Online Machine Learning

Simone Filice
filice.simone @gmail.com

University of Roma Tor Vergata

Motivations

Common ML algorithms simultaneously exploit a
whole dataset. This process, referred as batch
learning, is not practical when:

New data naturally arise over the time: exploiting new data
means building from scratch a new model = usually not
feasible!

The dataset is too large to be efficiently exploited: memory
and computational problems!

The concept we need to learn changes over the time: batch
learning provide a static solution that will surely degrade as
time goes by

Online Machine Learning

Incremental Learning Paradigm:
Every time a new example is available, the learned
hypothesis is updated

Inherent Appealing Characteristics:

The model does not need to be re-generated from
scratch when new data is available

Capability of tracking a Shifting Concept

Faster training process if compared to batch learners

(e.g. SVM)

Perceptron

1 Perceptron is a simple discriminati

Instances are feature vectors x' € R

Classification function is an hyperplane in R : f(x") =w'-x' + b

"n.';lrl

. Margin

Margin

Var,

ve classifier
with label y € [—1, +1]

Support Vectors
L T LT T
e .

Margin

Var,

o Compact notation: w = {b,w',w’,,

Var,

. W,d}, X = {1,x’1,x,2,...

Batch Perceptron

IDEA : adjust the hyperplane until no training errors are
done (input data must be linearly separable)

Batch perceptron learning procedure:
Start with w; =0

do
errors=false
For all t=1.T
Receive a new sample x;
Compute y = w; - x;
if y-y. < B¢ then wiyq =ywe + apyexy with ap >0
errors=true
else
Wip1 = We
while(errors)

return wryq

Online Learning Perceptron

IDEA : adjust the hyperplane after each classification (W, =
weight vector at time t) and never stop learning

Online perceptron learning procedure:

Start with w; =0

For all t=1..
Receive a new sample x;
Compute y =w; " x;
Receive a feedback y;

i'F y - yt < ﬁt then Wt+1 -]/tWt + atytxt With Olt > 0
else w1 =w,;

endfor

Shifting Perceptron

IDEA: weak dependance from the past in order to obtain a tracking
ability

Shifting Perceptron learning procedure (Cavallanti et al 2006):
Start with w; =0 , k=0
For all t=1..

Receive a new sample x;

Compute y = sign(w; - x;)

Receive a feedback y;

if y #y, then
]

Ak = m with 12>0
Wepr = (1= 4w + A yexy
k=k+1

else wi 1 =w;
endfor

Online Linear Passive Aggressive /3

IDEA: Every time a new example (X,,) is available the current
classification function is modified as less as possible to
correctly classify the new example

Passive Aggressive learning procedure (Crammer et al 2006):
Start with w; =0 , k=0
For all t=1..

Receive a new sample x;

Compute y = sign(w; - x;)

Receive a feedback y;

Measure a classification loss (divergence between y; and y)
Modify the model to get zero loss, preserving what was
learned from previous examples

Online Linear Passive Aggressive (/3
=

1 Loss measure:

Hinge loss: 1(w; (x,y,)) = max(0; 1 — y,(w - x,))

-1 Model variation:
2
Wi — wel

-1 Passive Aggressive Optimization Problem:

Wi = argminwlllw —w¢||* such that I(w; (x;,y,)) =0
2

1 Closed form solution:

_ _ lwgxp,ye)
Wi = Wy +7:V:X; Where 7, = Wltlx"ﬁzyt
t

Online Linear Passive Aggressive /3

The previous formulation is a hard margin version that has a problem:

a single outlier could produce a high hyperplane shifting, making the model
forget the previous learning

Soft version solution:

control the algorithm aggressiveness through a parameter C

PA-| formulation:
Wil = argminW% lw— w2+ CE s.t. L(w; (x,y,)) < & with £ >0
: L(we;(x¢,9t))
:> Weii1 = Wi + Ttytxt Where T = IMIN {C, u’ﬁTxﬁzyt}
PA-Il model:
Wil = argminw% lw —w,||? + C&2 s.t. I(w; (xt,yt)) <éwithé=0

— _ lwe(xeeye))
:> Wip1 = Wi + Tt Ve Xt where Tt = ||xt||—2+lC
2

Data Separability

Training data could not be separable

Possible solutions:

Use a more complex classification function = Risk of overfitting!

