## Spazi vettoriali e misure di similaritá

#### R. Basili

Corso di Web Mining e Retrieval a.a. 2009-10

March 25, 2010

< □ > < //>

| Overview |    | Linear Independence |  | From distance to similarity |  |
|----------|----|---------------------|--|-----------------------------|--|
| Outlin   | пе |                     |  |                             |  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

#### Outline

- Spazi vettoriali a valori reali
- Operazioni tra vettori
- Indipendenza Lineare
- Basi
- Prodotto Interno
- Norma di un vettore e Proprietá
- Vettori unitari
- Ortogonalitá
- Similaritá
- Norme e similaritá



# Real-valued Vector Space

# Vector Space definition: A vector space is a set V of objects called vectors $\underline{x} = \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} = |\underline{x}\rangle$ where we can simply refer to a vector by $\underline{x}$ , or using the specific realization called *column vector*, (*Dirac* notation $|\underline{x}\rangle$ )

|       | Vectors | Linear Independence | Inner Product | From distance to similarity | References |
|-------|---------|---------------------|---------------|-----------------------------|------------|
| Real- | valuec  | l Vector Spo        | ace           |                             |            |

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Vector Space definition:

A vector space need to satisfy the following axioms:

| Overview | Vectors | Linear Independence | Inner Product | Norm and Distance | From distance to similarity |  |
|----------|---------|---------------------|---------------|-------------------|-----------------------------|--|
| D1       |         | 1 1/2 - 4 6         |               |                   |                             |  |

### Real-valued Vector Space

Vector Space definition:

A vector space need to satisfy the following axioms:

#### Sum

To every pair,  $\underline{x}$  and  $\underline{y}$ , of vectors in V there corresponds a vector  $\underline{x} + \underline{y}$ , called the sum of  $\underline{x}$  and y, in such a way that:

- sum is commutative,  $\underline{x} + y = y + \underline{x}$
- Sum is associative,  $\underline{x} + (\underline{y} + \underline{z}) = (\underline{x} + \underline{y}) + \underline{z}$
- there exist in V a unique vector  $\Phi$ (called the origin) such that  $\underline{x} + \Phi = \underline{x} \ \forall \underline{x} \in V$
- $\forall \underline{x} \in V$  there corresponds a unique vector  $-\underline{x}$  such that  $\underline{x} + (-\underline{x}) = \Phi$

| Vectors | Linear Independence | Inner Product | From distance to similarity | References |
|---------|---------------------|---------------|-----------------------------|------------|
|         |                     |               |                             |            |

## Real-valued Vector Space

Vector Space definition:

A vector space need to satisfy the following axioms:

| Sum                                                                                                                                                                                                                 | Scalar Multiplication                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To every pair, $\underline{x}$ and $\underline{y}$ , of vectors in V<br>there corresponds a vector $\underline{x} + \underline{y}$ , called the<br>sum of $\underline{x}$ and $\underline{y}$ , in such a way that: | To every pair $\alpha$ and $\underline{x}$ , where $\alpha$ is a scalar<br>and $\underline{x} \in V$ , there corresponds a vector $\alpha \underline{x}$ ,<br>called the product of $\alpha$ and $\underline{x}$ , in such a |
| <ul> <li>sum is commutative, <u>x</u>+<u>y</u> = <u>y</u>+<u>x</u></li> <li>sum is associative,<br/><u>x</u>+(<u>y</u>+<u>z</u>) = (<u>x</u>+<u>y</u>)+<u>z</u></li> </ul>                                          | way that:<br>associativity $\alpha(\beta \underline{x}) = (\alpha \beta) \underline{x}$<br>$1 \underline{x} = \underline{x}  \forall \underline{x} \in V$                                                                    |
| • there exist in V a unique vector $\Phi$<br>(called the origin) such that<br>$\underline{x} + \Phi = \underline{x} \forall \underline{x} \in V$                                                                    | <ul> <li>mult. by <i>scalar</i> is distributive wrt. vector addition α (<u>x</u>+<u>y</u>) = α<u>x</u>+α<u>y</u></li> <li>mult. by <i>vector</i> is distributive wrt.</li> </ul>                                             |
| vector $-\underline{x}$ such that $\underline{x} + (-\underline{x}) = \Phi$                                                                                                                                         | scalar addition $(\alpha + \beta)\underline{x} = \alpha \underline{x} + \beta \underline{x}$                                                                                                                                 |

|        | Vectors | Linear Independence |  | From distance to similarity |  |
|--------|---------|---------------------|--|-----------------------------|--|
| Vector | • Oper  | ations              |  |                             |  |

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Sum of two vector 
$$\underline{x}$$
 and  $\underline{y}$   
$$\underline{x} + \underline{y} = |\underline{x}\rangle + |\underline{y}\rangle = \begin{pmatrix} x_1 + y_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n + y_n \end{pmatrix}$$

|       | Vectors | Linear Independence |  | From distance to similarity |  |
|-------|---------|---------------------|--|-----------------------------|--|
| Vecto | r Onei  | rations             |  |                             |  |

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Sum of two vector 
$$\underline{x}$$
 and  $\underline{y}$   
$$\underline{x} + \underline{y} = |\underline{x}\rangle + |\underline{y}\rangle = \begin{pmatrix} x_1 + y_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n + y_n \end{pmatrix}$$

#### Linear combination

$$\underline{y} = c_1 \underline{x}_1 + \dots + c_n \underline{x}_n$$
  
or  
$$|\underline{y}\rangle = c_1 |\underline{x}_1\rangle + \dots + c_n |\underline{x}_n\rangle$$

|       | Vectors | Linear Independence |  | From distance to similarity |  |
|-------|---------|---------------------|--|-----------------------------|--|
|       | 0       |                     |  |                             |  |
| Vecto | r Opei  | rations             |  |                             |  |

