Community Detection and Evaluation

Web Mining & Retrieval a.a. 2015/2016

main contribution from Chapter 3 of Community Detection and Mining in Social Media. by Lei Tang and Huan Liu, Morgan & Claypool, September, 2010

Chapter 3, Community Detection and Mining in Social Media. Lei Tang and Huan Liu, Morgan & Claypool, September, 2010.

Community

- Community: It is formed by individuals such that those within a group interact with each other more frequently than with those outside the group
 - a.k.a. group, cluster, cohesive subgroup, module in different contexts
- Community detection: discovering groups in a network where individuals' group memberships are not explicitly given
- Why communities in social media?
 - Human beings are social
 - Easy-to-use social media allows people to extend their social life in unprecedented ways
 - Difficult to meet friends in the physical world, but much easier to find friend online with similar interests
 - Interactions between nodes can help determine communities

Communities in Social Media

- Two types of groups in social media
 - Explicit Groups: formed by user subscriptions
 - Implicit Groups: implicitly formed by social interactions
- Some social media sites allow people to join groups, is it necessary to extract groups based on network topology?
 - Not all sites provide community platform
 - Not all people want to make effort to join groups
 - Groups can change dynamically
- Network interaction provides rich information about the relationship between users
 - Can complement other kinds of information
 - Help network visualization and navigation
 - Provide basic information for other tasks

Social Networks

- A social structure made of nodes (individuals or organizations) that are related to each other by various interdependencies like friendship, kinship, etc.
- Graphical representation
 - Nodes = members
 - Edges = relationships
- Various realizations
 - Social bookmarking (Del.icio.us)
 - Friendship networks (facebook, myspace)
 - Blogosphere
 - Media Sharing (Flickr, Youtube)
 - Folksonomies

Sociomatrix

Social networks can also be represented in matrix form

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	1	1	1	0	0	0	1	1	0	0	0	0
2	1	0	0	0	1	0	0	0	0	0	0	0	0
3	1	0	0	0	0	0	0	0	0	0	0	0	0
••••													

COMMUNITY DETECTION

Subjectivity of Community Definition

Taxonomy of Community Criteria

- Criteria vary depending on the tasks
- Roughly, community detection methods can be divided into 4 categories (not exclusive):
- Node-Centric Community
 - Each node in a group satisfies certain properties
- Group-Centric Community
 - Consider the connections within a group as a whole. The group has to satisfy certain properties without zooming into node-level
- Network-Centric Community
 - Partition the whole network into several disjoint sets
- Hierarchy-Centric Community
 - Construct a hierarchical structure of communities

Node-Centric Community Detection

- Nodes satisfy different properties
 - Complete Mutuality
 - cliques
 - Reachability of members
 - k-clique, k-clan, k-club
 - Nodal degrees
 - k-plex, k-core
 - Relative frequency of Within-Outside Ties
 - LS sets, Lambda sets
- Commonly used in traditional social network analysis
- Here, we discuss some representative ones

Complete Mutuality: Cliques

• Clique: a maximum complete subgraph in which all nodes are adjacent to each other

Nodes 5, 6, 7 and 8 form a clique

- NP-hard to find the maximum clique in a network
- Straightforward implementation to find cliques is very expensive in time complexity

Finding the Maximum Clique

- In a clique of size k, each node maintains degree >= k-1
- Nodes with degree < k-1 will not be included in the maximum clique
- Recursively apply the following pruning procedure
 - Sample a sub-network from the given network, and find a clique in the sub-network, say, by a greedy approach
 - Suppose the clique above is size k, in order to find out a *larger* clique, all nodes with degree <= k-1 should be removed.
- Repeat until the network is small enough
- Many nodes will be pruned as social media networks follow a power law distribution for node degrees

Maximum Clique Example

- Suppose we sample a sub-network with nodes {1-5} and find a clique {1, 2, 3} of size 3
- In order to find a clique >3, remove all nodes with degree <=3-1=2
 - Remove nodes 2 and 9
 - Remove nodes 1 and 3
 - Remove node 4

Clique Percolation Method (CPM)

- Clique is a very strict definition, unstable
- Normally use cliques as a core or a seed to find larger communities
- CPM is such a method to find overlapping communities
 - Input
 - A parameter k, and a network
 - Procedure
 - Find out all cliques of size k in a given network
 - Construct a clique graph. Two cliques are adjacent if they share k-1 nodes
 - Each connected components in the clique graph form a community

CPM Example

Reachability : k-clique, k-club

- Any node in a group should be reachable in k hops
- k-clique: a maximal subgraph in which the largest geodesic distance between any nodes <= k
- k-club: a substructure of diameter <= k

