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Supervised Learning from data:
Support Vector Machines

» Support Vector Machines (SVMs) are machine
learning algorithms based on statistical learning theory
[Vapnik,1995]
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= |f a Kernel Function k such that k(x;,x)=¢(x;)- #(x;) is
available, there is no need to explicitly know the
projection function ¢ [Cristianini et al., 2002]

» A Structured Learning paradigm can be adopted

® | earning can be directly applied over (complex) structures

®» A semantic similarity function k able to reflect lexical
and syntactic aspects of linguistic examples is possible



Learning NL Semantics

®» Main perspective: the role of Semantic Compositionality

®» Frege’s principle: “The meaning of a sentence must be
derived by the composition of the meanings of its parts”

» Textual inference is based on the meaning of
= single words

» pbasic grammatical structures (i.e.V-Obj bigrams)

» fthe overall inferactions across the entire parse trees

= Y . meaning of its parts” vs. “meaning as context”

» Distributional Hypothesis [Harris, 1964] “words with similar
meaning occur in similar contexts”

» A geometrical space, a Word Space, can be acquired
through statistical analysis of large corpora [Schutze,2001],
[Sahlgren,2006] [Baroni & Lenci, 2008], [Mikolov,2013]




Distributional Approaches to
Lexical Semantics

» Vector spaces and Lexical Information
» Distributional approaches

= Bow, the bayesian and IR tradition

» | atent Semantic Spaces

= HAL or counting-based wordspaces

» Neural Language models
» Associative encoders for Lexical Prediction (Word2Vect)

» Contfinuous Probabilstic Language Models , Convolutional
Neural Models
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The big issue

» “How fo combine word representations in order fo
characterize a model for sentence semanticse”

» DM are typically focusing on isolated words

= Distributional Compositional Semantic (DCS) models aim
at capturing the meaning of phrases (i.e. bi-gram)...

» _ but they should be also sensitive to the full syntactic
structure!

» |DEA: Convolution Kernels (Haussler, 1999) are well-
known similarity functions among such complex
structures (see also Zanzotto et al, 2013 CL paper)




TKs, PTKs and their limitations

» The Collins and Duffy’s Tree Kernel
(called SST in [Vishwanathan and Smola, 2002] )
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SubTree (ST) Kernel [Vishwanathan and Smola, 2002]
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Evaluation

» Given the equation for the SST kernel

A(n,,n,) =0, If the productions are different else
A(n;,n,) =1, If pre-terminalselse

nc(n,)

A(nw nz) o H(1+A(Ch(n1’ j)’Ch(nzi 1))

j=1




Labeled Ordered Tree Kernel

» SST satisfies the constraint “remove 0 or all children at
a time”.

» |f we relax such constraint we get more general
substructures [Kashima and Koyanagi, 2002]
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Weighting Problems
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» Bofth matched pairs give the
same contribution.

» Gap based weighting is needed.

» A novel efficient evaluation has
to be defined



Partial Tree Kernel
- if the node labels of ny and no are different then
A(ni,ng) = 0;

- else

A(nl,ng) = 1+ Z H A Cnl Cﬂ»z{]—; D

J1. o d(J)=U(T2) =1

» By adding two decay factors we obtain:
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Applying DCS to complex
syntactic structures

» Tree Kernels [Collins and Duffy, 2003] account for
structural analogies between syntactic parse trees
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Applying DCS to complex
syntactic structures

®» Tree Kernels [Collins and Duffy, 2003] account for
structural analogies between syntactic parse trees

» Smoothed Partial Tree Kernels (SPTKs) [Croce, 2011]

S infroduce lexical semantic similarity within Tree Kernel
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Compositionally Smoothed
Partial Tree Kernels

®» Dependency trees include nodes expressing
» | exical information (e.g. verbs and nouns)

» Grammatical and morphosyntactic information

» Dependency relations

» POS tags
root
m—
dobij aux nsubij VB
T | I |
det NN VBZ NNP play::v

WDT  instrument::n do::v Hendrix:n

what::w

Grammatical Relation Centered Tree (GRCT)




SPTK: Formal definition

» Given two trees T1 and T2

» |[fn] and n2 are leaves then
Ag(n1,n2) = pAc(ni, na)

» clse
As(nyng) = po(ny,nz) x ()12 + Z

I, Do 0 (1)=1(T3)
) 1(I)
/ Ad(ilj—kd{h} H Ag(en, (T %(f’ )))
a(n.,n,) is a similarity function among the tree
nodes depending on their linguistic type t

Algorithm 1 o, (n4, ng, lw)

MAIN LIMITATION:

o Again, word similarity is still
computed in isolation...

