
Online Machine Learning

Web Mining e Retrieval 2013/2014

Simone Filice
filice.simone@gmail.com
University of Roma Tor Vergata

Motivations

� Common ML algorithms simultaneously exploit a
whole dataset. This process, referred as batch
learning, is not practical when:
� New data naturally arise over the time: exploiting new data

means building from scratch a new model Æ usually not
feasible!

� The dataset is too large to be efficiently exploited: memory
and computational problems!

� The concept we need to learn changes over the time: batch
learning provide a static solution that will surely degrade as
time goes by

Online Machine Learning

� Incremental Learning Paradigm:
� Every time a new example is available, the learned

hypothesis is updated

� Inherent Appealing Characteristics:
� The model does not need to be re-generated from

scratch when new data is available
� Capability of tracking a Shifting Concept
� Faster training process if compared to batch learners

(e.g. SVM)

Perceptron

� Perceptron is a simple discriminative classifier
� Instances are feature vectors 𝒙′ ∈ ℝௗ with label 𝑦 ∈ −1, +1
� Classification function is an hyperplane in ℝௗ : 𝑓 𝒙′ = 𝒘′ ∙ 𝒙′ + 𝑏

� Compact notation: 𝒘 = {𝑏, 𝑤ᇱ
ଵ, 𝑤ᇱ

ଶ,…, 𝑤′ௗ}, 𝒙 = {1, 𝑥ᇱ
ଵ, 𝑥ᇱ

ଶ,…, 𝑥′ௗ}

Batch Perceptron

� IDEA : adjust the hyperplane until no training errors are
done (input data must be linearly separable)

� Batch perceptron learning procedure:
Start with 𝒘ଵ = 0
do
 errors=false
 For all t=1…T
 Receive a new sample 𝒙𝒕
 Compute 𝑦 = 𝒘௧ ∙ 𝒙𝒕
 if 𝑦 ∙ 𝑦௧ < 𝛽௧ then 𝒘௧ାଵ = 𝛾௧𝒘௧ + 𝛼௧𝑦௧𝒙௧ with 𝛼௧ > 0
 errors=true
 else
 𝒘௧ାଵ = 𝒘௧
while(errors)
return 𝒘்ାଵ

Online Learning Perceptron

� IDEA : adjust the hyperplane after each classification (𝒘௧ =
weight vector at time t) and never stop learning

� Online perceptron learning procedure:
Start with 𝒘ଵ = 0
For all t=1…
 Receive a new sample 𝒙𝒕
 Compute 𝑦 = 𝒘௧ ∙ 𝒙𝒕
 Receive a feedback 𝑦௧
 if 𝑦 ∙ 𝑦௧ < 𝛽௧ then 𝒘௧ାଵ = 𝛾௧𝒘௧ + 𝛼௧𝑦௧𝒙௧ with 𝛼௧ > 0
 else 𝒘௧ାଵ = 𝒘௧
endfor

Shifting Perceptron

� IDEA: weak dependance from the past in order to obtain a tracking
ability

� Shifting Perceptron learning procedure (Cavallanti et al 2006):
Start with 𝒘ଵ = 0 , k=0
For all t=1…
 Receive a new sample 𝒙𝒕
 Compute 𝑦 = sign(𝒘௧ ∙ 𝒙𝒕)
 Receive a feedback 𝑦௧
 if 𝑦 ≠ 𝑦௧ then

 𝜆 = ఒ
ఒା

 with 𝜆 > 0
 𝒘௧ାଵ = 1 − 𝜆 𝒘௧ + 𝜆𝑦௧𝒙௧
 k=k+1
 else 𝒘௧ାଵ = 𝒘௧
endfor

Online Linear Passive Aggressive (1/3)

� IDEA: Every time a new example ‹xt , yt› is available the current
classification function is modified as less as possible to
correctly classify the new example

� Passive Aggressive learning procedure (Crammer et al 2006):
Start with 𝒘ଵ = 0 , k=0
For all t=1…
 Receive a new sample 𝒙𝒕
 Compute 𝑦 = sign(𝒘௧ ∙ 𝒙𝒕)
 Receive a feedback 𝑦௧
 Measure a classification loss (divergence between 𝑦௧ and 𝑦)
 Modify the model to get zero loss, preserving what was
 learned from previous examples