Cliques: {1, 2, 3} 2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1,2,3,4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6}

- A k-clique might have diameter larger than k in the subgraph
- Commonly used in traditional SNA
- Often involves combinatorial optimization

Group-Centric Community Detection: Density-Based Groups

- The group-centric criterion requires the whole group to satisfy a certain condition
 - E.g., the group density >= a given threshold
- A subgraph $G_s(V_s, E_s)$ is a γ dense quasi-clique if

$$\frac{|E_s|}{|V_s|(|V_s|-1)/2} \ge \gamma$$

- A similar strategy to that of cliques can be used
 - Sample a subgraph, and find a maximal $\gamma-dense$ quasi-clique (say, of size k)
 - Remove nodes with degree $< k\gamma$

Network-Centric Community Detection

- Network-centric criterion needs to consider the connections within a network globally
- Goal: partition nodes of a network into disjoint sets
- Approaches:
 - Clustering based on vertex similarity
 - Latent space models
 - Block model approximation
 - Spectral clustering
 - Modularity maximization

Clustering based on Vertex Similarity

- Apply k-means or similarity-based clustering to nodes
- Vertex similarity is defined in terms of the similarity of their neighborhood
- Structural equivalence: two nodes are structurally equivalent iff they are connecting to the same set of actors

Nodes 1 and 3 are structurally equivalent; So are nodes 5 and 7.

• Structural equivalence is too restrict for practical use.

Vertex Similarity

- Jaccard Similarity $\sigma_{\text{Jaccard}}(v_i, v_j) = \frac{|N(v_i) \cap N(v_j)|}{|N(v_i) \cup N(v_j)|}$
- Cosine similarity

$$\sigma_{\text{Cosine}}(v_i, v_j) = \frac{|N(v_i) \cup N(v_j)|'}{|N(v_i) \cup N(v_j)|'}$$
$$\sigma_{\text{Cosine}}(v_i, v_j) = \frac{|N(v_i) \cap N(v_j)|}{\sqrt{|N(v_i)||N(v_j)|}}.$$

$$\sigma_{\text{Jaccard}}(v_2, v_5) = \frac{|\{v_1, v_3, v_4\} \cap \{v_3, v_6\}|}{|\{v_1, v_3, v_4, v_6\}|} = 0.25,$$

$$\sigma_{\text{Cosine}}(v_2, v_5) = \frac{|\{v_1, v_3, v_4\} \cap \{v_3, v_6\}|}{\sqrt{|\{v_1, v_3, v_4\}||\{v_3, v_6\}|}} = 0.40.$$

Groups on Latent-Space Models

- Latent-space models: Transform the nodes in a network into a lowerdimensional space such that the distance or similarity between nodes are kept in the Euclidean space
- Multidimensional Scaling (MDS)
 - Given a network, construct a proximity matrix to denote the distance between nodes (e.g. geodesic distance)
 - Let D denotes the *square distance* between nodes
 - $S \in \mathbb{R}^{n \times k}$ denotes the coordinates in the lower-dimensional space

$$SS^{T} = -\frac{1}{2}(I - \frac{1}{n}ee^{T})D(I - \frac{1}{n}ee^{T}) = \Delta(D)$$

- Objective: minimize the difference $\min ||\Delta(D) SS^T||_F$
- Let $\Lambda = diag(\lambda_1, \cdots, \lambda_k)$ top-k eigenvalues of Δ), V the top-k eigenvectors

– Solution: $S=V\Lambda^{1/2}$

• Apply k-means to S to obtain clusters

On MDS

Steps of a Classical MDS algorithm:

Classical MDS uses the fact that the coordinate matrix can be derived by <u>eigenvalue decomposition</u> from B = XX' and the matrix *B* can be computed from proximity matrix *D* by using double centering.^[2]

1.Set up the squared proximity matrix $D^{(2)} = [d_{ij}^2]$

2.Apply double centering: $B = -\frac{1}{2}JD^{(2)}J$ using the <u>centering</u> <u>matrix</u> $J = I - \frac{1}{n}11'$, where *n* is the number of objects.

