Wordspace Exercise

Wordspaces for ML Giuseppe Castellucci, Danilo Croce, Roberto Basili Web Mining & Retrieval 2015/2016

Wordspaces

- Wordspaces are meant to acquire representations for lexical items
- They aim at representing the "meaning" of words in compact representations

OBJECTIVE

- Verify the contribution of a representation oriented to Word Spaces in a ML setting
 - can they help the generalization capability of ML algorithms?
- Verify whether they provide useful features when combined in a multiple kernel setting

Question classification

- Given a question in natural language
- classify it with respect to 6 classes
- In the previous exercise you've seen
 - Tree Kernels and BOW
 - kernel combination
- In this exercise you'll
 - adopt a Word Space to get a new representation WS
 - combine WS with other kernels and measure its contribution

How to represent a question with a word space?

A question q is made of w_i,...,w_n words

- In a word space each w_j is represented through a vector
 - Let us define φ(w_j) the function that given a word returns the vector associated to it
- An effective and simple way to represent q is to linearly combine the vectors of the word composing it

$$\vec{q} = \sum_{w_i \in q} \alpha(w_i) \phi(w_i)$$

α(.) is a function that given a word returns a coefficient for the linear combination

Material

- You will find on the website a package containing
 - qc_train.klp: kelp training file of the previous exercise containing the original question in the "quest" representation
 - qc_test.klp: kelp test file of the previous exercise containing the original question in the "quest" representation
 - WmIRQuestionClassificationExample.java: the main class of the previous KeLP exercise
 - wordspace_qc.txt.gz: the wordspace you'll adopt composed of 8135 words represented through a 250-dimensional vector

Wordspace file format

- The first line contains
 - the number of represented words
 - the number of the dimensions of each word vector
 - e.g. 8135 250
- word vectors format:
 - word [TAB] 0 [TAB] 0 [TAB] vector_representation
- Example:
 - 8135 250
 - run 0 0 -0.0732422,0.0839844,-0.00744629,0.0397949,...
 - associaton 0 0 0.246506,-0.032694, ...

•••

What you have to do (1)

- 1. Load the word space in memory
 - 1. maintain a data structure where to each word you associate a vector
 - 2. and it is efficient to retrieve a vector given a word
- 2. Load the train and test datasets with the KeLP functions
- 3. For each dataset, For each example e
 - 1. Retrieve the "quest" representation
 - 1. String quest =
 e.getRepresentation("quest").toString().toLowerCase();
 - 2. Tokenize it on the whitespace token
 - 3. Compute the linear combination of the word vectors in a vector v of type double[]
 - 1. Assume a() is 1 for all words
 - 4. Add v in a DenseVector dv to e
 - 1. DenseVector dv = new DenseVector(v);
 - 2. e.addRepresentation("ws", dv);

What you have to do (2)

- Now you "augmented" each example of the datasets with a new representation "ws" that is the linear combination of the word vectors composing a question
- Modify the main class
 WmIRQuestionClassificationExample.java
 - Write the proper kernel functions such that:
 - you can run a linear kernel on "WS", i.e. linear(WS)
 - you can run a linear combination of kernels with linear(BOW)+linear(WS)
 - you can run a linear combination of kernels with poly(2, BOW)+linear(WS)+SSTK(grct)
- Measure the differences in accuracy and report it Monday 16 to the teacher

Help with KeLP!

- If you have technical questions, please contact:
- Giuseppe Castellucci: castellucci@ing.uniroma2.it
- Danilo Croce: croce@info.uniroma2.it