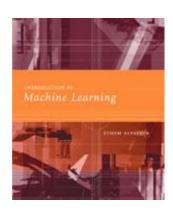
INTRODUCTION TO

PAC LEARNING



by: alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml

Postedited by: R. Basili

Learning a Class from Examples

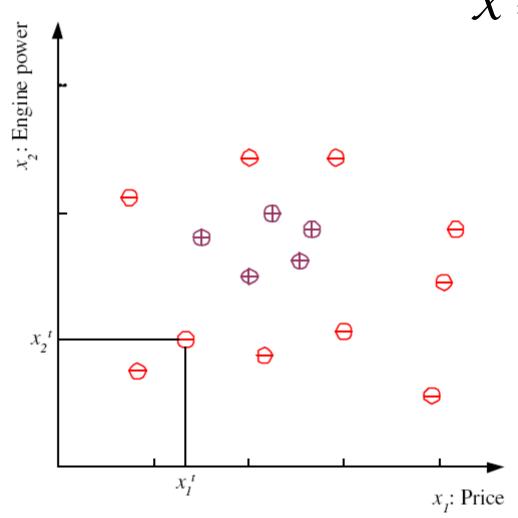
- Class C of a "family car"
 - Prediction: Is car x a "family car"?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

Input representation:

 x_1 : price, x_2 : engine power

Training set X

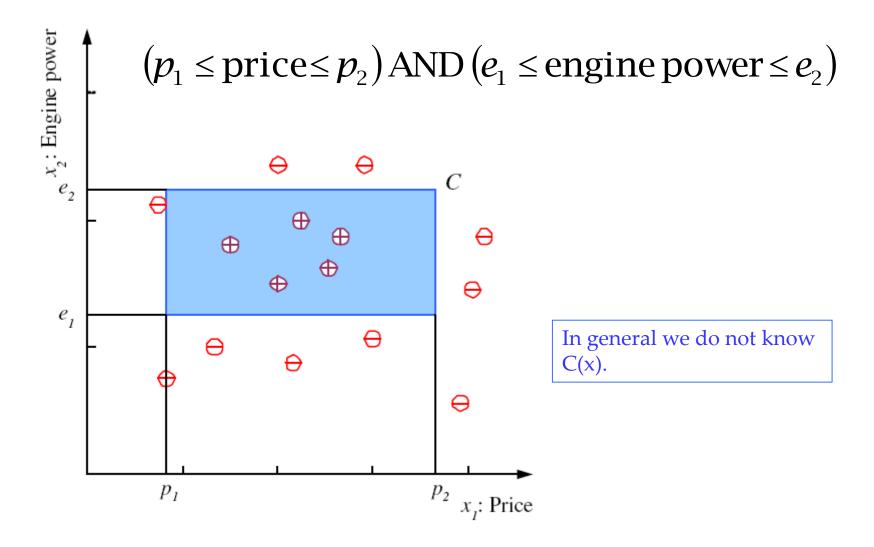


$$\mathcal{X} = \{\boldsymbol{x}^t, \boldsymbol{r}^t\}_{t=1}^N$$
 label

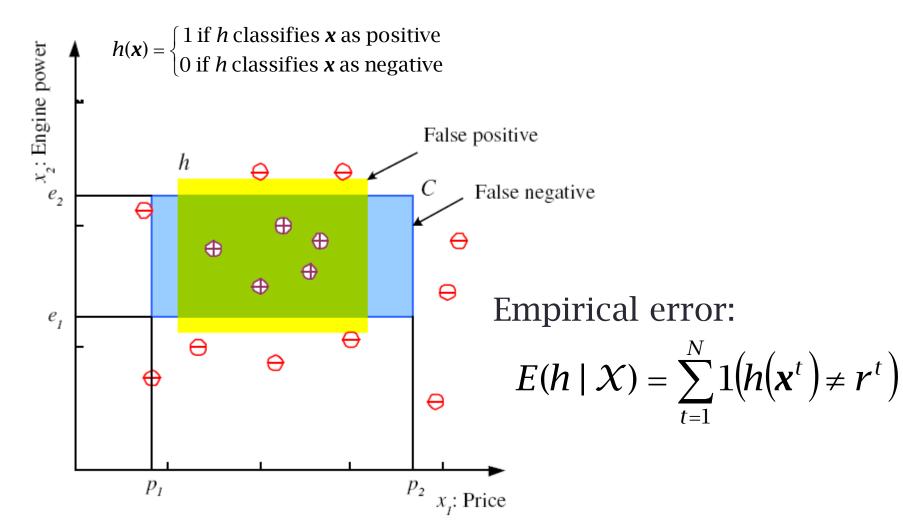
$$\boldsymbol{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$r = \begin{cases} 1 & \text{if } \mathbf{x} \text{ is positive} \\ 0 & \text{if } \mathbf{x} \text{ is negative} \end{cases}$$