Sum of two vector 
$$\underline{x}$$
 and  $\underline{y}$   
$$\underline{x} + \underline{y} = |\underline{x}\rangle + |\underline{y}\rangle = \begin{pmatrix} x_1 + y_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n + y_n \end{pmatrix}$$

Linear combination  

$$\underbrace{\underline{y} = c_1 \underline{x}_1 + \dots + c_n \underline{x}_n}_{\text{or}}$$

$$|\underline{y}\rangle = c_1 |\underline{x}_1\rangle + \dots + c_n |\underline{x}_n\rangle$$

Multiplication by scalar 
$$\alpha$$
  
 $\alpha \underline{x} = \alpha |\underline{x}\rangle = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \vdots \\ \alpha x_n \end{pmatrix}$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

|       |         | Linear Independence |  | From distance to similarity |  |
|-------|---------|---------------------|--|-----------------------------|--|
| Tinec | ir dona | ondonco             |  |                             |  |

#### Conditions for linear dependence

A set o vectors  $\{\underline{x}_1, \dots, \underline{x}_n\}$  are *linearly dependent* if there a set constant scalars  $c_1, \dots, c_n$  exists, not all 0, such that:

 $c_1\underline{x}_1 + \cdots + c_n\underline{x}_n = \underline{0}$ 

|       |        | Linear Independence |  | From distance to similarity |  |
|-------|--------|---------------------|--|-----------------------------|--|
| Tinoc | ir don | ondonco             |  |                             |  |

#### Conditions for linear dependence

A set o vectors  $\{\underline{x}_1, \dots, \underline{x}_n\}$  are *linearly dependent* if there a set constant scalars  $c_1, \dots, c_n$  exists, not all 0, such that:

$$c_1\underline{x}_1 + \cdots + c_n\underline{x}_n = \underline{0}$$

#### Conditions for linear independence

A set o vectors  $\{\underline{x}_1, \dots, \underline{x}_n\}$  are *linearly independent* if and only if the *linear* condition  $c_1\underline{x}_1 + \dots + c_n\underline{x}_n = \underline{0}$  is satisfied only when  $c_1 = c_2 = \dots = c_n = 0$ 

|       | Linear Independence |  | From distance to similarity |  |
|-------|---------------------|--|-----------------------------|--|
| Basis |                     |  |                             |  |

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

#### Definition:

A *basis* for a space is a set of n linearly independent vectors in a n-dimensional vector space  $V_n$ .

|       | Linear Independence |  | From distance to similarity |  |
|-------|---------------------|--|-----------------------------|--|
| Basis |                     |  |                             |  |

A *basis* for a space is a set of n linearly independent vectors in a n-dimensional vector space  $V_n$ .

This means that every arbitrary vector  $\underline{x} \in V$  can be expressed as linear combination of the *basis* vectors,

$$\underline{x} = c_1 \underline{x}_1 + \dots + c_n \underline{x}_n$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

where the  $c_i$  are called the co-ordinates of  $\underline{x}$  wrt. the basis set  $\{\underline{x}_1, \ldots, \underline{x}_n\}$ 

|       |      | Linear Independence | Inner Product | From distance to similarity |  |
|-------|------|---------------------|---------------|-----------------------------|--|
| Innor | Prod |                     |               |                             |  |

Is a real-valued function on the cross product  $V_n \times V_n$  associating with each pair of vectors  $(\underline{x}, \underline{y})$  a unique real number.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The function (.,.) has the following properties:

$$(\underline{x}, \underline{y}) = (\underline{y}, \underline{x})$$

$$(\underline{x}, \lambda \underline{y}) = \lambda(\underline{x}, \underline{y})$$

$$(\underline{x}_1 + \underline{x}_2, \underline{y}) = (\underline{x}_1, \underline{y}) + (\underline{x}_2, \underline{y})$$

(v) 
$$(\underline{x}, \underline{x}) \ge 0$$
 and  $(\underline{x}, \underline{x}) = 0$  iff  $\underline{x} = \underline{0}$ 

|       |      | Linear Independence | Inner Product | From distance to similarity |  |
|-------|------|---------------------|---------------|-----------------------------|--|
| Innor | Prod |                     |               |                             |  |

Is a real-valued function on the cross product  $V_n \times V_n$  associating with each pair of vectors  $(\underline{x}, \underline{y})$  a unique real number.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The function (.,.) has the following properties:

$$(\underline{x}, \underline{y}) = (\underline{y}, \underline{x})$$

$$(\underline{x}, \lambda \underline{y}) = \lambda(\underline{x}, \underline{y})$$

$$(\underline{x}_1 + \underline{x}_2, \underline{y}) = (\underline{x}_1, \underline{y}) + (\underline{x}_2, \underline{y})$$

$$(\underline{x}, \underline{x}) \ge 0 \text{ and } (\underline{x}, \underline{x}) = 0 \text{ iff } \underline{x} = \underline{0}$$

#### Standard Inner Product

$$(\underline{x},\underline{y}) = \sum_{i=1}^{n} x_i y_i$$

|       |      | Linear Independence | Inner Product | From distance to similarity |  |
|-------|------|---------------------|---------------|-----------------------------|--|
| Innor | Prod |                     |               |                             |  |

Is a real-valued function on the cross product  $V_n \times V_n$  associating with each pair of vectors  $(\underline{x}, \underline{y})$  a unique real number.