Online Linear Passive Aggressive (2/3)

� Loss measure:
Hinge loss: 𝑙 𝒘; 𝒙௧, 𝑦௧ = max 0; 1 − 𝑦௧ 𝒘 ∙ 𝒙௧

� Model variation:
𝒘௧ାଵ − 𝒘௧ ଶ

� Passive Aggressive Optimization Problem:

𝒘௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏
𝟐

𝒘 − 𝒘௧
𝟐 such that 𝑙 𝒘; 𝒙௧, 𝑦௧ = 0

� Closed form solution:
𝒘௧ାଵ = 𝒘௧ + 𝜏௧𝑦௧𝒙௧ where 𝜏௧ = 𝒘; 𝒙,

𝒙
మ

Online Linear Passive Aggressive (3/3)

� The previous formulation is a hard margin version that has a problem:
� a single outlier could produce a high hyperplane shifting, making the model

forget the previous learning
� Soft version solution:

� control the algorithm aggressiveness through a parameter C

� PA-I formulation:
 𝒘௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘

𝟏
𝟐

𝒘 − 𝒘௧
𝟐 + 𝐶𝜉 s.t. 𝑙 𝒘; 𝒙௧, 𝑦௧ ≤ 𝜉 with 𝜉 ≥ 0

 𝒘௧ାଵ = 𝒘௧ + 𝜏௧𝑦௧𝒙௧ where 𝜏௧ = min 𝐶; 𝒘; 𝒙,௬
𝒙 మ

� PA-II model:
 𝒘௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘

𝟏
𝟐

𝒘 − 𝒘௧
𝟐 + 𝐶𝜉ଶ s.t. 𝑙 𝒘; 𝒙௧, 𝑦௧ ≤ 𝜉 with 𝜉 ≥ 0

 𝒘௧ାଵ = 𝒘௧ + 𝜏௧𝑦௧𝒙௧ where 𝜏௧ = 𝒘; 𝒙,௬

𝒙 మାభ
మ

Data Separability

� Training data could not be separable
� Possible solutions:

� Use a more complex classification function Æ Risk of overfitting!
� Define a new set of feature that makes the problem linearly separable

� Project the current examples in a space in which they are separable…

Kernel Methods

� Training data can be projected in a space in which they are more easily
separable

� Kernel Trick: any kernel function K performs the dot product in the kernel
space without explicitly project the input vectors in that space

� Structured data (tree, graph, high order tensor…) can be exploited

Kernelized Passive Aggressive

� In kernelized Online Learning algorithms a new support vector is added every time
a misclassification occurs

 LINEAR VERSION KERNELIZED VERSION

Classification function

𝑓௧ 𝒙 = 𝒘௧
்𝒙 𝑓௧ 𝑥 = 𝛼𝑘(𝑥, 𝑥)

∈ௌ

Optimization Problem (PA-I)

𝒘௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏
𝟐

𝒘 − 𝒘௧
𝟐 + 𝐶𝜉

Such that 1 − 𝑦௧f௧ 𝒙௧ ≤ 𝜉, 𝜉 ≥ 0

𝑓௧ାଵ(𝑥) = argmin
ଵ
ଶ

𝑓(𝑥) − 𝑓௧(𝑥) ଶ
ℋ + 𝐶𝜉

Such that 1 − 𝑦௧𝑓௧ 𝑥௧ ≤ 𝜉, 𝜉 ≥ 0

Closed form solution

𝒘௧ାଵ = 𝒘௧ + 𝜏௧𝑦௧𝒙௧

where 𝜏௧ = min 𝐶; ୫ୟ୶ (,ଵି௬ 𝒙)
𝒙 మ

𝑓௧ାଵ(𝑥) = f௧(𝑥) + α௧𝑘(𝑥, 𝑥௧)

where α௧ = 𝑦௧ ∙ min 𝐶; ୫ୟ୶ (,ଵି௬ ௫)
௫ మ

ℋ

Linear Vs Kernel Based Learning

LINEAR VERSION KERNELIZED VERSION

Classification function

explicit hyperlplane in the original space
/ Only linear functions can be learnt

implicit hyperplane in the RKHS
- Non linear functions can be learnt

Example form

/ Only feature vectors can be exploited - Structured representations can be exploited