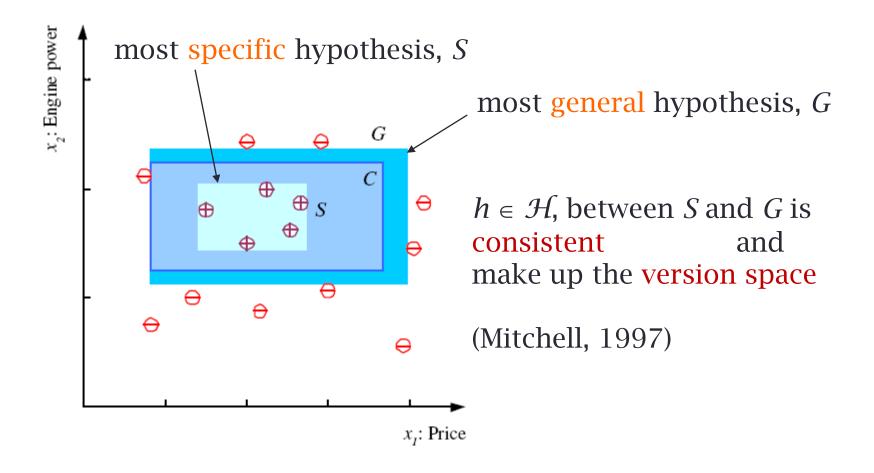
Class C



Hypothesis class ${\mathcal H}$



S, G, and the Version Space



- How many training examples are needed so that the tightest rectangle S which will constitute our hypothesis, will probably be approximately correct?
 - We want to be confident (above a level) that
 - The error probability is bounded by some value

- How many training examples are needed so that the tightest rectangle S which will constitute our hypothesis, will be probably approximately correct?
 - We want to be confident (above a level) that
 - The error probability is bounded by some value

In PAC learning, given a class C and examples drawn from some unknown but fixed distribution p(x), we want to find the number of examples N, such that with probability at least 1 - δ, h has error at most ε?
(Blumer et al., 1989)

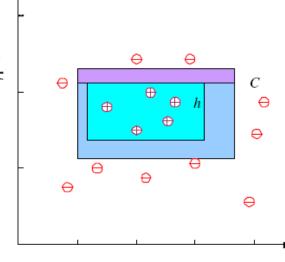
$$P(C\Delta h \leq \varepsilon) \geq \delta$$

where $C\Delta h$ is (area of the) "the region of difference between C and h", and $\delta > 0$, $\epsilon > 0$.

PAC Learning

- How many training examples m should we have, such that with probability at least 1δ , h has error at most ε ?

 (Blumer et al., 1989)
- Let prob. of a + ex. in each strip be at most $\varepsilon/4$
- Pr that random ex. misses a strip: 1- $\varepsilon/4$
- Pr that *m* random instances miss a strip: $(1 \varepsilon/4)^m$
- Pr that m random instances instances miss 4 strips: $4(1 \varepsilon/4)^m$
- We want $1-4(1-\varepsilon/4)^m \ge 1-\delta$ or $4(1-\varepsilon/4)^m \le \delta$
- Using $1-x \le e^{-x}$ it follows that $4e^{-\epsilon m/4} < \delta$ OR
- Divide by 4, take ln... and show that $m \ge (4/\varepsilon)ln(4/\delta)$



How many training examples m should we have, such that with probability at least 1 - δ , h has error at most ϵ ?

