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Motivations 

� Common ML algorithms simultaneously exploit a 
whole dataset. This process, referred as batch 
learning, is not practical when: 
� New data naturally arise over the time: exploiting new data 

means building from scratch a new model Æ usually not 
feasible! 

� The dataset is too large to be efficiently exploited: memory 
and computational problems! 

� The concept we need to learn changes over the time: batch 
learning provide a static solution that will surely degrade as 
time goes by 

 
 



Online Machine Learning 

� Incremental Learning Paradigm:  
� Every time a new example is available, the learned 

hypothesis is updated  

� Inherent Appealing Characteristics: 
� The model does not need to be re-generated from 

scratch when new data is available 
� Capability of tracking a Shifting Concept 
� Faster training process if compared to batch learners 

(e.g. SVM) 



Perceptron 

� Perceptron is a simple discriminative classifier 
� Instances are feature vectors 𝒙′ ∈ ℝௗ  with label 𝑦 ∈ −1, +1   
� Classification function is an hyperplane in ℝௗ  : 𝑓 𝒙′ = 𝒘′ ∙ 𝒙′ + 𝑏 
 
 
 
 
 
 
 
 
 
 

� Compact notation: 𝒘 = {𝑏, 𝑤ᇱ
ଵ, 𝑤ᇱ

ଶ,…, 𝑤′ௗ}, 𝒙 = {1, 𝑥ᇱ
ଵ, 𝑥ᇱ

ଶ,…, 𝑥′ௗ} 
 
 



Batch Perceptron 

� IDEA : adjust the hyperplane until no training errors are 
done (input data must be linearly separable) 

� Batch perceptron learning procedure: 
Start with 𝒘ଵ = 0   
do 
 errors=false 
 For all t=1…T 
    Receive a new sample 𝒙𝒕  
    Compute 𝑦 = 𝒘௧ ∙ 𝒙𝒕  
    if 𝑦 ∙ 𝑦௧ < 𝛽௧ then 𝒘௧ାଵ = 𝛾௧𝒘௧ + 𝛼௧𝑦௧𝒙௧   with 𝛼௧ > 0          
       errors=true 
         else 
                       𝒘௧ାଵ = 𝒘௧  
while(errors) 
return 𝒘்ାଵ 



Online Learning Perceptron 

� IDEA : adjust the hyperplane after each classification (𝒘௧ = 
weight vector at time t) and never stop learning 
 

� Online perceptron learning procedure: 
Start with 𝒘ଵ = 0   
For all t=1… 
 Receive a new sample 𝒙𝒕  
 Compute 𝑦 = 𝒘௧ ∙ 𝒙𝒕  
 Receive a feedback 𝑦௧ 
 if 𝑦 ∙ 𝑦௧ < 𝛽௧ then 𝒘௧ାଵ = 𝛾௧𝒘௧ + 𝛼௧𝑦௧𝒙௧   with 𝛼௧ > 0  
 else      𝒘௧ାଵ = 𝒘௧  
endfor 



Shifting Perceptron 

� IDEA: weak dependance from the past in order to obtain a tracking 
ability 
 
 

� Shifting Perceptron learning procedure (Cavallanti et al 2006): 
Start with 𝒘ଵ = 0  , k=0 
For all t=1… 
 Receive a new sample 𝒙𝒕  
 Compute 𝑦 = sign(𝒘௧ ∙ 𝒙𝒕)  
 Receive a feedback 𝑦௧ 
 if 𝑦 ≠ 𝑦௧ then  

  𝜆 = ఒ
ఒା

   with   𝜆 > 0 
  𝒘௧ାଵ = 1 − 𝜆 𝒘௧ + 𝜆𝑦௧𝒙௧   
  k=k+1 
 else      𝒘௧ାଵ = 𝒘௧  
endfor 



Online Linear Passive Aggressive (1/3) 

� IDEA: Every time a new example ‹xt , yt› is available the current 
classification function is modified as less as possible to 
correctly classify the new example 
 

� Passive Aggressive learning procedure (Crammer et al 2006): 
Start with 𝒘ଵ = 0  , k=0 
For all t=1… 
 Receive a new sample 𝒙𝒕  
 Compute 𝑦 = sign(𝒘௧ ∙ 𝒙𝒕)  
 Receive a feedback 𝑦௧ 
 Measure a classification loss (divergence between 𝑦௧ and 𝑦) 
 Modify the model to get zero loss, preserving what was 
 learned from previous examples 
  