Computational complexity

- A classification is a single dot product
/ A classification involves |S| kernel
computations

Memory usage

- Only a the explicit hyperplane must be
stored

/ All the support vectors and their weights
must be stored

Learning on a Budget

� In kernelized online learning algorithm the set of support
vectors can grow without limits

� Possible solution: Limit the number of support vector, defining
a budget B

� This solution has the following advantages:
� The memory occupation is upperbounded by B support vectors

� Each classification needs at most B kernel computations

� In shifting concept tasks, budget algorithms can outperform non-

budget counterparts because they are faster in adapting

Limit the number of Support Vectors

� In order to respect the budget B, different policies can be formulated:

� Stop learning when budget is exceeded: Stoptron

� Delete a random support vector: Randomized Perceptron

� Delete the more redundant support vector: Fixed Budget Conscious Perceptron

� Delete the oldest support vector: Least recent Budget Perceptron and Forgetron

� Modify the Support Vectors weights in order to adapt the classification

hypothesis to the new sample: Projectron

� Online Passive-Aggressive on a Budget

Stoptron

� Baseline of the online learning on a budget algorithms: Fix a budget B and
stop learning when the number of support vectors is equal to B

� Stoptron algorithm (Orabona et al 2008):
Start with S = ∅
For all t=1…
 Receive a new sample 𝒙𝒕
 Compute 𝑦 = ∑ 𝛼𝑦𝐾(𝒙, 𝒙௧)∈ௌ
 Receive a feedback 𝑦௧
 if 𝑦𝑦௧ < 𝛽 and 𝑆 < 𝐵 then
 𝑆 = 𝑆 ∪ 𝑡
 𝛼௧= 1

 endif
endfor

Randomized Perceptron

� Simplest deleting policy: when the budget B is exceeded remove a random
support vector

� Randomized Perceptron algorithm (Cavallanti et al 2007):
Start with S = ∅
For all t=1…
 Receive a new sample 𝒙𝒕
 Compute 𝑦 = ∑ 𝛼𝑦𝐾(𝒙, 𝒙௧)∈ௌ
 Receive a feedback 𝑦௧
 if 𝑦𝑦௧ < 𝛽
 if 𝑆 = 𝐵
 select randomly 𝑠 ∈ 𝑆, 𝑆 = 𝑆 ∖ 𝑠
 endif
 𝑆 = 𝑆 ∪ {𝑡} 𝛼௧ = 1
 endif
endfor

Forgetron

� Deleting policy: Every time a new support vector is added, the weights of
the others are reduced. Thus SVs lose weight with aging and removing the
older SV should assure a minimum impact to the classification function.

� Forgetron algorithm (Dekel et al 2008):
Start with S = ∅
For all t=1…

 Receive a new sample 𝒙𝒕

 Compute 𝑦 = ∑ 𝛼𝑦𝐾(𝒙, 𝒙௧)∈ௌ

 Receive a feedback 𝑦௧

 if 𝑦𝑦௧ < 𝛽
 if 𝑆 = 𝐵
 𝑆=𝑆∖𝑚𝑖𝑛{𝑆} //the oldest Support vector is removed
 endif

 𝑆 = 𝑆 ∪ {𝑡} 𝛼௧ = 1, 𝛼 = 𝜙௧𝛼 ∀𝑖 ∈ 𝑆 ∖ {𝑡} //adding a new Sv and shrinking
 endif

endfor

Summary

� Online learning methods can:
� Incrementally learn from new samples
� Dinamically adapt to problem variations
� Reduce the computational cost of building a new model

� Online learning methods can be used with kernels but
they suffer from the “curse of kernelization”:
� The number of support vectors can grow without bounds

� Several number of budgeted solutions have been
proposed