The function (.,.) has the following properties:

$$\underbrace{(\underline{x}, \underline{y})}_{(\underline{x}, \lambda y)} = \underbrace{(\underline{y}, \underline{x})}_{(\underline{x}, \lambda y)}$$

$$(\underline{x}_1 + \underline{x}_2, \underline{y}) = (\underline{x}_1, \underline{y}) + (\underline{x}_2, \underline{y})$$

$$(\underline{x}, \underline{x}) \ge 0 \text{ and } (\underline{x}, \underline{x}) = 0 \text{ iff } \underline{x} = \underline{0}$$

Standard Inner Product

$$(\underline{x},\underline{y}) = \sum_{i=1}^{n} x_i y_i$$

#### Other notations

- $\underline{x}^T y$  where  $\underline{x}^T$  is the transpose of  $\underline{x}$
- $\langle \underline{x} | y \rangle$  or sometimes  $\langle \underline{x} | | y \rangle$  in Dirac notation

|      | Linear Independence | Norm and Distance | From distance to similarity |  |
|------|---------------------|-------------------|-----------------------------|--|
| Norm |                     |                   |                             |  |

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

#### Geometric interpretation

Geometrically the *norm* represent the length of the vector

|      | Linear Independence | Norm and Distance | From distance to similarity |  |
|------|---------------------|-------------------|-----------------------------|--|
| Norm |                     |                   |                             |  |

Geometrically the *norm* represent the length of the vector

#### Definition

The *norm* id a function ||.|| from  $V_n$  to  $\mathbb{R}$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

|       | Linear Independence | Norm and Distance | From distance to similarity |  |
|-------|---------------------|-------------------|-----------------------------|--|
| Morra |                     |                   |                             |  |

Geometrically the *norm* represent the length of the vector

#### Definition

The *norm* id a function ||.|| from  $V_n$  to  $\mathbb{R}$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Euclidean Norm:

$$||\underline{x}|| = \sqrt{(\underline{x},\underline{x})} = \sqrt{\sum_{i=1}^{n} x_i^2} = (x_1^2 + \dots + x_n^2)^{1/2}$$

|      | Linear Independence | Norm and Distance | From distance to similarity |  |
|------|---------------------|-------------------|-----------------------------|--|
| Norm |                     |                   |                             |  |

Geometrically the *norm* represent the length of the vector

#### Definition

The *norm* id a function ||.|| from  $V_n$  to  $\mathbb{R}$ 

Euclidean Norm:

$$||\underline{x}|| = \sqrt{(\underline{x},\underline{x})} = \sqrt{\sum_{i=1}^{n} x_i^2} = (x_1^2 + \dots + x_n^2)^{1/2}$$

#### Properties

- $||\underline{x}|| \ge 0$  and  $||\underline{x}|| = 0$  if and only if  $\underline{x} = 0$
- **2**  $||\alpha \underline{x}|| = |\alpha| ||\underline{x}||$  for all  $\alpha$  and  $\underline{x}$
- ◎  $\forall \underline{x}, \underline{y}, ||(\underline{x}, \underline{y})|| \le ||\underline{x}|| ||\underline{y}||$  (Cauchy-Schwartz)

|      | Linear Independence | Norm and Distance | From distance to similarity |  |
|------|---------------------|-------------------|-----------------------------|--|
| Norm |                     |                   |                             |  |

Geometrically the *norm* represent the length of the vector

#### Definition

The *norm* id a function ||.|| from  $V_n$  to  $\mathbb{R}$ 

Euclidean Norm:

$$||\underline{x}|| = \sqrt{(\underline{x},\underline{x})} = \sqrt{\sum_{i=1}^{n} x_i^2} = (x_1^2 + \dots + x_n^2)^{1/2}$$

#### Properties

- $||\underline{x}|| \ge 0$  and  $||\underline{x}|| = 0$  if and only if  $\underline{x} = 0$
- **2**  $||\alpha \underline{x}|| = |\alpha| ||\underline{x}||$  for all  $\alpha$  and  $\underline{x}$
- ◎  $\forall \underline{x}, \underline{y}, ||(\underline{x}, \underline{y})|| \le ||\underline{x}|| ||\underline{y}||$  (Cauchy-Schwartz)

|      | Linear Independence | Inner Product | Norm and Distance | From distance to similarity | References |
|------|---------------------|---------------|-------------------|-----------------------------|------------|
| Norm |                     |               |                   |                             |            |

Geometrically the *norm* represent the length of the vector

#### Definition

The *norm* id a function ||.|| from  $V_n$  to  $\mathbb{R}$ 

Euclidean Norm:

$$||\underline{x}|| = \sqrt{(\underline{x},\underline{x})} = \sqrt{\sum_{i=1}^{n} x_i^2} = (x_1^2 + \dots + x_n^2)^{1/2}$$

#### Properties

- $||\underline{x}|| \ge 0 \text{ and } ||\underline{x}|| = 0 \text{ if and only if } \underline{x} = 0$
- **2**  $||\alpha \underline{x}|| = |\alpha| ||\underline{x}||$  for all  $\alpha$  and  $\underline{x}$
- ◎  $\forall \underline{x}, \underline{y}, ||(\underline{x}, \underline{y})|| \le ||\underline{x}|| ||\underline{y}||$  (Cauchy-Schwartz)

A vector  $\underline{x} \in V_n$  is a *unit* vector, or *normalsized*, when  $||\underline{x}|| = 1$ 

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

|      |      | Linear Independence |   | Norm and Distance | From distance to similarity |  |
|------|------|---------------------|---|-------------------|-----------------------------|--|
| From | Norm | to distance         | 2 |                   |                             |  |

In  $V_n$  we can define the distance between two vectors  $\underline{x}$  and y as:

$$d(\underline{x},\underline{y}) = ||\underline{x}-\underline{y}|| = \sqrt{(\underline{x}-\underline{y},\underline{x}-\underline{y})} = \left((x_1-y_1)^2 + \dots + (x_n-y_n)^2\right)^{1/2}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

These measure, noted sometimes as  $||\underline{x} - \underline{y}||_2^2$ , is also named *Euclidean distance*.

|      |      | Linear Independence |   | Norm and Distance | From distance to similarity |  |
|------|------|---------------------|---|-------------------|-----------------------------|--|
| From | Norm | to distance         | 2 |                   |                             |  |

In  $V_n$  we can define the distance between two vectors  $\underline{x}$  and y as:

$$d(\underline{x},\underline{y}) = ||\underline{x}-\underline{y}|| = \sqrt{(\underline{x}-\underline{y},\underline{x}-\underline{y})} = ((x_1-y_1)^2 + \dots + (x_n-y_n)^2)^{1/2}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

These measure, noted sometimes as  $||\underline{x} - \underline{y}||_2^2$ , is also named *Euclidean distance*.