Online Linear Passive Aggressive (2/3) 

� Loss measure:  
Hinge loss: 𝑙 𝒘; 𝒙௧, 𝑦௧ = max 0; 1 − 𝑦௧ 𝒘 ∙ 𝒙௧  

 

� Model variation:  
𝒘௧ାଵ − 𝒘௧  ଶ 

 
� Passive Aggressive Optimization Problem: 

𝒘௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏
𝟐

𝒘 − 𝒘௧
𝟐  such that 𝑙 𝒘; 𝒙௧, 𝑦௧ = 0 

 

� Closed form solution: 
𝒘௧ାଵ = 𝒘௧ + 𝜏௧𝑦௧𝒙௧  where 𝜏௧ =  𝒘; 𝒙,

𝒙
మ  

 



Online Linear Passive Aggressive (3/3) 

� The previous formulation is a hard margin version that has a problem:  
� a single outlier could produce a high hyperplane shifting, making the model 

forget the previous learning  
� Soft version solution:  

� control the algorithm aggressiveness through a parameter C 
 
�  PA-I formulation: 
 𝒘௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘

𝟏
𝟐

𝒘 − 𝒘௧
𝟐 + 𝐶𝜉  s.t. 𝑙 𝒘; 𝒙௧, 𝑦௧ ≤ 𝜉 with 𝜉 ≥ 0 

 𝒘௧ାଵ = 𝒘௧ + 𝜏௧𝑦௧𝒙௧  where 𝜏௧ = min 𝐶;  𝒘; 𝒙,௬
𝒙 మ  

 
�  PA-II model: 
 𝒘௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘

𝟏
𝟐

𝒘 − 𝒘௧
𝟐 + 𝐶𝜉ଶ s.t. 𝑙 𝒘; 𝒙௧, 𝑦௧ ≤ 𝜉 with 𝜉 ≥ 0 

 𝒘௧ାଵ = 𝒘௧ + 𝜏௧𝑦௧𝒙௧  where 𝜏௧ =  𝒘; 𝒙,௬

𝒙 మାభ
మ

 



Data Separability 

� Training data could not be separable 
� Possible solutions: 

� Use a more complex classification function Æ Risk of overfitting! 
� Define a new set of feature that makes the problem linearly separable 

 

 

 

 

 

 

 

� Project the current examples in a space in which they are separable… 

 

 

 

 

 

 
 

 

 



Kernel Methods 

� Training data can be projected in a space in which they are more easily 
separable 

 

 
 

 

 

 

 

 

� Kernel Trick: any kernel function K performs the dot product in the kernel 
space without explicitly project the input vectors in that space 

� Structured data (tree, graph, high order tensor…) can be exploited 

 

 

 

 

 
 

 

 



Kernelized Passive Aggressive 

� In kernelized Online Learning algorithms a new support vector is added every time 
a misclassification occurs 

 LINEAR VERSION KERNELIZED VERSION 

Classification function 

𝑓௧ 𝒙 = 𝒘௧
்𝒙 𝑓௧ 𝑥 =  𝛼𝑘(𝑥, 𝑥)

∈ௌ

 

Optimization Problem (PA-I) 

𝒘௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘
𝟏
𝟐

𝒘 − 𝒘௧
𝟐 + 𝐶𝜉   

Such that  1 − 𝑦௧f௧ 𝒙௧ ≤ 𝜉, 𝜉 ≥ 0 

𝑓௧ାଵ(𝑥) = argmin
ଵ
ଶ

𝑓(𝑥) − 𝑓௧(𝑥) ଶ
ℋ + 𝐶𝜉   

Such that  1 − 𝑦௧𝑓௧ 𝑥௧ ≤ 𝜉, 𝜉 ≥ 0 

Closed form solution 

𝒘௧ାଵ = 𝒘௧ + 𝜏௧𝑦௧𝒙௧  

where 𝜏௧ = min 𝐶; ୫ୟ୶ (,ଵି௬ 𝒙 )
𝒙 మ  

𝑓௧ାଵ(𝑥) = f௧(𝑥) + α௧𝑘(𝑥, 𝑥௧)  

where α௧ = 𝑦௧ ∙ min 𝐶; ୫ୟ୶ (,ଵି௬ ௫ )
௫ మ

ℋ
 



Linear Vs Kernel Based Learning  

LINEAR VERSION KERNELIZED VERSION 

Classification function 

explicit hyperlplane in the original space 
/ Only linear functions can be learnt 

implicit hyperplane in the RKHS 
- Non linear functions can be learnt 

Example form 

/ Only feature vectors can be exploited - Structured representations can be exploited 

