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Real-valued Vector Space

Vector Space definition:

A vector space is a set V of objects called vectors x =


x1
·
·
·

xn

= |x〉

where we can simply refer to a vector by x, or using the specific realization
called column vector, (Dirac notation |x〉)
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Real-valued Vector Space

Vector Space definition:

A vector space need to satisfy the following axioms:

Sum
To every pair, x and y, of vectors in V
there corresponds a vector x+y, called the
sum of x and y, in such a way that:

1 sum is commutative, x+ y = y+ x
2 sum is associative,

x+
(
y+ z

)
=
(
x+ y

)
+ z

3 there exist in V a unique vector Φ

(called the origin) such that
x+Φ = x ∀x ∈ V

4 ∀x ∈ V there corresponds a unique
vector −x such that x+(−x) = Φ

Scalar Multiplication

To every pair α and x, where α is a scalar
and x ∈ V , there corresponds a vector αx,
called the product of α and x, in such a
way that:

1 associativity α(βx) = (αβ )x
2 1x = x ∀x ∈ V
3 mult. by scalar is distributive wrt.

vector addition α
(
x+ y

)
= αx+αy

4 mult. by vector is distributive wrt.
scalar addition (α +β )x = αx+βx
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Vector Operations

Sum of two vector x and y

x+y = |x〉+ |y〉=


x1 + y1
·
·
·

xn + yn



Linear combination
y = c1x1 + · · ·+ cnxn

or
|y〉= c1|x1〉+ · · ·+ cn|xn〉

Multiplication by scalar α

αx = α|x〉=


αx1
·
·
·

αxn
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Linear dependence

Conditions for linear dependence

A set o vectors {x1, . . . ,xn} are linearly dependent if there a set constant
scalars c1, . . . ,cn exists, not all 0, such that:

c1x1 + · · ·+ cnxn = 0

Conditions for linear independence

A set o vectors {x1, . . . ,xn} are linearly independent if and only if the linear
condition c1x1 + · · ·+ cnxn = 0 is satisfied only when c1 = c2 = · · ·= cn = 0
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Basis

Definition:

A basis for a space is a set of n linearly independent vectors in a
n-dimensional vector space Vn.

This means that every arbitrary vector x ∈ V can be expressed as linear
combination of the basis vectors,

x = c1x1 + · · ·+ cnxn

where the ci are called the co-ordinates of x wrt. the basis set {x1, . . . ,xn}
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Inner Product

Definition:

Is a real-valued function on the cross product Vn×Vn associating with each
pair of vectors

(
x,y
)

a unique real number.
The function (., .) has the following properties:

1 (x,y) = (y,x)
2 (x,λy) = λ (x,y)
3 (x1 + x2,y) = (x1,y)+(x2,y)
4 (x,x)≥ 0 and (x,x) = 0 iff x = 0

Standard Inner Product

(x,y) =
n

∑
i=1

xiyi

Other notations

xTy where xT is the transpose of x

〈x|y〉 or sometimes 〈x||y〉 in Dirac notation



Overview Vectors Linear Independence Inner Product Norm and Distance From distance to similarity References

Inner Product

Definition:

Is a real-valued function on the cross product Vn×Vn associating with each
pair of vectors

(
x,y
)

a unique real number.
The function (., .) has the following properties:

1 (x,y) = (y,x)
2 (x,λy) = λ (x,y)
3 (x1 + x2,y) = (x1,y)+(x2,y)
4 (x,x)≥ 0 and (x,x) = 0 iff x = 0

Standard Inner Product

(x,y) =
n

∑
i=1

xiyi

Other notations

xTy where xT is the transpose of x

〈x|y〉 or sometimes 〈x||y〉 in Dirac notation



Overview Vectors Linear Independence Inner Product Norm and Distance From distance to similarity References

Inner Product

Definition:

Is a real-valued function on the cross product Vn×Vn associating with each
pair of vectors

(
x,y
)

a unique real number.
The function (., .) has the following properties:

1 (x,y) = (y,x)
2 (x,λy) = λ (x,y)
3 (x1 + x2,y) = (x1,y)+(x2,y)
4 (x,x)≥ 0 and (x,x) = 0 iff x = 0

Standard Inner Product

(x,y) =
n

∑
i=1

xiyi

Other notations

xTy where xT is the transpose of x

〈x|y〉 or sometimes 〈x||y〉 in Dirac notation



Overview Vectors Linear Independence Inner Product Norm and Distance From distance to similarity References

Norm

Geometric interpretation

Geometrically the norm represent the
length of the vector

Definition

The norm id a function
||.|| from Vn to R

Euclidean Norm:

||x||=
√

(x,x) =
√

∑
n
i=1 x2

i =
(
x2

1 + · · ·+ x2
n
)1/2

Properties
1 ||x|| ≥ 0 and ||x||= 0 if and only if x = 0
2 ||αx||= |α| ||x|| for all α and x
3 ∀x,y, ||(x,y)|| ≤ ||x|| ||y|| (Cauchy-Schwartz)

A vector x ∈ Vn is a unit
vector, or normalsized,
when ||x||= 1
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From Norm to distance

In Vn we can define the distance between two vectors x and y as:

d(x,y) = ||x− y||=
√

(x− y,x− y) =
(
(x1− y1)2 + · · ·+(xn− yn)2

)1/2

These measure, noted sometimes as ||x− y||22, is also named Euclidean
distance.