) - &

ifr(ny) = t(ng) = SYNT A label(n) = label(ny) then
ar 1

end if

if 7(n1) = 7(n2) = pos Alabel(ni) = label(nz) then

oy +— 1

en
if 7(n1) = 7(n2) = LEX A pos(n,) = pos(ng) then
ar + orEx(n1,nz)

o How can we correctly handle a
lexical node like run in all the
possible senses?

if leaf{n, ) A leaf(ng) then
or +— a7 ¥ lw

end if

return o,




Compositionally Smoothed
Partial Tree Kernels

» CSPTK is a novel kernel function that exploits
Compositional Semantics within Tree Kernels

» Compositionally labeled Tree: Compositional information
over an entire parse tree is made explicit

= Node similarity of the SPTK can be extended to host a
DCS operator

( dh,m , (In::POSH.|m :POS ) ) root (play::v,*::*)
[ dobj (play::v,m_‘] aux(play::v,do:v) nsubj(play::v.Hendrix::n) VB
det (instrument::n,what::w) NN VI|SZ NILIP pIaL::v
W]|)T in.s‘:ru.lnenr: n do‘v Hend‘rix::n
wha‘t::w

Grammatical Relation Centered Tree (GRCT)
Compositionally labeled GRCT (CGRCT)




Similarity and DCS
approaches

®» Main idea: words in a composition influence each
other’s interpretation

= From individual concepts (word vectors) u and v, to
the concept u-v for their appropriate compaosition,
e.q.

» Algebraic operators, e.g. sum, product or dilation
[Mitchell & Lapata, 2008]

» Regressor functions [Baroni, 2010], [Guevara, 2010]
[Zanzotto et el, 2010]



Similarity and DCS
approaches (2)

» How to emphasize lexical composition through lexical
vectors

® |nfuition: word bi-grams can be represented into
subspaces

» By defining a projection function to identify common
semantic features

®» Fach subspace expresses properties shared by the
specific sense of compounds

» The resulting subspace is called Support Subspace
[Annesi et al, 2012]



Support Subspaces:
The underlying ideo

N

fi
(run marathon) vs. (run company)
different subspaces

-
-
- -
- -
- -

-

-
-

marathon.n

Co
company.RPany,

corporation.n




Compositionality in Support
Subspaces

Buy-Car Buy-Time
cheap::Ady consume::V
insurance::N | enough::Ad)
rent::V waste:: V
lease::'V save::In
dealer:: N permat:: N
motorcycle::N | stressful::Ady
hire::V spare::Ady
auto:: N save::V
california::Ady| warner::N
tesco::N expensive::Ad)




Support SUbSPACES (annesi et al, 2012)

» k-dimensional support subspaces for a pair (h,m)
n
= the kindexes 1“(h,m)={i,,...,i, } moximizingZ h, -m
=1

= Projection matrix
ey b i i=jelt(hm)
"™/ 0 otherwise

= Projected vectors

h=M*KR m=Mk m

» A compositional similarity between phrases

O-comp((h’ m)’ (h" m')): [(Ml ﬁ i MZHI) ° (Ml m- Mzm')J



CSPTK: Full definition

Algorithm 1 o (n., n,, lw) Compositional estimation of the lexical contribution to semantic tree

Starting from SPTKs kemel _
| o < Algorithm 1 5, (ny, nz, lw)
formulation A,

if m(n1) = 7(n2) = sYNT A label(ny) = label(ny) then

. c Or E
New estimation of o A
) * if 7(n1) = 7(n2) = pos Alabel(ny) = label(nsz) then
» The same for lexical nod if (ne a”&H
. [41]
and preterminals T ifr(n1) = 7(nz) = LEX A pos(n1) = pos(nz) then
. i, or —orEx(ni, n2)

