Introduction to Information Retrieval

Chris Manning, Pandu Nayak and Prabhakar Raghavan CS276: Information Retrieval and Web Search

Evaluation of IR systems

edited by Danilo Croce WmIR course AA2015/2016 University of Roma Tor Vergata

Rank-Based Measures

- Binary relevance
 - Precision@K (P@K)
 - Mean Average Precision (MAP)
 - Mean Reciprocal Rank (MRR)
- Multiple levels of relevance
 - Normalized Discounted Cumulative Gain (NDCG)

Precision@K

- Set a rank threshold K
- Compute % relevant in top K
- Ignores documents ranked lower than K

- Prec@4 of 2/4
- Prec@5 of 3/5

Mean Average Precision

- Consider rank position of each relevant doc
 K₁, K₂, ... K_R
- Compute Precision@K for each K₁, K₂, ... K_R
- Average precision = average of P@K

• Ex: has AvgPrec of
$$\frac{1}{3} \times \left(\frac{1}{1} + \frac{2}{3} + \frac{3}{5}\right) \approx 0.76$$

 MAP is Average Precision across multiple queries/ rankings

Average Precision

Ranking #1: (1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78

Ranking #2: (0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52

MAP

average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53

Mean average precision

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero
- MAP is macro-averaging: each query counts equally
- Now perhaps most commonly used measure in research papers
- Good for web search?
- MAP assumes user is interested in finding many relevant documents for each query
- MAP requires many relevance judgments in text collection

Introduction to Information Retrieval

When There's only 1 Relevant Document

Scenarios:

- known-item search
- navigational queries
- looking for a fact
- Search Length = Rank of the answer
 - measures a user's effort

Mean Reciprocal Rank

Consider rank position, K, of first relevant doc

- Reciprocal Rank score = $\frac{1}{K}$
- MRR is the mean RR across multiple queries

Critique of pure relevance

- Relevance vs Marginal Relevance
 - A document can be redundant even if it is highly relevant
 - Duplicates
 - The same information from different sources
 - Marginal relevance is a better measure of utility for the user
 - But harder to create evaluation set
 - See Carbonell and Goldstein (1998)
- Using facts/entities as evaluation unit can more directly measure true recall
- Also related is seeking diversity in first page results
 - See <u>Diversity in Document Retrieval</u> workshops

Introduction to Information Retrieval

Discounted Cumulative Gain

- Popular measure for evaluating web search and related tasks
- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant document
 - the lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined

Discounted Cumulative Gain

- Uses graded relevance as a measure of usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks
- Typical discount is 1/log (rank)
 - With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

Summarize a Ranking: DCG

- What if relevance judgments are in a scale of [0,r]? r>2
- Cumulative Gain (CG) at rank n
 - Let the ratings of the n documents be r₁, r₂, ...r_n (in ranked order)
 - CG = $r_1 + r_2 + ... r_n$
- Discounted Cumulative Gain (DCG) at rank n
 - DCG = $r_1 + r_2/\log_2 2 + r_3/\log_2 3 + \dots + r_n/\log_2 n$

We may use any base for the logarithm, e.g., base=b

Discounted Cumulative Gain

 DCG is the total gain accumulated at a particular rank p:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

- Alternative formulation: $DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{log(1+i)}$
 - used by some web search companies
 - emphasis on retrieving highly relevant documents

Discounted Cumulative Gain Example

- 10 ranked documents judged on 0-3 relevance scale:
 - **3**, 2, 3, 0, 0, 1, 2, 2, 3, 0
- discounted gain (DG):
 - **3**, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0
 - = 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0

DCG:

3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

Summarize a Ranking: NDCG

- Normalized Cumulative Gain (NDCG) at rank n
 - Normalize DCG at rank n by the DCG value at rank n of the ideal ranking
 - The ideal ranking would first return the documents with the highest relevance level, then the next highest relevance level, etc
 - Compute the precision (at rank) where each (new) relevant document is retrieved => p(1), ...,p(k), if we have k rel. docs
- NDCG is now quite popular in evaluating Web search

Summarize a Ranking: NDCG

- Perfect ranking:
 - **3**, 3, 3, 2, 2, 2, 1, 0, 0, **0**
- ideal DCG values:
 - **3**, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10
- Actual DCG:
 - **3**, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
- NDCG values (divide actual by ideal):
 - **1**, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88
- NDCG \leq 1 at any rank position