Properties:

d(x,y)≥ 0 and d(x,y) = 0 if and only if x = y

d(x,y) = d(y,x) symmetry
d(x,y) =≤ d(x,z)+d(z,y) triangle inequality
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From Norm to distance

An immediate consequence of Cauchy-Schwartz property is that:

−1≤ (x,y)
||x|| ||y|| ≤ 1

and therefore we can express it as:

(x,y) = ||x|| ||y||cosϕ 0≤ ϕ ≤ π

where ϕ is the angle between the two vectors x and y

Cosine distance

cosϕ = (x,y)
||x|| ||y|| =

n

∑
i=1

xiyi√
n

∑
i=1

x2
i ·

√
n

∑
i=1

y2
i

If the vectors x, y have the norm
equal to 1 then:

cosϕ =
n

∑
i=1

xiyi = (x,y)
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Ortogonality

Definition

x and y are ortogonal if and only if (x,y) = 0

Orthonormal basis

A set of linearly independent vectors {x1, . . . ,xn} constitutes an orthonormal
basis for the space Vn if and only if

xi,xj = δij =
(

1 if i = j
0 if i 6= j

)



Overview Vectors Linear Independence Inner Product Norm and Distance From distance to similarity References

Similarity

Applications

Document clusters provide often a structure for organizing large bodies of
texts for efficient searching and browsing.
For example, recent advances in Internet search engines (e.g.,
http://vivisimo.com/, http://metacrawler.com/) exploit document cluster
analysis.

Document and vectors
For this purpose, a document is commonly represented as a vector consisting
of the suitably normalized frequency counts of words or terms.
Each document typically contains only a small percentage of all the words
ever used. If we consider each document as a multi-dimensional vector and
then try to cluster documents based on their word contents, the problem
differs from classic clustering scenarios in several ways.
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Similarity

The role of similarity among vectors

Document data is high-dimensional, characterized by a very sparse
term-document matrix with positive ordinal attribute values and a significant
amount of outliers.

In such situations, one is truly faced with the ‘curse of
dimensionality’ issue since, even after feature reduction, one is left with
hundreds of dimensions per object.
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Similarity

In the relationship-based clustering process, key cluster analysis activities
can be associated with each step:

Clustering steps

Representation of raw objects (i.e. documents) into vectors of
properties with real-valued scores (weights)

Definition of a proximity measure

Clustering algorithm
Evaluation
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Similarity and Clustering

A well-known example of clustering algorithm is k-mean.
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Similarity

Clustering steps

To obtain features X ∈F from the raw objects, a suitable object
representation has to be found.

Given an objext O ∈D , we will refer to such a representation as the
feature vector x of X.
In the second step, a measure of proximity S ∈S has to be defined
between objects, i.e. S : D2→ R. The choice of similarity or distance
can have a deep impact on clustering quality.
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Minkowski distances

Minkowski distances

The Minkowski distances Lp(x,y) defined as:

Lp(x,y) = p

√
n

∑
i=1
|xi− yi|p

are the standard metrics for geometrical problems.

Euclidean Distance

For p = 2 we obtain the Euclidean distance, d(x,y) = ‖x− y‖2
2.
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Distances and similarities

Minkowski distances

There are several possibilities for converting an Lp(x,y) distance metric (in
[0, inf), with 0 closest) into a similarity measure (in [0,1], with 1 closest) by
a monotonic decreasing function.

Relation between distances and similarities
For Euclidean space, we chose to relate distances d and similarities s using

s = e−d2

Consequently, the Euclidean [0,1]-normalized similarity is defined as:

s(E)(x,y) = e−‖x−y‖22
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Distances and similarities

Pearson Correlation

Pearson Correlation
In collaborative filtering, correlation is often used to predict a feature from a
highly similar mentor group of objects whose features are known.
The [0,1]-normalized Pearson correlation is defined as:

s(P)(x,y) =
1
2

(
(x− x̄)T(y− ȳ)
‖x− x̄‖2 · ‖y− ȳ‖2

+1

)
,

where x̄ denotes the average feature value of x over all dimensions.
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Distances and similarities

Pearson Correlation

Pearson Correlation
The [0,1]-normalized Pearson correlation can also be seen as a probabilistic
measure as in:

s(P)(x,y) = rxy = ∑(xi− x̄)(yi− ȳ)
(n−1)sxsy

,

where x̄ denotes the average feature value of x over all dimensions, and sx
and sy are the standard deviations of x and y, respectively.