» The S operator is ey, Cmdif sing*/
} if leaf(n) A leaf(nz) then 8
infrgduced for or — o7 X lw
noh-terminal nodes oy i

e
if li; = (hy::posy) and liy, = (hy::posp, my:posy, ) then

Or & JCump{:[hz:: hz), [h'y: my]]
end if
I*Matching between compositional nodes: the general case®/
if li, = (h ::posy, my::pos,,) and
liy = (hy::posy,my::posy,) then
T JCump{:[h:m mg), [hy:my)}

B L R e

mpositional operator

end
end if
return o,




CSPTK: Experimental
evaluation

» Tasks (see CIKM 2014 paper):
» Argument Classification in Semantic Role Labeling:
» Question Classification (QC) in Question Answering
» Paraphrase ldentification
» Metaphor Detection

» Set-up:

» Co-occurrence Word Space, acquired through the
distributional analysis of the UkWaC [Baroni et al,2009]

®» Representation of the examples derived by dependency
parse trees

» for CSPTK we use the compositionally labeled variant



SMPTK for Argument
Classification




SRL at RTV: Smoothed Partial
Tree Kernels

Experimental Set-up (Croce et al., EMNLP 2011)

FrameNet version: 1.3
271,560 training and 30,173 test examples respectively

LTH dependency parser (Malt, Johansson & Nugues,
2007).

Word space: LSA applied to the BNC corpus (about
10M words).

Number of targeted frames: 648 frames
Parse trees format: GRCT and LCT
A total of 4,254 binary role classifiers (RC)



Argument Classification
(Croce et al., 2013)

» UTV experimented with a FrameNet SRL classification
(gold standard boundaries)

» We used the FrameNet version 1.3: 648 frames are
considered

» Training set: 271,560 arguments (20%)
» Test set: 30,173 arguments (10%)

» [Bootleggers]creator: Then copy [the film] opicinaL

[onto hundreds of VHS tapes]coa.

copy::v copy::v GRCT 87,60%

_— N T— —_— 88,61%

bootlegger:n ROOT VBP film::n ROOT VBP 87 61%

T T N o

SB] NNS ;l}fi OB] NN 88,74%
(o)

NMOD DT GRCT+LCT 87,99%

\\ GRCT . +LCT,., IEELXICA



Question Classification:
The task

» Reference corpus: UIUC dataset
» |ncluding
® Q training set of 5,452 questions and
» (g test set of 500 questions
» Organized in six coarse-grained classes
= ABBREVIATION abbreviation
= ENTITY entities

» DESCRIPTION description and abstract concepts
=» HUMAN human beings
» | OCATION locations

» NUMERIC numeric values




Examples

DESC:manner How did serffdom develop in and then leave
Russia ¢

HUM: gr What feam did baseball 's St. Louis Browns become ¢
ENTY :cremat What films featured the character Popeye Doyle ¢
DESC:manner How can | find a list of celebrities ' real names ¢

ENTY:animal What fowl grabs the spotlight after the Chinese
Year of the Monkey ¢

ABBR:exp What is the full form of .com ¢

HUM: ind What contemptible scoundrel stole the cork from my
lunch ¢



Question Classification:

Resultfs
Kernel Accuracy Std, Dev

BoW 86,3% +0,3%
PTK 1 90,3% +1,8%
SPTK |1 92,2% +0,6%
CSPTK* o1 95,6% +0,6%
CSPTKedor | 94,6% +0,5%
CSPTKY: 1 94,2% +0,4%
CSPTKS 1 93,3% +0,7%
CSPTK* caret 94,6% +0,6%
CSPTKedot - o~ 24,1% +0,6%
CSPTKY - gpet 93,5% +0,4%
CSPTKSS cret 93,5% +0,4%




Paraphrase ldenftification:
The task

» Binary task: recognize if given a sentence pair, s1 and
s2, they are in a paraphrase relation or not

» MSRPC dataset: 5,801 sentence pairs.