#### Properties:

- $d(\underline{x}, \underline{y}) \ge 0$  and  $d(\underline{x}, \underline{y}) = 0$  if and only if  $\underline{x} = \underline{y}$
- $d(\underline{x}, \underline{y}) = d(\underline{y}, \underline{x})$  symmetry
- $d(\underline{x},\underline{y}) = \leq d(\underline{x},\underline{z}) + d(\underline{z},\underline{y})$  triangle inequality

| Linear independence | Inner Product | Norm and Distance | From distance to similarity |                                                                                                                    |
|---------------------|---------------|-------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|
| o distance          |               |                   |                             |                                                                                                                    |
|                     | o distance    | <i>distance</i>   | <i>D</i> distance           | Distance interproduct Norm and Distance promising to consistence is similarly 000000000000000000000000000000000000 |

An immediate consequence of Cauchy-Schwartz property is that:

$$-1 \le \frac{(\underline{x}, \underline{y})}{||\underline{x}|| \, ||\underline{y}||} \le 1$$

and therefore we can express it as:

$$(\underline{x}, \underline{y}) = ||\underline{x}|| \, ||\underline{y}|| \cos \varphi \qquad 0 \le \varphi \le \pi$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where  $\varphi$  is the angle between the two vectors <u>x</u> and y

|      |      | Linear Independence |   | Norm and Distance | From distance to similarity |  |
|------|------|---------------------|---|-------------------|-----------------------------|--|
| From | Norm | to distance         | 2 |                   |                             |  |

An immediate consequence of Cauchy-Schwartz property is that:

$$-1 \le \frac{(\underline{x}, \underline{y})}{||\underline{x}|| \, ||\underline{y}||} \le 1$$

and therefore we can express it as:

$$(\underline{x}, \underline{y}) = ||\underline{x}|| \, ||\underline{y}|| \cos \varphi \qquad 0 \le \varphi \le \pi$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

where  $\varphi$  is the angle between the two vectors <u>x</u> and y



|      |      | Linear Independence |   | Norm and Distance | From distance to similarity |  |
|------|------|---------------------|---|-------------------|-----------------------------|--|
| From | Norm | to distance         | 2 |                   |                             |  |

An immediate consequence of Cauchy-Schwartz property is that:

$$-1 \le \frac{(\underline{x}, \underline{y})}{||\underline{x}|| \, ||\underline{y}||} \le 1$$

and therefore we can express it as:

$$(\underline{x}, \underline{y}) = ||\underline{x}|| \, ||\underline{y}|| \cos \varphi \qquad 0 \le \varphi \le \pi$$

where  $\varphi$  is the angle between the two vectors  $\underline{x}$  and y



If the vectors  $\underline{x}$ ,  $\underline{y}$  have the norm equal to 1 then:

$$\cos \varphi = \sum_{i=1}^n x_i y_i = (\underline{x}, \underline{y})$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

|       |        | Linear Independence | Norm and Distance | From distance to similarity |  |
|-------|--------|---------------------|-------------------|-----------------------------|--|
| Ortog | gonali | ty                  |                   |                             |  |

 $\underline{x}$  and y are ortogonal if and only if  $(\underline{x}, y) = 0$ 

#### Orthonormal basis

A set of linearly independent vectors  $\{\underline{x}_1, \dots, \underline{x}_n\}$  constitutes an orthonormal basis for the space  $V_n$  if and only if

$$\underline{x}_i, \underline{x}_j = \boldsymbol{\delta}_{ij} = \begin{pmatrix} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{pmatrix}$$

|       |       | Linear Independence |  | From distance to similarity |  |
|-------|-------|---------------------|--|-----------------------------|--|
|       |       |                     |  |                             |  |
| Simil | arity |                     |  |                             |  |

#### **Applications**

Document clusters provide often a structure for organizing large bodies of texts for efficient searching and browsing. For example, recent advances in Internet search engines (e.g., http://vivisimo.com/, http://metacrawler.com/) exploit document cluster analysis.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

|       |       | Linear Independence |  | From distance to similarity |  |
|-------|-------|---------------------|--|-----------------------------|--|
| Simil | arity |                     |  |                             |  |

#### **Applications**

Document clusters provide often a structure for organizing large bodies of texts for efficient searching and browsing. For example, recent advances in Internet search engines (e.g., http://vivisimo.com/, http://metacrawler.com/) exploit document cluster analysis.