(Blumer et al., 1989)

$$m \ge (4/\varepsilon)ln(4/\delta)$$

- *m* increases slowly with $1/\varepsilon$ and $1/\delta$
- Say ε =1% with confidence 95%, pick $m \ge 1752$
- Say ε =10% with confidence 95%, pick $m \ge 175$

VC (Vapnik-Chervonenkis) Dimension

- N points can be labeled in 2^N ways as +/-
- \mathcal{H} shatters N if there exists a set of N points such that $h \in \mathcal{H}$ is consistent with all of these possible labels:
 - Denoted as: $VC(\mathcal{H}) = N$
 - Measures the capacity of H
- Any learning problem definable by N examples can be learned with no error by a hypothesis drawn from H

Formal Definition

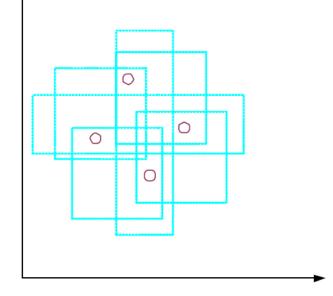
The VC Dimension

Definition: the VC dimension of a set of functions $H = \{h(\mathbf{x}, \alpha)\}$ is d if and only if there exists a set of points $\{x^i\}_{i=1}^d$ such that these points can be labeled in all 2^d possible configurations, and for each labeling, a member of set H can be found which correctly assigns those labels, but that no set $\{x^i\}_{i=1}^q$ exists where q > d satisfying this property.

VC (Vapnik-Chervonenkis) Dimension

• \mathcal{H} shatters N if there exists N points and $h \in \mathcal{H}$ such that h is consistent for any labelings of those N points.

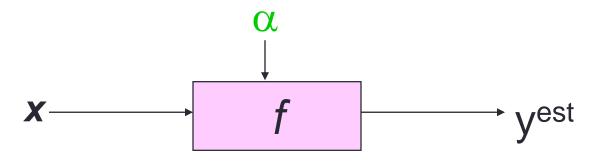
VC(axis aligned rectangles) = 4



VC (Vapnik-Chervonenkis) Dimension

- What does this say about using rectangles as our hypothesis class?
- VC dimension is pessimistic: in general we do not need to worry about all possible labelings
- It is important to remember that one can choose the arrangement of points in the space, but then the hypothesis must be consistent with all possible labelings of those fixed points.

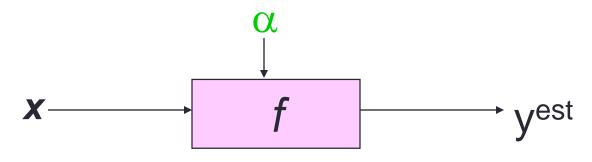
Examples



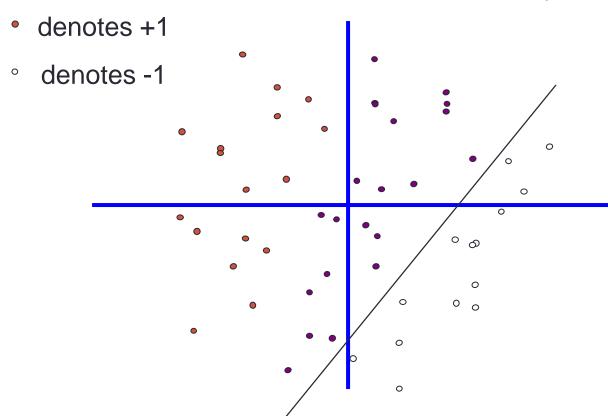
$$f(x,w) = sign(x.w)$$

- denotes +1
 - denotes -1

Examples

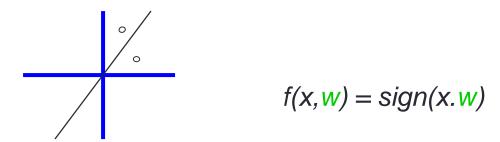


$$f(x, w, b) = sign(x.w+b)$$

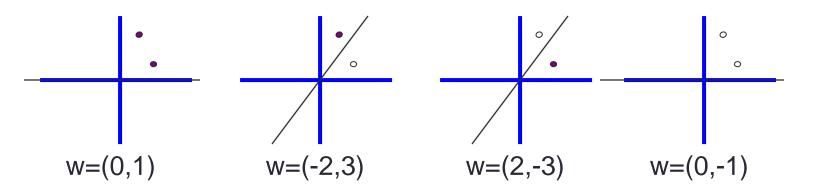


Shattering

Question: Can the following f shatter the following points?