The correlation is defined only if both of the standard deviations are finite
and both of them are nonzero. It is a corollary of the Cauchy-Schwarz
inequality that the correlation cannot exceed 1 in absolute value. The
correlation is 1 in the case of an increasing linear relationship, -1 in the case
of a decreasing linear relationship, and some value in between in all other
cases, indicating the degree of linear dependence between the variables.
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inequality that the correlation cannot exceed 1 in absolute value.

The
correlation is 1 in the case of an increasing linear relationship, -1 in the case
of a decreasing linear relationship, and some value in between in all other
cases, indicating the degree of linear dependence between the variables.
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Jaccard Similarity

Binary Jaccard Similarity

The binary Jaccard coefficient measures the degree of overlap between two
sets and is computed as the ratio of the number of shared features of x AND
y to the number possessed by x OR y.

Example

For example, given two sets’ binary indicator vectors x = (0,1,1,0)T and
y = (1,1,0,0)T , the cardinality of their intersect is 1 and the cardinality of
their union is 3, rendering their Jaccard coefficient 1/3.

The binary Jaccard coefficient it is often used in retail market-basket
applications.
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Extended Jaccard Similarity

Extended Jaccard Similarity

The extended Jaccard coefficient is the generalized notion of the binary case
and it is computed as:

s(J)(x,y) =
xTy

‖x‖2
2 +‖y‖2

2− xTy
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Dice coefficient

Dice coefficient

Another similarity measure highly related to the extended Jaccard is the Dice
coefficient:

s(D)(x,y) =
2xTy

‖x‖2
2 +‖y‖2

2

The Dice coefficient can be obtained from the extended Jaccard coefficient

by adding xTy to both the numerator and denominator.
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Similarity: discussion

Scale and Translation invariance
Euclidean similarity is translation invariant ...

but scale sensitive while cosine is translation sensitive but scale invariant.
The extended Jaccard has aspects of both properties as illustrated in figure.
Iso-similarity lines at s = 0.25, 0.5 and 0.75 for points x = (3,1)T and
y = (1,2)T are shown for Euclidean, cosine, and the extended Jaccard.
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Similarity: discussion

Thus, for s(J)→ 0, extended Jaccard behaves like the cosine measure, and
for s(J)→ 1, it behaves like the Euclidean distance
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Similarity in Clustering

In traditional Euclidean k-means clustering the optimal cluster representative
c` minimizes the sum of squared error criterion, i.e.,

c` = argmin
z̄∈F ∑

xj∈C`

‖xj− z̄‖2
2

Any convex distance-based objective can be translated and extended to the
similarity space.
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Swtiching from distances to similarity

Consider the generalized objective function f (C`, z̄) given a cluster C` and a
representative z̄:

f (C`, z̄) = ∑
xj∈C`

d(xj, z̄)
2 = ∑

xj∈C`

‖x− z̄‖2
2.

We use the transformation s = e−d2
to express the objective in terms of

similarity rather than distance:

f (C`, z̄) = ∑
xj∈C`

− log(s(xj, z̄))
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Switching from distances to similarity

Finally, we simplify and transform the objective using a strictly monotonic
decreasing function. Instead of minimizing f (C`, z̄), we maximize

f ′(C`, z̄) = e−f (C`,z̄)

Thus, in the similarity space, the least squared error representative c` ∈F

for a cluster C` satisfies:

c` = argmax
z̄∈F ∏

xj∈C`

s(xj, z̄)

Using the concave evaluation function f ′, we can obtain optimal
representatives for non-Euclidean similarity spaces S .
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To illustrate the values of the evaluation function f ′({x1,x2},z) are used to
shade the background in the figure below.

The maximum likelihood representative of x1 and x2 is marked with a ?.
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For cosine similarity all points on the equi-similarity are optimal
representatives. In a maximum likelihood interpretation, we constructed the
distance similarity transformation such that

p(z̄|c`)∼ s(z̄,c`)
Consequently, we can use the dual interpretations of probabilities in
similarity space S and errors in distance space R.
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Further similarity measures

Vector similarities
Grefenstette (fuzzy) set-oriented similarity for capturing dependency
relations (head words)

Distributional (Probabilstic) similarities

Lin similarity (commonalities) (Dice like)

sim(x,y) =
2 · logP(common(x,y))

logP(x)+ logP(y)

Jensen-Shannon total divergence to the mean:

A(p,q) = D(p‖p+q
2

)+D(q‖p+q
2

)

α-skewed divergence (Lee, 1999): sα(p,q) = D(p‖αp+(1−α)q)
(α = 0,1 or 0.01)
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