#### Document and vectors

For this purpose, a document is commonly represented as a *vector* consisting of the suitably normalized frequency counts of words or terms. Each document typically contains only a small percentage of all the words ever used. If we consider each document as a multi-dimensional vector and then try to cluster documents based on their word contents, the problem differs from classic clustering scenarios in several ways.

|       |       | Linear Independence |  | From distance to similarity |  |
|-------|-------|---------------------|--|-----------------------------|--|
| Simil | arity |                     |  |                             |  |

#### The role of similarity among vectors

Document data is high-dimensional, characterized by a very sparse term-document matrix with positive ordinal attribute values and a significant amount of outliers.

|        |       | Linear Independence |  | From distance to similarity |  |
|--------|-------|---------------------|--|-----------------------------|--|
| Simile | arity |                     |  |                             |  |

#### The role of similarity among vectors

Document data is high-dimensional, characterized by a very sparse term-document matrix with positive ordinal attribute values and a significant amount of outliers. In such situations, one is truly faced with the 'curse of dimensionality' issue since, even after feature reduction, one is left with **hundreds of dimensions** per object.

|       |       | Linear Independence |  | From distance to similarity |  |
|-------|-------|---------------------|--|-----------------------------|--|
| Simil | arity |                     |  |                             |  |

#### Clustering steps

• *Representation of raw objects* (i.e. documents) into *vectors* of properties with real-valued scores (weights)

|       |       | Linear Independence |  | From distance to similarity |  |
|-------|-------|---------------------|--|-----------------------------|--|
| Simil | arity |                     |  |                             |  |
| Simil | aniy  |                     |  |                             |  |

#### Clustering steps

• *Representation of raw objects* (i.e. documents) into *vectors* of properties with real-valued scores (weights)

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Definition of a proximity measure

|       |       | Linear Independence |  | From distance to similarity |  |
|-------|-------|---------------------|--|-----------------------------|--|
| Simil | arity |                     |  |                             |  |
| Simil | aniy  |                     |  |                             |  |

#### Clustering steps

• *Representation of raw objects* (i.e. documents) into *vectors* of properties with real-valued scores (weights)

- Definition of a proximity measure
- Clustering algorithm

|       |       | Linear Independence |  | From distance to similarity |  |
|-------|-------|---------------------|--|-----------------------------|--|
| Simil | arity |                     |  |                             |  |
| Simil | aniy  |                     |  |                             |  |

#### Clustering steps

• *Representation of raw objects* (i.e. documents) into *vectors* of properties with real-valued scores (weights)

- Definition of a proximity measure
- Clustering algorithm
- Evaluation



A well-known example of clustering algorithm is k-mean.



|       |       | Linear Independence |  | From distance to similarity |  |
|-------|-------|---------------------|--|-----------------------------|--|
| Simil | arity |                     |  |                             |  |

#### Clustering steps

• To obtain features  $X \in \mathscr{F}$  from the raw objects, a suitable object representation has to be found.

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

|        |       | Linear Independence |  | From distance to similarity |  |
|--------|-------|---------------------|--|-----------------------------|--|
| Simile | arity |                     |  |                             |  |

#### Clustering steps

- To obtain features  $X \in \mathscr{F}$  from the raw objects, a suitable object representation has to be found.
- Given an objext  $O \in \mathcal{D}$ , we will refer to such a representation as the feature vector  $\underline{x}$  of X.

|       |       | Linear Independence |  | From distance to similarity |  |
|-------|-------|---------------------|--|-----------------------------|--|
| Simil | arity |                     |  |                             |  |

#### Clustering steps

- To obtain features  $X \in \mathscr{F}$  from the raw objects, a suitable object representation has to be found.
- Given an objext  $O \in \mathcal{D}$ , we will refer to such a representation as the feature vector  $\underline{x}$  of X.
- In the second step, a measure of proximity S ∈ S has to be defined between objects, i.e. S: D<sup>2</sup> → R.

|  | Linear Independence |  | From distance to similarity |  |
|--|---------------------|--|-----------------------------|--|
|  |                     |  |                             |  |

# Similarity

#### Clustering steps

- To obtain features  $X \in \mathscr{F}$  from the raw objects, a suitable object representation has to be found.
- Given an objext  $O \in \mathcal{D}$ , we will refer to such a representation as the feature vector  $\underline{x}$  of X.
- In the second step, a measure of proximity S ∈ S has to be defined between objects, i.e. S : D<sup>2</sup> → R. The choice of similarity or distance can have a deep impact on clustering quality.

|      |       | Linear Independence |  | From distance to similarity |  |
|------|-------|---------------------|--|-----------------------------|--|
| Mink | owski | distances           |  |                             |  |

#### Minkowski distances

The *Minkowski distances*  $L_p(\underline{x}, y)$  defined as:

$$L_p(\underline{x},\underline{y}) = \sqrt[p]{\sum_{i=1}^n |x_i - y_i|^p}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

are the standard metrics for geometrical problems.

|      |       | Linear Independence |  | From distance to similarity |  |
|------|-------|---------------------|--|-----------------------------|--|
| Mink | owski | distances           |  |                             |  |

#### Minkowski distances

The *Minkowski distances*  $L_p(\underline{x}, y)$  defined as:

$$L_p(\underline{x}, \underline{y}) = \sqrt[p]{\sum_{i=1}^n |x_i - y_i|^p}$$

are the standard metrics for geometrical problems.

Euclidean Distance

For p = 2 we obtain the Euclidean distance,  $d(\underline{x}, y) = ||\underline{x} - y||_2^2$ .



There are several possibilities for converting an  $L_p(\underline{x}, \underline{y})$  distance metric (in [0, inf), with 0 closest) into a *similarity measure* (in [0, 1], with 1 closest) by a monotonic decreasing function.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●



There are several possibilities for converting an  $L_p(\underline{x}, \underline{y})$  distance metric (in [0, inf), with 0 closest) into a *similarity measure* (in [0, 1], with 1 closest) by a monotonic decreasing function.