Answer: Yes. There are four possible training set types to consider:



VC dim of linear classifiers in m-dimensions

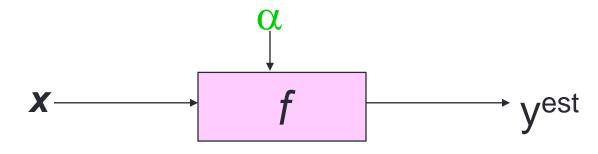
If input space is *m-dimensional* and if **f** is sign(w.x-b), what is the VC-dimension?

h=m+1

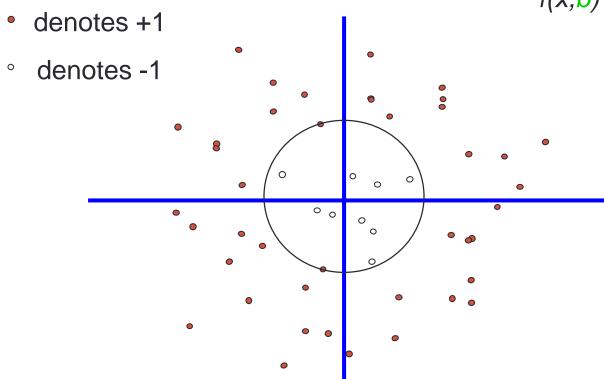
- Lines in 2D can shatter 3 points
- Planes in 3D space can shatter 4 points

• ...

Examples

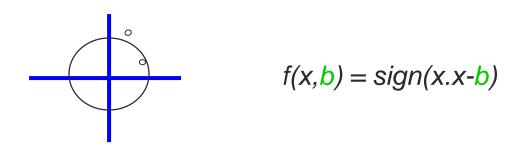


$$f(x,b) = sign(x.x - b)$$

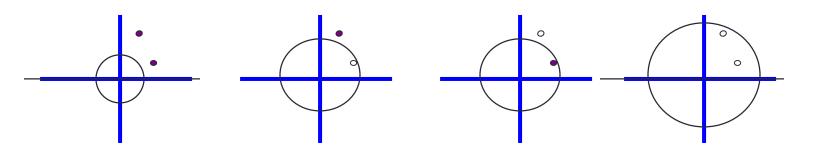


Shattering

Question: Can the following f shatter the following points?



Answer: Yes. Hence, the VC dimension of circles on the origin is at least 2.



- Note that if we pick two points at the same distance to the origin, they cannot be shattered. But we are interested if all possible labellings of some n-points can be shattered.
- How about 3 for circles on the origin (Can you find 3 points such that all possible labellings can be shattered?)?

Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- The need for inductive bias, assumptions about ${\mathcal H}$
- Generalization: How well a model performs on new data
- Different machines have different amounts of "power".

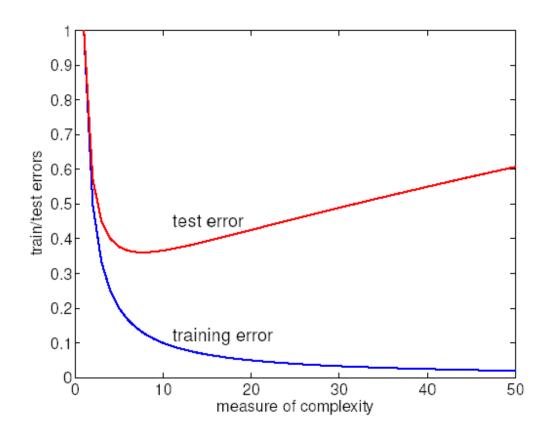
Tradeoff between:

- More power: Can model more complex classifiers but might overfit.
- Less power: Not going to overfit, but restricted in what it can model.
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , $c(\mathcal{H})$,
 - 2. Training set size, *N*,
 - 3. Generalization error, E, on new data
- □ As *N* ↑, *E*↓
- □ As $c(\mathcal{H}) \uparrow$, first $E \downarrow$ and then $E \uparrow$

Why care about "complexity"?



 We need a quantitative measure of complexity in order to be able to relate the training error (which we can observe) and the test error (that we'd like to optimize)

Complexity

- "Complexity" is a measure of a set of classifiers, not any specific (fixed) classifier
- Many possible measures
 - degrees of freedom
 - description length
 - Vapnik-Chervonenkis (VC) dimension
 - · etc.

Expected and Empirical error

$$\hat{\mathcal{E}}_n(i) = \frac{1}{n} \sum_{t=1}^n \widehat{\mathsf{Loss}}(y_t, h_i(\mathbf{x}_t)) = \text{empirical error of } h_i(\mathbf{x})$$

$$\mathcal{E}(i) = E_{(\mathbf{x}, y) \sim P} \{ \, \mathsf{Loss}(y, h_i(\mathbf{x})) \, \} = \text{expected error of } h_i(\mathbf{x})$$

Learning and VC-dimension

• Let d_{VC} be the VC-dimension of our set of classifiers F.