3. Determine the *m* largest <u>eigenvalues</u> $\lambda_1, \lambda_2, ..., \lambda_m$ and corresponding <u>eigenvectors</u> $e_1, e_2, ..., e_m$ of *B*

4.Now, $X = E_m \Lambda_m^{1/2}$, where E_m is the matrix of *m* eigenvectors and Λ_m is the <u>diagonal matrix</u> of *m* eigenvalues of *B*

Classical MDS assumes <u>Euclidean</u> distances. So this is not applicable for direct dissimilarity ratings.

where: I_n is the <u>identity matrix</u> of size *n*, and **1** is the column vector of all 1s

MDS-example

MDS

Geodesic Distance Matrix

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	1	1	1	2	2	3	1	1	2	4	2	2
2	1	0	2	2	1	2	3	2	2	3	4	3	3
3	1	2	0	2	3	3	4	2	2	3	5	3	3
4	1	2	2	0	3	2	3	2	2	1	4	1	3
5	2	1	3	3	0	1	2	2	2	2	3	3	3
6	2	2	3	2	1	0	1	1	1	1	2	2	2
7	3	3	4	3	2	1	0	2	2	2	1	3	3
8	1	2	2	2	2	1	2	0	2	2	3	3	1
9	1	2	2	2	2	1	2	2	0	2	3	3	1
10	2	3	3	1	2	1	2	2	2	0	3	1	3
11	4	4	5	4	3	2	1	3	3	3	0	4	4
12	2	3	3	1	3	2	3	3	3	1	4	0	4
13	2	3	3	3	3	2	3	1	1	3	4	4	0

Block-Model Approximation

Network Interaction Matrix

Block Structure

Objective: Minimize the difference between an interaction matrix and a block structure

$$\min_{S,\Sigma} \|A - S\Sigma S^T\|_F$$

s.t. $S \in \{0,1\}^{n \times k}, \Sigma \in \mathbb{R}^{k \times k}$ is diagonal

S is a community indicator matrix

Challenge: S is discrete, difficult to solve
 Relaxation: Allow S to be continuous satisfying S^TS = I_k
 Solution: the top eigenvectors of A
 Post-Processing: Apply k-means to S to find the partition

Latent Space Models

- Map nodes into a low-dimensional space such that the proximity between nodes based on network connectivity is preserved in the new space, then apply k-means clustering
- Multi-dimensional scaling (MDS)
 - Given a network, construct a proximity matrix P representing the pairwise distance between nodes (e.g., geodesic distance)
 - Let $S \in \mathbb{R}^{n \times l}$ denote the coordinates of nodes in the low-dimensional space $SS^T \approx -\frac{1}{2}(I \frac{1}{n}\mathbf{1}\mathbf{1}^T)(P \circ P)(I \frac{1}{n}\mathbf{1}\mathbf{1}^T) = \widetilde{P}$
 - Objective function: $\min \|SS^T \widetilde{P}\|_F^2$
 - Solution: $S = V \Lambda^{\frac{1}{2}}$
 - V is the top ℓ eigenvectors of \widetilde{P} , and Λ is a diagonal matrix of top eigenvalues $\Lambda = diag(\lambda_1, \lambda_2, \cdots, \lambda_\ell)$

MDS Example

{1, 2, 3, 4	} and ·	{5, 6,	7, 8,	9}
-------------	---------	--------	-------	----

geodesic distance	P =	0 1 1 1 2 2 3	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \end{array} $	$egin{array}{c} 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \end{array}$	$2 \\ 3 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1$	$2 \\ 3 \\ 2 \\ 1 \\ 1 \\ 0 \\ 1$	${ \begin{array}{c} 3 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ 0 \end{array} }$	$3 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 4 \\ 5 \\ 4 \\ 3 \\ 2 \\ 2 \\ 1 \end{array}$	
distance		2 3 4	$ \begin{array}{c} 3 \\ 4 \\ 4 \\ 5 \end{array} $	$2 \\ 3 \\ 3 \\ 4$	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \end{array} $	1 1 1 2	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 2 \end{array} $		

	2.46	3.96	1.96	0.85	-0.65	-0.65	-2.21	-2.04	-3.65
	3.96	6.46	3.96	1.35	-1.15	-1.15	-3.71	-3.54	-6.15
	1.96	3.96	2.46	0.85	-0.65	-0.65	-2.21	-2.04	-3.65
~	0.85	1.35	0.85	0.23	-0.27	-0.27	-0.82	-0.65	-1.27
P =	-0.65	-1.15	-0.65	-0.27	0.23	-0.27	0.68	0.85	1.23
	-0.65	-1.15	-0.65	-0.27	-0.27	0.23	0.68	0.85	1.23
	-2.21	-3.71	-2.21	-0.82	0.68	0.68	2.12	1.79	3.68
	-2.04	-3.54	-2.04	-0.65	0.85	0.85	1.79	2.46	2.35
	-3.65	-6.15	-3.65	-1.27	1.23	1.23	3.68	2.35	6.23