#### Relation between distances and similarities

For Euclidean space, we chose to relate distances d and similarities s using

$$s = e^{-d^2}$$

|                            |       | Linear Independence |  |  | From distance to similarity |  |  |  |  |
|----------------------------|-------|---------------------|--|--|-----------------------------|--|--|--|--|
| Distances and similarities |       |                     |  |  |                             |  |  |  |  |
| Minke                      | owski | distances           |  |  |                             |  |  |  |  |

There are several possibilities for converting an  $L_p(\underline{x}, \underline{y})$  distance metric (in [0, inf), with 0 closest) into a *similarity measure* (in [0, 1], with 1 closest) by a monotonic decreasing function.

#### Relation between distances and similarities

For Euclidean space, we chose to relate distances d and similarities s using

$$s = e^{-d^2}$$

Consequently, the Euclidean [0,1]-normalized similarity is defined as:

$$s^{(\mathrm{E})}(\underline{x},\underline{y}) = e^{-\|\underline{x}-\underline{y}\|_{2}^{2}}$$

|               |              | Linear Independence |  | From distance to similarity |  |
|---------------|--------------|---------------------|--|-----------------------------|--|
| Distances and | similarities |                     |  |                             |  |
| Poar          | con Co       | rrelation           |  |                             |  |

In collaborative filtering, correlation is often used to predict a feature from a highly similar mentor group of objects whose features are known. The [0,1]-*normalized Pearson correlation* is defined as:

$$s^{(\mathbf{P})}(\underline{x},\underline{y}) = \frac{1}{2} \left( \frac{(\underline{x} - \overline{x})^T (\underline{y} - \overline{y})}{\|\underline{x} - \overline{x}\|_2 \cdot \|\underline{y} - \overline{y}\|_2} + 1 \right),$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

where  $\bar{x}$  denotes the average feature value of  $\underline{x}$  over all dimensions.

|               |              | Linear Independence |  | From distance to similarity |  |
|---------------|--------------|---------------------|--|-----------------------------|--|
| Distances and | similarities |                     |  |                             |  |
| Poar          | son Co       | rrelation           |  |                             |  |

The [0,1]-*normalized Pearson correlation* can also be seen as a probabilistic measure as in:

$$s^{(\mathbf{P})}(\underline{x},\underline{y}) = r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(n-1)s_x s_y},$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

where  $\bar{x}$  denotes the average feature value of  $\underline{x}$  over all dimensions, and  $s_x$  and  $s_y$  are the standard deviations of  $\underline{x}$  and y, respectively.

|               |              | Linear Independence |  | From distance to similarity |  |
|---------------|--------------|---------------------|--|-----------------------------|--|
| Distances and | similarities |                     |  |                             |  |
| Doar          | son Co       | rrolation           |  |                             |  |

The [0,1]-*normalized Pearson correlation* can also be seen as a probabilistic measure as in:

$$s^{(\mathbf{P})}(\underline{x},\underline{y}) = r_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y},$$

where  $\bar{x}$  denotes the average feature value of  $\underline{x}$  over all dimensions, and  $s_x$  and  $s_y$  are the standard deviations of  $\underline{x}$  and y, respectively.

The correlation is defined only if both of the standard deviations are finite and both of them are nonzero. It is a corollary of the Cauchy-Schwarz inequality that the correlation cannot exceed 1 in absolute value.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

|               |              | Linear Independence |  | From distance to similarity |  |
|---------------|--------------|---------------------|--|-----------------------------|--|
| Distances and | similarities |                     |  |                             |  |
| Dogr          | con Co       | rrolation           |  |                             |  |

The [0,1]-*normalized Pearson correlation* can also be seen as a probabilistic measure as in:

$$s^{(\mathbf{P})}(\underline{x},\underline{y}) = r_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y},$$

where  $\bar{x}$  denotes the average feature value of  $\underline{x}$  over all dimensions, and  $s_x$  and  $s_y$  are the standard deviations of  $\underline{x}$  and y, respectively.

The correlation is defined only if both of the standard deviations are finite and both of them are nonzero. It is a corollary of the Cauchy-Schwarz inequality that the correlation cannot exceed 1 in absolute value. The correlation is 1 in the case of an increasing linear relationship, -1 in the case of a decreasing linear relationship, and some value in between in all other cases, indicating the degree of linear dependence between the variables.

|               |              | Linear Independence |  | From distance to similarity |  |
|---------------|--------------|---------------------|--|-----------------------------|--|
| Distances and | similarities |                     |  |                             |  |
| Jacci         | ard Sin      | nilarity            |  |                             |  |

#### Binary Jaccard Similarity

The *binary Jaccard coefficient* measures the degree of overlap between two sets and is computed as the ratio of the number of shared features of  $\underline{x}$  AND  $\underline{y}$  to the number possessed by  $\underline{x}$  OR  $\underline{y}$ .

|               |              | Linear Independence |  | From distance to similarity |  |
|---------------|--------------|---------------------|--|-----------------------------|--|
| Distances and | similarities |                     |  |                             |  |
| Iacci         | ard Sin      | nilarity            |  |                             |  |

#### Binary Jaccard Similarity

The *binary Jaccard coefficient* measures the degree of overlap between two sets and is computed as the ratio of the number of shared features of  $\underline{x}$  AND  $\underline{y}$  to the number possessed by  $\underline{x}$  OR  $\underline{y}$ .

#### Example

For example, given two sets' binary indicator vectors  $\underline{x} = (0, 1, 1, 0)^T$  and  $\underline{y} = (1, 1, 0, 0)^T$ , the cardinality of their intersect is 1 and the cardinality of their union is 3, rendering their Jaccard coefficient 1/3.