Computational complexity 

- A classification is a single dot product 
/ A classification involves |S| kernel 
computations 

Memory usage 

- Only a the explicit hyperplane must be 
stored 

/ All the support vectors and their weights 
must be stored 



Learning on a Budget 

� In kernelized online learning algorithm the set of support 
vectors can grow without limits 

� Possible solution: Limit the number of support vector, defining 
a budget B  

� This solution has the following advantages: 
� The memory occupation is upperbounded by B support vectors 

 
� Each classification needs at most B kernel computations 

 
� In shifting concept tasks, budget algorithms can outperform non-

budget counterparts because they are faster in adapting 

 



Limit the number of Support Vectors 

 

� In order to respect the budget B, different policies can be formulated: 

� Stop learning when budget is exceeded: Stoptron 

� Delete a random support vector: Randomized Perceptron 

� Delete the more redundant support vector: Fixed Budget Conscious Perceptron 

� Delete the oldest support vector: Least recent Budget Perceptron and Forgetron  

� Modify the Support Vectors weights in order to adapt the classification 

hypothesis to the new sample: Projectron 

� Online Passive-Aggressive on a Budget 



Stoptron 

 

� Baseline of the online learning on a budget algorithms: Fix a budget B and 
stop learning when the number of support vectors is equal to B 

� Stoptron algorithm (Orabona et al 2008): 
Start with S = ∅  
For all t=1… 
 Receive a new sample 𝒙𝒕  
 Compute  𝑦 = ∑ 𝛼𝑦𝐾(𝒙, 𝒙௧ )∈ௌ  
 Receive a feedback 𝑦௧ 
 if  𝑦𝑦௧ < 𝛽  and 𝑆 < 𝐵  then  
   𝑆 = 𝑆 ∪ 𝑡  
   𝛼௧= 1 

 endif 
endfor 

   



Randomized Perceptron 

� Simplest deleting policy: when the budget B is exceeded remove a random 
support vector 

� Randomized Perceptron algorithm (Cavallanti et al 2007): 
Start with S = ∅  
For all t=1… 
 Receive a new sample 𝒙𝒕  
 Compute  𝑦 = ∑ 𝛼𝑦𝐾(𝒙, 𝒙௧ )∈ௌ  
 Receive a feedback 𝑦௧ 
 if  𝑦𝑦௧ < 𝛽 
     if 𝑆 = 𝐵   
  select randomly 𝑠 ∈ 𝑆, 𝑆 = 𝑆 ∖ 𝑠   
     endif 
     𝑆 = 𝑆 ∪ {𝑡}   𝛼௧ = 1 
 endif 
endfor 

   



Forgetron 

� Deleting policy: Every time a new support vector is added, the weights of 
the others are reduced. Thus SVs lose weight with aging and removing the 
older SV should assure a minimum impact to the classification function. 

� Forgetron algorithm (Dekel et al 2008): 
Start with S = ∅  
For all t=1… 

 Receive a new sample 𝒙𝒕  

 Compute  𝑦 = ∑ 𝛼𝑦𝐾(𝒙, 𝒙௧ )∈ௌ  

 Receive a feedback 𝑦௧ 

 if  𝑦𝑦௧ < 𝛽 
          if 𝑆 = 𝐵   
  𝑆=𝑆∖𝑚𝑖𝑛{𝑆} //the oldest Support vector is removed 
     endif 

     𝑆 = 𝑆 ∪ {𝑡}   𝛼௧ = 1, 𝛼 = 𝜙௧𝛼 ∀𝑖 ∈ 𝑆 ∖ {𝑡} //adding a new Sv and shrinking 
 endif 

endfor 

   



Summary 

� Online learning methods can: 
� Incrementally learn from new samples 
� Dinamically adapt to problem variations 
� Reduce the computational cost of building a new model 
 

� Online learning methods can be used with kernels but 
they suffer from the “curse of kernelization”: 
� The number of support vectors can grow without bounds 
 

� Several number of budgeted solutions have been 
proposed 
 