	-0.33 -0.55	0.05			-1.51	0.06 0.17
V =	-0.33 -0.11 0.10	0.05 -0.01 -0.06	$\Lambda = \begin{bmatrix} 21.56 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ s \end{bmatrix}, s = V \Lambda^{1/2} =$	-1.51 -0.53 0.47	-0.06 -0.01 -0.08
	0.10 0.32	-0.06 0.11		1.46] ´	0.47 1.47	-0.08 0.14
	0.28	-0.79 0.58			1.29 2.42 2.5	-0.95 0.70

Block Models

$$\min ||A - S\Sigma S^T||_F^2$$

- S is the community indicator matrix
- Relax S to be numerical values, then the optimal solution corresponds to the top eigenvectors of A

$$S = \begin{bmatrix} 0.20 & -0.52 \\ 0.11 & -0.43 \\ 0.20 & -0.52 \\ 0.38 & -0.30 \\ 0.47 & 0.15 \\ 0.47 & 0.15 \\ 0.41 & 0.28 \\ 0.38 & 0.24 \\ 0.12 & 0.11 \end{bmatrix}, \Sigma = \begin{bmatrix} 3.5 & 0 \\ 0 & 2.4 \end{bmatrix}.$$
 Two communities:
{1, 2, 3, 4} and {5, 6, 7, 8, 9}

Cut

- Most interactions are within group whereas interactions between groups are few
- community detection \rightarrow minimum cut problem
- Cut: A partition of vertices of a graph into two disjoint sets
- Minimum cut problem: find a graph partition such that the number of edges between the two sets is minimized

Ratio Cut & Normalized Cut

- Minimum cut often returns an imbalanced partition, with one set being a singleton
- Change the objective function to consider community size

Ratio
$$\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{|C_i|}, \qquad \begin{array}{c} \mathsf{C}_i \\ |\mathsf{C}_i| \\ \mathsf{C}_i \end{array}$$

Normalized $\operatorname{Cut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}(C_i, \bar{C}_i)}{\operatorname{vol}(C_i)} \qquad \begin{array}{c} \mathsf{Vol}(C_i) \\ \mathsf{Vol}(C_i) \end{array}$

C_{i,}: a community |C_i|: number of nodes in C_i vol(C_i): sum of degrees in C_i

Ratio Cut & Normalized Cut Example

For partition in red:
$$\pi_1$$

Ratio $\operatorname{Cut}(\pi_1) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{8} \right) = 9/16 = 0.56$
Normalized $\operatorname{Cut}(\pi_1) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{27} \right) = 14/27 = 0.52$

For partition in green: π_2

Ratio
$$\operatorname{Cut}(\pi_2) = \frac{1}{2} \left(\frac{2}{4} + \frac{2}{5} \right) = 9/20 = 0.45 < \operatorname{Ratio} \operatorname{Cut}(\pi_1)$$

Normalized $\operatorname{Cut}(\pi_2) = \frac{1}{2} \left(\frac{2}{12} + \frac{2}{16} \right) = 7/48 = 0.15 < \operatorname{Normalized} \operatorname{Cut}(\pi_1)$

Both ratio cut and normalized cut prefer a balanced partition

Spectral Clustering

• Both ratio cut and normalized cut can be reformulated as

$$\min_{S \in \{0,1\}^{n \times k}} Tr(S^T \widetilde{L}S)$$

- Where $\widetilde{L} = \begin{cases} D A & \text{graph Laplacian for ratio cut} \\ I D^{-1/2}AD^{-1/2} & \text{normalized graph Laplacian} \\ D = diag(d_1, d_2, \cdots, d_n) & A \text{ diagonal matrix of degrees} \end{cases}$
- Spectral relaxation: $\min_{S} Tr(S^T \widetilde{L}S)$ s.t. $S^T S = I_k$ • Optimal solution: top eigenvectors with the smallest
- Optimal solution: top eigenvectors with the smallest eigenvalues

Spectral Clustering Example

Modularity Maximization

- Modularity measures the strength of a community partition by taking into account the degree distribution
- Given a network with *m* edges, the expected number of edges between two nodes with d_i and d_j is $\frac{d_i d_j}{2m}$

The expected number of edges between nodes 1 and 2 is 3*2/(2*14) = 3/14

- Strength of a community: $\sum A_{ij} d_i d_j / 2m$ $i \in C, j \in C$
- Modularity: Q = 1/2m ∑_{ℓ=1}^k ∑_{i∈Cℓ,j∈Cℓ} (A_{ij} d_id_j/2m)
 A larger value indicates a good community structure

