
Processing Robustly Natural Language
The Chaos Experience

User’s Survival Guide

Roberto Basili Daniele Pighin
Fabio Massimo Zanzotto

University of Rome Tor Vergata,
Department of Computer Science, Systems and Production,

00133 Roma (Italy),
chaos@info.uniroma2.it

Contents

1 Chaos Principles in a nutshell 4

2 How to ... run the chaosparser 4
2.1 How to install thechaosparser 5
2.2 How to ... run the Monolithic Version 5
2.3 How to ... run the Client-Server Version 5

2.3.1 Chaos Server . 6
2.4 Chaos Client . 6
2.5 How to ... run and use the Graphical User Interface 6

3 How to .. interpret syntactic representations 8
3.1 eXtended Dependeny Graph (XDG) 8
3.2 English Grammatical Theory . 9

3.2.1 Constituent categories 9
3.3 Inter-Constitent Dependency Categories over Chunk Types 10
3.4 Italian Grammatical Categories 10

3.4.1 Constituent categories 11
3.5 Inter-Constitent Dependency Categories over Chunk Types 13

4 How to ... navigate the Java Documentation 13

Acknowledgments

This work would not have been possible without many students and researchers that
contributed to the development of the different versions of Chaos since 1995 at the
AI and NLP laboratory of the DISP (Department of Computer Science, Systems
and Production) of the University of Roma, Tor Vergata. Our thanks go to all of
them. However, the main acknowledge goes to prof. Maria Teresa Pazienza that
encouraged and supported the researches on CHAOS for all these years.

3

1 Chaos Principles in a nutshell

Chaos is a modular and lexicalized syntactic and semantic parser for Italian and for
English. It uses the eXtended Dependency Graph (XDG) as syntactic formalism as
it well represents alternative syntatic interpretation. The system is thus defined as
a cascade of processing modules (P1, ..., Pn), via composition of processors:

Chaos : XDGΓ∆ → XDGΓ′∆′

with

Chaos(xdg) = Pn ◦ Pn−1 ◦ · · · ◦ P2 ◦ P1(xdg)

The system offers a collection of modules for designing parsing architectures.
The pool of modules consists of:

• a tokenizer (TOK), matching words from character streams

• a morphologic analyser (MOA) that attaches (possibly ambiguous) syntac-
tic categories and morphological interpretations to each word and matches
named entities existing in catalogues

• a named entities matcher (NER, NES) that recognizes complex named enti-
ties according to special purpose grammars

• a rule-based part-of-speech tagger (POS)

• a POS disambiguation module (PMF) that resolves potential conflicts among
the results of the POS tagger and the morphologic analyser

• a chunker (CHK)

• a verb argument detector (VSA)

• a shallow syntactic analyser (SSA)

2 How to ... run the chaosparser

This chapter describes how to install and run the Chaos Parser for the Italian and
for the English language. Chaos can be used in three ways: in a monolithic version,
in a client-server version, and with the graphical user interface.

4

2.1 How to install thechaosparser

Unzip the choas package, runinstall and follow the instructions.

2.2 How to ... run the Monolithic Version

Chaos is a single process that follows this cicle: loading of the knwoledge bases,
analysis of input text or texts, and release of the knowledge bases. This command
is useful when large collections of documents have to be processed. The commant
to access this configuration is:chaosparser .

This message is displayed typingchaosparser -[?|help|h] :

chaosparser <input> [output] [-l <it|en>] [-k
<kbname>] [-m <modules>]

whereinput (mandatory) can be any of:

-if <input file>

-it <input text (quoted)>

-id <input directory>

and output (optional) can be etiher

-of <output file> (used with-if or -it) [defaultchaos.out]

-od <output dir> (used with-id) [defaultchaos.out.dir]

you can also select the output format (xml, prolog, or serialized object) using

-ot <xml|pl|obj> [defaultxml]

other options:

-l select input language (italian (it) or english (en)) [defaulten]

-k select which knowledge base to use [defaultdefault]

-p provide the list of processors to be run. The list is a comma separated
string with no blanks. Available processors are:INN, TOK, MOA, POS,
PMF, TEM, NER, NES, CHK, VSA, SSA

2.3 How to ... run the Client-Server Version

Chaos is two processes, one server (the parser) and one client that loads the files to
parse. The cicle to be followed is this: initialize the server (chaosserver on a
given port and then run the client (chaosclient) as many times as needed.

5

2.3.1 Chaos Server

The server is launched with the commandchaosserver .
This message is displayed typingchaosserver -[?|help|h] :

chaosserver [-l <it|en>] [-p <portno>] [-b <backlog>]

default values are:

language [en]

port number [3333]

backlog [5]

2.4 Chaos Client

The server is launched with the commandchaosclient .
This message is displayed typingchaosclient -[?|help|h] :

chaosclient [options] -t|--text <text to parse>

where options are:

[-i|--insensitive] ignore input text case (by default it doesn’t)

[-h|--host <hostname>] select server host (defaults to ’localhost ’)

[-p|--port <portno>] select server port number (defaults to ’3333 ’)

[-o|--out <filaneme>] file to write output to (defaults to ’./out.cha ’)

[-f|--format <xml|pl|obj>] output format (defaults to ’xml ’)

[-m|--modules <list of modules>] select modules (processors)
to be run (defaults to ’INN, TOK, MOA, POS, PMF, TEM, NER, NES,
CHK, VSA, SSA’)

2.5 How to ... run and use the Graphical User Interface

The Chaos graphical user interface is based on the client-erver architecture where
the GUI mainly plays the roles of client and of server launcher. The main feature
of the GUI is the possibility of observing the eXtended Dependendy Graphs, i.e.
the grammatical representations of input sentences in texts. These structures are
shortly described in Sec. 3.

