 \cdot f_{\xi}(x_i)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Variance

Variance

A second aspect is to express how much is the mean value of a random variable is representative of the entire distribution. This is given by the notion of standard deviation or, more commonly, the *variance Var*[ξ]:

Variance

Variance

A second aspect is to express how much is the mean value of a random variable is representative of the entire distribution. This is given by the notion of standard deviation or, more commonly, the *variance Var*[ξ]:

• Continuous Case:

$$Var[\xi] = \int_{-\infty}^{+\infty} (x - \mu)^2 \cdot f_{\xi}(x) dx$$

・ロト・日本・日本・日本・日本・日本

Variance

Variance

It is clearly true that $Var[\xi] = E[(\xi - \mu)^2]$. The variance of a variable ξ is often denoted by σ^2 , whereas σ denotes the *standard deviation*.

Variance

Variance

It is clearly true that $Var[\xi] = E[(\xi - \mu)^2]$. The variance of a variable ξ is often denoted by σ^2 , whereas σ denotes the *standard deviation*.

In the "Dado" example obviously follows:

•
$$E[\xi] = \sum_{i=1}^{6} \frac{1}{6} \cdot i = \frac{6 \cdot (6+1)}{2} \cdot \frac{1}{6} = \frac{7}{2}$$

• $Var[\xi] = \sum_{i=1}^{6} (i - \frac{7}{2})^2 \cdot \frac{1}{6} = \frac{35}{12}$

Overview

Basic Statistics

Stochastic Variables

Selected Probability Distributions

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Frequency Function

Figure 1.6: Fair die: Expectation value (mean)

Multiple Random Variables

Multiple Variable

Let ξ and η be two random variables defined on the same sample space Ω .

Multiple Random Variables

Multiple Variable

Let ξ and η be two random variables defined on the same sample space Ω .

Then (ξ, η) is a two-dimensional random variable from Ω to $\Omega_{(\xi,\eta)} = \{(\xi(u), \eta(u)) : u \in \Omega\} \subseteq R^2$.

Here $R^2 = R \times R$ is the Cartesian product of the set of real numbers *R* with itself.

Multiple Random Variables

・ロト・日本・日本・日本・日本・今日で

Multiple Random Variables

Generalizations: Discrete Case

A two-dimensional random variable (ξ, η) is discrete **iff** $\Omega_{(\xi,\eta)}$ is finite or countable.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Multiple Random Variables

Generalizations: Discrete Case

A two-dimensional random variable (ξ, η) is discrete **iff** $\Omega_{(\xi,\eta)}$ is finite or countable.

The frequency function f of (ξ, η) is then defined by:

$$f(x,y) = P(\xi = x, \eta = y) = P((\xi, \eta) = (x, y)) \qquad \forall (x, y) \in \mathbb{R}^2$$

Multiple Random Variables

Generalizations: Discrete Case

A two-dimensional random variable (ξ, η) is discrete **iff** $\Omega_{(\xi,\eta)}$ is finite or countable.

The frequency function f of (ξ, η) is then defined by:

 $f(x,y) = P(\xi = x, \eta = y) = P((\xi, \eta) = (x,y))$ $\forall (x,y) \in \mathbb{R}^2$ Furthermore:

 $orall A \subseteq \Omega_{(\xi,\eta)}$

$$P(A) = P((\xi, \eta) \in A) = \sum_{(x,y) \in A} f(x,y)$$

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - のへで

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Multiple Random Variables

Marginal distributions

We can recover the frequency functions of either of the individual variables by summing or integrating over the other.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Multiple Random Variables

Marginal distributions

We can recover the frequency functions of either of the individual variables by summing or integrating over the other. If (ξ, η) is discrete:

$$f_{\xi}(x) = \sum_{y \in \Omega_{\eta}} f(x, y)$$
$$f_{\eta}(y) = \sum_{x \in \Omega_{\xi}} f(x, y)$$

Multiple Random Variables

Marginal distributions

We can recover the frequency functions of either of the individual variables by summing or integrating over the other. If (ξ, η) is discrete:

$$f_{\xi}(x) = \sum_{y \in \Omega_{\eta}} f(x, y)$$
$$f_{\eta}(y) = \sum_{x \in \Omega_{\xi}} f(x, y)$$

In this context f_{ξ} and f_{η} are often referred to as the marginal distributions of ξ and η respectively.

Functions over Multiple Random Variables

Special functions $\Psi(u)$ of two random variables (i.e. $\Psi(u) = g(\xi(u), \eta(u))$ can be easily derived from the single variable case.

Mean

The *expectation value* of $g(\xi, \eta)$ when (ξ, η) is discrete, is given by:

$$E[g(\boldsymbol{\xi},\boldsymbol{\eta})] = \sum_{(x,y)\in\boldsymbol{\Omega}_{(\boldsymbol{\xi},\boldsymbol{\eta})}} g(x,y) \cdot f_{(\boldsymbol{\xi},\boldsymbol{\eta})}(x,y).$$

Expectation (Continuous Case)

$$E[g(\xi,\eta)] = \int_{-\infty}^{+\infty} g(x,y) \cdot f_{(\xi,\eta)}(x,y) dx \, dy \text{ if } (\xi,\eta) \text{ is continuous.}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Stochastic or Random Processes

Random Processes

A *stochastic* or *random process* is a sequence $\xi_1, \xi_2, ..., \xi_n$ of random variables based on the same sample space Ω .

▲□▶▲□▶▲□▶▲□▶ □ のQで

Stochastic or Random Processes

Random Processes

A *stochastic* or *random process* is a sequence $\xi_1, \xi_2, ..., \xi_n$ of random variables based on the same sample space Ω . The possible outcomes of the random variables are called the set of *possible states* of the process. The process will be said to be in state ξ_t at time *t*.

Stochastic or Random Processes

Random Processes

A *stochastic* or *random process* is a sequence $\xi_1, \xi_2, ..., \xi_n$ of random variables based on the same sample space Ω . The possible outcomes of the random variables are called the set of *possible states* of the process. The process will be said to be in state ξ_t at time *t*.

Independence

Note that the random variables are in general not independent (i.e. $P(\xi_{t+1}|\xi_t) \neq P(\xi_{t+1})$ in general). In fact, the interesting thing about stochastic processes is the dependence between the random variables ξ_{t+1} and ξ_t , for the different *t*.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Selected Probability Distributions

Useful Distribution

- Binomial Distribution
- Normal Distribution
- Other Distributions
- Distribution Tables
- Probability Measures

See them in (Krenn & Samuelsson, 1997)

Introduction to Probability

 (Krenn & Samuelsson, 1997), Brigitte Krenn, Christer Samuelsson, *The Linguist's Guide to Statistics Don't Panic*, Univ. of Saarlandes, 1997. URL:

http://nlp.stanford.edu/fsnlp/dontpanic.pdf