A Unified View for Community Partition

Latent space models, block models, spectral clustering, and ٠ modularity maximization can be unified as

Utility Matrix $M = \begin{cases} modified proximity matrix \widetilde{P} & if latent space models \\ adjacency matrix A & if block models \\ graph Laplacian \widetilde{L} & if spectral clustering \\ modularity maximization B & if modularity maximization \end{cases}$

Hierarchy-Centric Community Detection

- Goal: build a hierarchical structure of communities based on network topology
- Allow the analysis of a network at different resolutions
- Representative approaches:
 - Divisive Hierarchical Clustering
 - Agglomerative Hierarchical clustering

Divisive Hierarchical Clustering

- Divisive clustering
 - Partition nodes into several sets
 - Each set is further divided into smaller ones
 - Network-centric partition can be applied for the partition
- One particular example: recursively remove the "weakest" tie
 - Find the edge with the least strength
 - Remove the edge and update the corresponding strength of each edge
- Recursively apply the above two steps until a network is discomposed into desired number of connected components.
- Each component forms a community

Edge Betweenness

- The strength of a tie can be measured by edge betweenness
- Edge betweenness: the number of shortest paths that pass along with the edge $edge-betweenness(e) = \sum_{s < t} \frac{\sigma_{st}(e)}{\sigma_{st}(e)}$

The edge betweenness of e(1, 2) is 4 (=6/2 + 1), as

- all the shortest paths from 2 to {4, 5, 6, 7, 8, 9}
have to either pass e(1, 2) or e(2, 3), and
- e(1,2) is the shortest path between 1 and 2

 The edge with higher betweenness tends to be the bridge between two communities.

Divisive clustering based on edge betweenness

Initial betweenness value

Table 3.3: Edge Betweenness											
	1	2	3	4	5	6	7	8	9		
1	0	4	1	9	0	0	0	0	0		
2	4	0	4	0	0	0	0	0	0		
3	1	4	0	9	0	0	0	0	0		
4	9	0	9	0	10	10	0	0	0		
5	0	0	0	10	0	1	6	3	0		
6	0	0	0	10	1	0	6	3	0		
7	0	0	0	0	6	6	0	2	8		
8	0	0	0	0	3	3	2	0	0		
9	0	0	0	0	0	0	8	0	0		

After remove e(4,5), the betweenness of e(4, 6) becomes 20, which is the highest;

After remove e(4,6), the edge e(7,9) has the highest betweenness value 4, and should be removed.

Agglomerative Hierarchical Clustering

- Initialize each node as a community
- Merge communities successively into larger communities following a certain criterion
 - E.g., based on modularity increase

Summary of Community Detection

- Node-Centric Community Detection
 - cliques, k-cliques, k-clubs
- Group-Centric Community Detection
 - quasi-cliques
- Network-Centric Community Detection
 - Clustering based on vertex similarity
 - Latent space models, block models, spectral clustering, modularity maximization
- Hierarchy-Centric Community Detection
 - Divisive clustering
 - Agglomerative clustering

COMMUNITY EVALUATION

Evaluating Community Detection (1)

- For groups with clear definitions
 - E.g., Cliques, k-cliques, k-clubs, quasi-cliques
 - Verify whether extracted communities satisfy the definition
- For networks with ground truth information
 - Normalized mutual information
 - Accuracy of pairwise community memberships

Evaluation using Semantics

- For networks with semantics
 - Networks come with semantic or attribute information of nodes or connections
 - Human subjects can verify whether the extracted communities are coherent
- Evaluation is qualitative
- It is also intuitive and helps understand a community

Evaluation without Ground Truth

- For networks without ground truth or semantic information
- This is the most common situation
- An option is to resort to cross-validation
 - Extract communities from a (training) network
 - Evaluate the quality of the community structure on a network constructed from a different date or based on a related type of interaction
- Quantitative evaluation functions
 - modularity
 - block model approximation error

MORGAN & CLAYPOOL PUBLISHERS

Community Detection and Mining in Social Media

Lei Tang Huan Liu

Synthesis Lectures on Data Mining and Knowledge Discovery

Jiawei Han, Lise Getoor, Wei Wang, Johannes Gehrke, Robert Grossman, Series Editors

Book Available at

Morgan & claypool Publishers

<u>Amazon</u>

If you have any comments, please feel free to contact:

- Lei Tang, Yahoo! Labs, <u>ltang@yahoo-inc.com</u>
- Huan Liu, ASU <u>huanliu@asu.edu</u>