Theorem: With probability at least $1-\delta$ over the choice of the training set, for all $h \in F$

$$\mathcal{E}(h) \le \hat{\mathcal{E}}_n(h) + \epsilon(n, d_{VC}, \delta)$$

where

$$\epsilon(n, d_{VC}, \delta) = \sqrt{\frac{d_{VC}(\log(2n/d_{VC}) + 1) + \log(1/(4\delta))}{n}}$$

Model selection

- We try to find the model with the best balance of complexity and the fit to the training data
- Ideally, we would select a model from a nested sequence of models of increasing complexity (VC-dimension)

```
Model 1 d_1
```

Model 2
$$d_2$$

Model 3 d_3

```
where d_1 < d_2 < d_3 < ...
```

 The model selection criterion is: find the model class that achieves the lowest upper bound on the expected loss

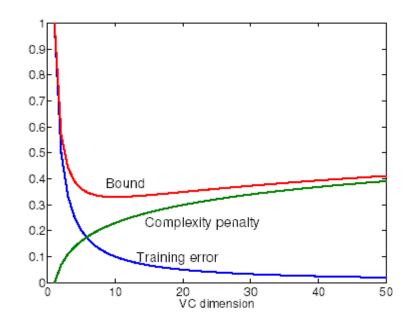
Expected error \leq Training error + Complexity penalty

Structural risk minimization cont'd

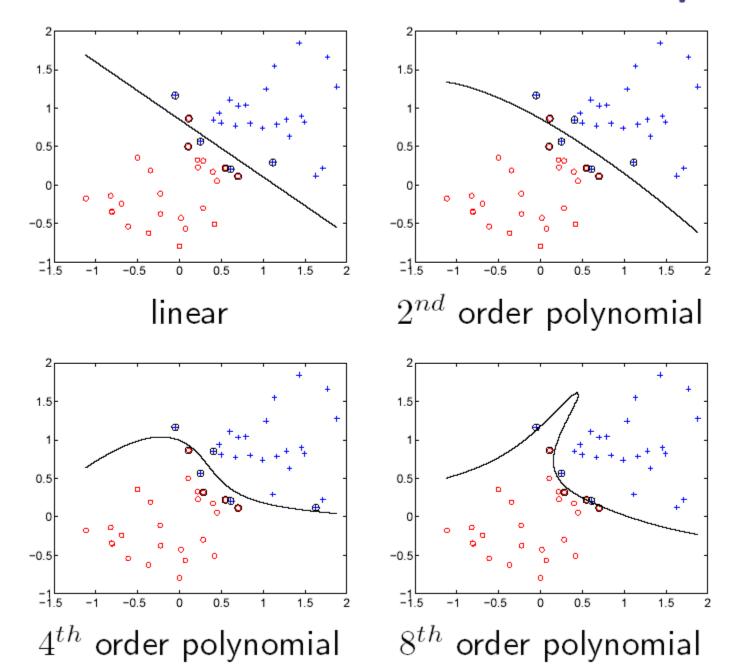
• We choose the model class F_i that minimizes the upper bound on the expected error:

$$\mathcal{E}(\hat{h}_i) \le \hat{\mathcal{E}}_n(\hat{h}_i) + \sqrt{\frac{d_i(\log(2n/d_i) + 1) + \log(1/(4\delta))}{n}}$$

where \hat{h}_i is the best classifier from F_i selected on the basis of the training set.



Structural risk minimization: example



Structural risk minimization: example cont'd

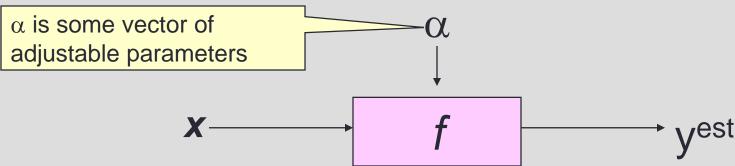
• Number of training examples n=50, confidence parameter $\delta=0.05$.

Model	d_{VC}	Empirical fit	$\epsilon(n, d_{VC}, \delta)$
1^{st} order	3	0.06	0.5501
2^{nd} order	6	0.06	0.6999
4^{th} order	15	0.04	0.9494
8^{th} order	45	0.02	1.2849

 Structural risk minimization would select the simplest (linear) model in this case.