» Given two sentence pairs (sil, si2) and (sj1, sj2).
different kernels can be defined

» We adopted a strategy similar to [Zanzotto&Moschitti,
2006] for Entailment

» K1 = max{ k(sil,sj1)- k(si2,sj2, k(si1,sj2)-k(si2,s}1)}
w K2 =K(sil, si2) -Kk(sj1, sj2)
» K =K1+ K2




Paraphrase ldenfification:
examples

Sentencel Sentence2 is Paraphrase | Evaluation
Crews worked to install a new | Crews worked to install a new false true
culvert and prepare the highway | culvert and repave the highway
so motorists could use the east- | so motorists could use the east-
bound lanes for travel as storm | bound lanes for travel.
clouds threatened to dump more
rain.
Bethany Hamilton remained in | Bethany, who remained in sta- false true
stable condition Saturday after | ble condition after the attack Fri-
the attack Friday morning. day morning, talked of the attack

Saturday.
Remaining shares will be held | Members of the QVC manage- true false
by QVC’s management. ment team hold the remaining

shares.
Mr. Malik assured him that he | Mr. Malik assured him that he true false

would be considered a martyr if
he did not return, the witness tes-
tified.

would be considered a martyr
if anything happened to him as
a result of his trip, the witness
said.




Paraphrase ldenftification:
Results

Kernel Accuracy

baseline [Mihalcea et al, 2006] 65,40%
[Blacoe & Lapata, 2012] 73,00%
[Finch et al.,2005] 75,00%
[Srivastava et al., 2013] 72,00%
PTK o1 69,52%
SPTK 1 71,44%
CSPTK* 7 72,30%
CSPTK* cgret 72,20%
BoWK + PTK 74,96%
BoWK + SPTK ¢ 74,85%
BoWK + CSPTK* 1 75,30%




Metaphor Detection

» Task infroduced in (Hovy and Shrivastava, 2013),

http://www.edvisees.cs.cmu.edu/metaphordata.tar.gz

®» The problem:
® yves 8 Stocks of California-based thrifts also were hard hit
implies
“hard hit"” corresponds to a metaphorical usage

= Previous work has applied
» Walk-based kernels (Hovy et Srivastava, 2013)

» Experimental set-up:
» 3872 sentences manually annotated

= Manual splitting into fraining, dev, and test sets, using a 80-10-10
proportion



http://www.edvisees.cs.cmu.edu/metaphordata.tar.gz

Metaphor Detection task

Kernel Accuracy
Interannotator Agreement 57,0%
BoW /1,3
PTK ; /71,6%
SPTK ; 71,0%
CSPTK* 1 72,40%
CSPTKSS 1 75,30%
CSPTK* grer 73,70%
CSPTKSS cgrer 74,50%
[Hovy et al., 2013] 75,00%
[Srivastava et al., 2013] 76,00%




Conclusions

» Kernels allows to trigger a variety of very effective ML
algorithms with a clear separation between the
induction and representation

» They provide an expressive formalism for the
optimization of NL semantics

» Fealures as substructures

» Complex convolutions are possible

= Optimization means maximization of linguistic
resemblance (at different levels)

» Kernels can be combined to design very complex
feature spaces

» Data-driven meftrics are obtained by combining
unsupervised feature modeling with supervised
learning




Conclusions: advanced
kernels & compositionality

» A Compositionality model (CSPTK) has been presented

®» [t combines the robustness of distributional models of
the lexicons with grammatical information provided by
the underlying tree kernel

» |n this way the full potential of unification-based
formalisms (see AVG structures of LFGs) can be
preserved

» Advantages for a semantic task

» Selective sampling: Automatic selection of suitable
examples (i.e. the support vectors)

= Native Feature weighting according to the task

» Efficient inference




Conclusions: applications &
perspectives

» Most applications (ranging from text classification, QA,
parapharsing or sentiment analysis), benefit by the
adoption of CSPTK kernels

» No ad-hoc feature engineering is strictly required thus
Improving

» Design complexity

» Data and Model Management

» Time to market of applications

» Current work:
» [Extensive integration of neural word embedding information

» Optimization of the tagging algorithm (see ECIR 2016 paper
on Nystrom linearization)

» Adaptive on-line learning in robotics (IJCAI 2016, accepted)
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