The binary Jaccard coefficient it is often used in retail market-basket applications.

|                 |              | Linear Independence |         | From distance to similarity |  |
|-----------------|--------------|---------------------|---------|-----------------------------|--|
| Distances and s | similarities |                     |         |                             |  |
| Exter           | nded Ja      | accard Simi         | ilarity |                             |  |

#### Extended Jaccard Similarity

The *extended Jaccard coefficient* is the generalized notion of the binary case and it is computed as:

$$s^{(\mathbf{J})}(\underline{x},\underline{y}) = \frac{\underline{x}^T \underline{y}}{\|\underline{x}\|_2^2 + \|\underline{y}\|_2^2 - \underline{x}^T \underline{y}}$$

|                 |             | Linear Independence |  | From distance to similarity |  |
|-----------------|-------------|---------------------|--|-----------------------------|--|
| Distances and s | imilarities |                     |  |                             |  |
| Dice            | coeffic     | cient               |  |                             |  |

#### Dice coefficient

Another similarity measure highly related to the extended Jaccard is the *Dice coefficient*:

$$s^{(\mathrm{D})}(\underline{x},\underline{y}) = \frac{2\underline{x}^T\underline{y}}{\|\underline{x}\|_2^2 + \|y\|_2^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

|               |              | Linear Independence |  | From distance to similarity |  |
|---------------|--------------|---------------------|--|-----------------------------|--|
| Distances and | similarities |                     |  |                             |  |
| Dice          | coeffic      | rient               |  |                             |  |

#### Dice coefficient

JJ

Another similarity measure highly related to the extended Jaccard is the *Dice coefficient*:

$$s^{(\mathrm{D})}(\underline{x},\underline{y}) = \frac{2\underline{x}^T\underline{y}}{\|\underline{x}\|_2^2 + \|\underline{y}\|_2^2}$$

The Dice coefficient can be obtained from the extended Jaccard coefficient by adding  $\underline{x}^T \underline{y}$  to both the numerator and denominator.

|            |        | Linear Independence | Inner Product | From distance to similarity | References |
|------------|--------|---------------------|---------------|-----------------------------|------------|
| Discussion |        |                     |               |                             |            |
| Simil      | arity: | discussion          |               |                             |            |

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Scale and Translation invariance

Euclidean similarity is translation invariant ...

|            |        | Linear Independence | Inner Product | From distance to similarity | References |
|------------|--------|---------------------|---------------|-----------------------------|------------|
| Discussion |        |                     |               |                             |            |
| Simil      | arity: | discussion          |               |                             |            |

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Scale and Translation invariance

Euclidean similarity is *translation invariant* ... but *scale sensitive* 

| Simile     | arity: | discussion          |               |                             |            |
|------------|--------|---------------------|---------------|-----------------------------|------------|
| Discussion |        |                     |               |                             |            |
|            |        | Linear Independence | Inner Product | From distance to similarity | References |

Scale and Translation invariance

Euclidean similarity is translation invariant ...

but scale sensitive while cosine is translation sensitive but scale invariant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

|            |        | Linear Independence |  | From distance to similarity |  |
|------------|--------|---------------------|--|-----------------------------|--|
| Discussion |        |                     |  |                             |  |
| Simil      | aritv: | discussion          |  |                             |  |

#### Scale and Translation invariance

Euclidean similarity is translation invariant ...

but *scale sensitive* while cosine is *translation sensitive* but *scale invariant*. The extended Jaccard has aspects of both properties as illustrated in figure. Iso-similarity lines at s = 0.25, 0.5 and 0.75 for points  $\underline{x} = (3, 1)^T$  and  $y = (1, 2)^T$  are shown for Euclidean, cosine, and the extended Jaccard.



**Figure 4.1:** Properties of (a) Euclidean-based, (b) cosine, and (c) extended Jaccard similarity measures illustrated in 2 dimensions. Two points  $(1, 2)^{\dagger}$  and  $(3, 1)^{\dagger}$  are marked with  $\times$  s. For each point iso-similarity surfaces for s = 0.25, 0.5, and 0.75 are shown with solid lines. The surface that is equi-similar to the two points is marked with a dashed line.





Figure 4.1: Properties of (a) Euclidean-based, (b) cosine, and (c) extended Jaccard similarity measures illustrated in 2 dimensions. Two points  $(1, 2)^{\dagger}$  and  $(3, 1)^{\dagger}$  are marked with  $\times$  s. For each point iso-similarity surfaces for s = 0.25, 0.5, and 0.75 are shown with solid lines. The surface that is equi-similar to the two points is marked with a dashed line.

Thus, for  $s^{(J)} \rightarrow 0$ , extended Jaccard behaves like the cosine measure, and for  $s^{(J)} \rightarrow 1$ , it behaves like the Euclidean distance

|            |        | Linear Independence |  | From distance to similarity |  |
|------------|--------|---------------------|--|-----------------------------|--|
| Discussion |        |                     |  |                             |  |
| Simil      | arity: | discussion          |  |                             |  |

#### Similarity in Clustering

In traditional Euclidean *k*-means clustering the optimal cluster representative  $\mathbf{c}_{\ell}$  minimizes the sum of squared error criterion, i.e.,

$$\mathbf{c}_\ell = rgmin_{ar{z}\in\mathscr{F}}\sum_{\underline{x}_j\in\mathscr{C}_\ell} \| \underline{x}_j - ar{z} \|_2^2$$

Any convex distance-based objective can be translated and extended to the similarity space.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

|            |        | Linear Independence |  | From distance to similarity |  |
|------------|--------|---------------------|--|-----------------------------|--|
| Discussion |        |                     |  |                             |  |
| Simil      | aritv: | discussion          |  |                             |  |

#### Swtiching from distances to similarity

Consider the generalized objective function  $f(\mathscr{C}_{\ell}, \bar{z})$  given a cluster  $\mathscr{C}_{\ell}$  and a representative  $\bar{z}$ :

$$f(\mathscr{C}_{\ell}, \bar{z}) = \sum_{\underline{x}_j \in \mathscr{C}_{\ell}} d(\underline{x}_j, \bar{z})^2 = \sum_{\underline{x}_j \in \mathscr{C}_{\ell}} \|\underline{x} - \bar{z}\|_2^2.$$