Summary: a learning machine

• A learning machine f takes an input x and transforms it, somehow using weights α , into a predicted output $y^{est} = +/-1$



Back to test and empirical (training) error

- Given some machine f
- Define:

$$R(\alpha) = \text{TESTERR} \ (\alpha) = E \left[\frac{1}{2} |y - f(x, \alpha)| \right] = \frac{\text{Probability of}}{\text{Misclassification}}$$

$$R^{emp}(\alpha) = \text{TRAINERR } (\alpha) = \frac{1}{R} \sum_{k=1}^{R} \frac{1}{2} |y_k - f(x_k, \alpha)| = \frac{\text{Fraction Training}}{\text{Set misclassified}}$$

R = #training set data points

Vapnik-Chervonenkis dimension

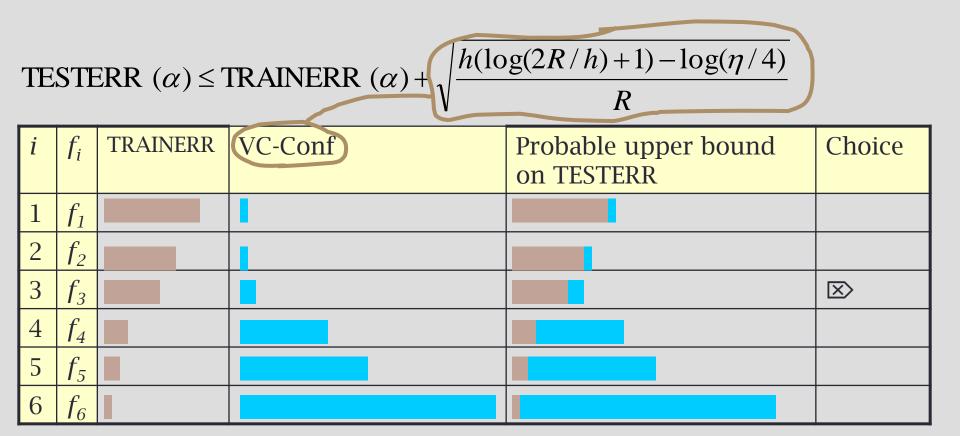
TESTERR
$$(\alpha) = E\left[\frac{1}{2}|y - f(x, \alpha)|\right]$$
 TRAINERR $(\alpha) = \frac{1}{R}\sum_{k=1}^{R}\frac{1}{2}|y_k - f(x_k, \alpha)|$

- Given some machine **f**, let **h** be its VC dimension (h does not depend on the choice of training set)
- Let R be the number of training examples
- Vapnik showed that with probability 1-η

TESTERR
$$(\alpha) \le \text{TRAINERR } (\alpha) + \sqrt{\frac{h(\log(2R/h) + 1) - \log(\eta/4)}{R}}$$

This gives us a way to estimate the error on future data based only on the training error and the VC-dimension of *f*

VC-dimension as measure of complexity



Using VC-dimensionality

People have worked hard to find VC-dimension for...

- Decision Trees
- Perceptrons
- Neural Nets
- Decision Lists
- Support Vector Machines
- And many many more

All with the goals of

- Understanding which learning machines are more or less powerful under which circumstances
- Using Structural Risk Minimization for to choose the best learning machine

Alternatives to VC-dim-based model selection

Cross Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 - Training set (50%)
 - Validation set (25%)
 - Test (publication) set (25%)
- Resampling when there is few data

Alternatives to VC-dim-based model selection

- What could we do instead of the scheme below?
 - 1. Cross-validation

i	f_i	TRAINERR	10-FOLD-CV-ERR	Choice
1	f_1			
2	f_2			
3	f_3			\boxtimes
4	f_4			
5	f_5			
6	f_6			

Extra Comments

- An excellent tutorial on VC-dimension and Support Vector Machines
 - C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):955-974, 1998. http://citeseer.nj.nec.com/burges98tutorial.html

What you should know

- Definition of PAC learning
- The definition of a learning machine: $f(x,\alpha)$
- The definition of Shattering
- Be able to work through simple examples of shattering
- The definition of VC-dimension
- Be able to work through simple examples of VCdimension
- Structural Risk Minimization for model selection
- Awareness of other model selection methods