Define a new set of feature that makes the problem linearly separable

Project the current examples in a space in which they are separable...

Kernel Methods
-

o1 Training data can be projected in a space in which they are more easily
separable

P(X) P(X)

1 Kernel Trick: any kernel function K performs the dot product in the kernel
space without explicitly project the input vectors in that space

0 Structured data (tree, graph, high order tensor...) can be exploited

Kernelized Passive Aggressive
N

71 In kernelized Online Learning algorithms a new support vector is added every time

a misclassification occurs

LINEAR VERSION KERNELIZED VERSION
IES
. 1 .1
Wepy = argming s [lw — well* + C§ fe+1(x) = argming- [|f (x) = fr(OII%5, + €&
SUCh ThCﬂ' 1 - ytft(xt) S f, f 2 O SUCh ThCﬂ' 1 - ytft(xt) S 6, g 2 0
Wt+1 = Wt + Ttytxt ft+1(x) = ft(x) + atk(x' xt)

I - max(0,1-y¢ ft(x¢)) v sl -max(0,1-y¢fr(xt))

where T, = min {C, e } where o = y; * min {C, el }

Linear Vs Kernel Based Learning

LINEAR VERSION

KERNELIZED VERSION

explicit hyperlplane in the original space
@ Only linear functions can be learnt

implicit hyperplane in the RKHS
© Non linear functions can be learnt

@ Only feature vectors can be exploited

© Structured representations can be exploited

© A classification is a single dot product

@ A classification involves | S| kernel
computations

© Only a the explicit hyperplane must be
stored

@ All the support vectors and their weights
must be stored

Learning on a Budget

In kernelized online learning algorithm the set of support
vectors can grow without limits

Possible solution: Limit the number of support vector, defining
a budget B

This solution has the following advantages:

The memory occupation is upperbounded by B support vectors
Each classification needs at most B kernel computations

In shifting concept tasks, budget algorithms can outperform non-
budget counterparts because they are faster in adapting

Limit the number of Support Vectors

In order to respect the budget B, different policies can be formulated:

Stop learning when budget is exceeded: Stoptron

Delete a random support vector: Randomized Perceptron

Delete the more redundant support vector: Fixed Budget Conscious Perceptron
Delete the oldest support vector: Least recent Budget Perceptron and Forgetron

Modify the Support Vectors weights in order to adapt the classification

hypothesis to the new sample: Projectron

Online Passive-Aggressive on a Budget

Stoptron

Baseline of the online learning on a budget algorithms: Fix a budget B and
stop learning when the number of support vectors is equal to B

Stoptron algorithm (Orabona et al 2008):

Start with S=20
For all t=1..
Receive a new sample x;
Compute y = e aiyiK (x;,%,)
Receive a feedback y;
if yy;<pf and |S| < B then
S=Su{t}
ar=1
endif

endfor

Randomized Perceptron

Simplest deleting policy: when the budget B is exceeded remove a random
support vector

Randomized Perceptron algorithm (Cavallanti et al 2007):
Start with S=0
For all t=1..

Receive a new sample x;

Compute y = X;csa;ViK (X, x¢)

Receive a feedback y;

if yye <p
if |S| =B
select randomly s€S, S=S5\{s}
endif
S=SuU{t} ar=1
endif

endfor

Forgetron

Deleting policy: Every time a new support vector is added, the weights of
the others are reduced. Thus SVs lose weight with aging and removing the
older SV should assure a minimum impact to the classification function.

Forgetron algorithm (Dekel et al 2008):
Start with S=¢
For all t=1..

Receive a new sample x;

Compute y =X,csa;yiK(x;x¢)

Receive a feedback y;

if yye <P

if |S| =B
S=S\min{S} //the oldest Support vector is removed

endif

S=Su{t} ay=1, a;=¢,a; Vie S\ {t} //adding a new Sv and shrinking
endif

endfor

Summary

Online learning methods can:
Incrementally learn from new samples
Dinamically adapt to problem variations

Reduce the computational cost of building a new model

Online learning methods can be used with kernels but
they suffer from the “curse of kernelization”:

The number of support vectors can grow without bounds

Several number of budgeted solutions have been
proposed