We use the transformation  $s = e^{-d^2}$  to express the objective in terms of similarity rather than distance:

$$f(\mathscr{C}_{\ell}, \bar{z}) = \sum_{\underline{x}_j \in \mathscr{C}_{\ell}} -\log(s(\underline{x}_j, \bar{z}))$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

|            |        | Linear Independence |  | From distance to similarity |  |
|------------|--------|---------------------|--|-----------------------------|--|
| Discussion |        |                     |  |                             |  |
| Simil      | aritv: | discussion          |  |                             |  |

#### Switching from distances to similarity

Finally, we simplify and transform the objective using a strictly monotonic decreasing function. Instead of minimizing  $f(\mathscr{C}_{\ell}, \bar{z})$ , we maximize

$$f'(\mathscr{C}_{\ell}, \bar{z}) = e^{-f(\mathscr{C}_{\ell}, \bar{z})}$$

Thus, in the similarity space, the least squared error representative  $\mathbf{c}_{\ell} \in \mathscr{F}$ for a cluster  $\mathcal{C}_{\ell}$  satisfies:

$$\mathbf{c}_{\ell} = \arg \max_{\bar{z} \in \mathscr{F}} \prod_{\underline{x}_j \in \mathscr{C}_{\ell}} s(\underline{x}_j, \bar{z})$$

Using the concave evaluation function f', we can obtain optimal representatives for non-Euclidean similarity spaces  $\mathscr{S}$ .



To illustrate the values of the evaluation function  $f'({\mathbf{x}_1, \mathbf{x}_2}, \mathbf{z})$  are used to shade the background in the figure below.



Figure 4.2: More similarity properties shown on the 2-dimensional example of figure 4.1. The goodness of a location as the common representative of the two points is indicated with brightness. The best representative is marked with a \*. The extended Jaccard (c) adopts the middle ground between Euclidean (a) and cosine-based similarity (b).

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

The maximum likelihood representative of  $\underline{x}_1$  and  $\underline{x}_2$  is marked with a  $\star$ .





Figure 4.2: More similarity properties shown on the 2-dimensional example of figure 4.1. The goodness of a location as the common representative of the two points is indicated with brightness. The best representative is marked with a \*. The extended Jaccard (c) adopts the middle ground between Euclidean (a) and cosine-based similarity (b).

For cosine similarity all points on the equi-similarity are optimal representatives. In a maximum likelihood interpretation, we constructed the distance similarity transformation such that

$$p(\bar{z}|\mathbf{c}_{\ell}) \sim s(\bar{z},\mathbf{c}_{\ell})$$

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Consequently, we can use the dual interpretations of probabilities in similarity space  $\mathscr{S}$  and errors in distance space  $\mathbb{R}$ .

|            |        | Linear Independence | Inner Product | From distance to similarity | References |
|------------|--------|---------------------|---------------|-----------------------------|------------|
| Discussion |        |                     |               |                             |            |
| Furth      | er sin | ilarity mea         | sures         |                             |            |

#### Vector similarities

• Grefenstette (fuzzy) set-oriented similarity for capturing dependency relations (head words)

#### Distributional (Probabilstic) similarities

• Lin similarity (commonalities) (Dice like)

$$sim(\underline{x}, \underline{y}) = \frac{2 \cdot \log P(common(\underline{x}, \underline{y}))}{\log P(\underline{x}) + \log P(\underline{y})}$$

• Jensen-Shannon total divergence to the mean:

$$A(p,q) = D(p \| \frac{p+q}{2}) + D(q \| \frac{p+q}{2})$$

•  $\alpha$ -skewed divergence (Lee, 1999):  $s_{\alpha}(p,q) = D(p || \alpha p + (1-\alpha)q)$ ( $\alpha = 0, 1 \text{ or } 0.01$ )

|       |       | Linear Independence | Inner Product | From distance to similarity | References |
|-------|-------|---------------------|---------------|-----------------------------|------------|
| Refer | ences |                     |               |                             |            |

Vectors, Operations, Norms and Distances

K. Van Rijesbergen, The Geometry of Information Retrieval, CUP Press, 2004.

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

|       |       | Linear Independence |  | From distance to similarity | References |
|-------|-------|---------------------|--|-----------------------------|------------|
|       |       |                     |  |                             |            |
| Refer | ences |                     |  |                             |            |

#### Vectors, Operations, Norms and Distances

K. Van Rijesbergen, The Geometry of Information Retrieval, CUP Press, 2004.

#### Distances and Similarities

Alexander Strehl, Relationship-based Clustering and Cluster Ensembles for High-dimensional Data Mining, PhD Dissertation, University of Texas at Austin, 2002. URL:

http://www.lans.ece.utexas.edu/~strehl/diss/htdi.html.

|       |       | Linear Independence |  | From distance to similarity | References |
|-------|-------|---------------------|--|-----------------------------|------------|
|       |       |                     |  |                             |            |
| Refer | ences |                     |  |                             |            |

#### Vectors, Operations, Norms and Distances

K. Van Rijesbergen, The Geometry of Information Retrieval, CUP Press, 2004.

#### Distances and Similarities

Alexander Strehl, Relationship-based Clustering and Cluster Ensembles for High-dimensional Data Mining, PhD Dissertation, University of Texas at Austin, 2002. URL:

http://www.lans.ece.utexas.edu/~strehl/diss/htdi.html.

#### Nice collection of code and definitions

Sam- string metrics. URL:

http://www.dcs.shef.ac.uk/~sam/stringmetrics.html.