Runchaosgui to access the Chaos GUI.
The aspect of the Chaos GUI is costantly changing. However, it will always

give the possibility of:

6

• launching a chaos server

• processing a text, a file, or a file directory

• observing the XDGs of a given file

7

3 How to .. interpret syntactic representations

This chapter describes the formalism to represent the syntactic information for
each sentence and the grammatical information that is expected to be extracted for
English and for Italian.

3.1 eXtended Dependeny Graph (XDG)

Syntactic interpretations are represented using the eXtended dependency graphs
(XDG). This formalism is a mixture of dependencies and constituents. In partic-
ular, it is a dependency graph whose nodesC areconstituentsand whose edges
ICD are thegrammatical dependenciesamong the constituents, i.e.

XDG= (C, ICD)

Each node is a complete tree whose nodes are feature structures. The XDG formal-
ism efficiently models the syntactic ambiguity. In general, alternative interpreta-
tions for dependencies are represented by alternatived ∈ ICD. A useful property
can be imposed onxdgs to select a single (partial) syntactic interpretation. Apla-
nar xdgis a single (although possibly partial) syntactic reading.

An example of XDG seen with the graphical user interface is given in Fig. 1
An XDG can be accessed in four different ways:

• as a Java object

• as a XML document

8

Figure 1: An eXtended Dependency Graph

• as a prolog atom

• using the graphical user interface

3.2 English Grammatical Theory

This section describes the syntactic categories used for the simple constituents,
the complex constituents, and the inter-constitutent depencencies for the English
syntactic representation.

3.2.1 Constituent categories

Simple constituent categories follow the definition of the Penn Treebank categories
whilst complex constituent categories follow in the table.

Categories for Complex Constituents

9

Class Description

Agg Adjectival Chunk
Avv Adverbial Chunk
CongCo Coordinative Conjunction Chunk
CongSub Subordinative Conjunction Chunk
Nom Nominal Chunk
Prep Prepositional Chunk
VerFin Finite Verbal Chunk
VerGer -ing Verbal Chunk
VerInf Infinite Verbal Chunk
VerPart Past Paricle Verbal Chunk
VerPred Predicative Adjectival Chunk
VerNom Nominal Verbal Chunk
VerPrep Preposiotional Verbal Chunk
? Unknown Chunk

3.3 Inter-Constitent Dependency Categories over Chunk Types

Label Grammatical Dependency Category

V Sog Grammatical Subject
V Obj Grammatical Object
V NP Indirect Object
V PP Verb Preposition Modifier
V Adv Verb Adverb Modifier
NP PP Noun Prepositional Modifier
PP PP Noun Prepositional Modifier (originated from a prepositional chunk)
NP Adj Noun Adjectival Modifier
PP Adj Noun Adjectival Modifier (originated from a prepositional chunk)
NP VPart Noun Verb Past Particle Modifier
PP VPart Noun Verb Past Particle Modifier (originated from a prepositional chunk)
Adj PP Adjective Prepositional Modifier
Adv PP Adverb Prepositional Modifier

3.4 Italian Grammatical Categories

This section describes the syntactic categories used for the simple constituents,
the complex constituents, and the inter-constitutent depencencies for the Italian
syntactic representation.

10

3.4.1 Constituent categories

Categories for Simple Constituents (POS tags)

11

Internal Code Explanation
AGS Aggettivo Singolare
AGP Aggettivo Plurale
ADS Aggettivo Determinativo Singolare
ADP Aggettivo Determinativo Plurale
AGI Aggettivo Interrogativo
AGV ?
NUM Numero
ARS Articolo Singolare
ARP Articolo Plurale
AVV Avverbio
CO Congiunzione
COA Congiunzione Avverbiale
CPU Congiunzione Punto
COP Congiunzione Parentesi
COS Congiunzione Subordinativa
DAT Data
PR Pronome
PRN Pronome Interrogativo
PSG Pronome Singolare
PPL Pronome Plurale
PRR Pronome Relativo
NC Nome Comune
NCS Nome Comune Singolare
NCP Nome Comune Plurale
NPR Nome Proprio
PSE Preposizione Semplice
PAS Preposizione Articolata Singolare
PAP Preposizione Articolata Plurale
PIM Preposizione Impropria
VX Verbo Ausiliare
VFT Verbo Finito Transitivo
VFI Verbo Finito Intransitivo
VNT Verbo Non Finito Transitivo
VNI Verbo Non Finito Intransitivo
VNP Verbo Non Finito Transitivo Participio Passato
VIP Verbo Non Finito Intransitivo Participio Passato
VTR Verbo Transitivo
VIN Verbo Intransitivo
SYM Simbolo

12

Categories for Complex Constituents
Class Description

Agg Adjectival Chunk
Avv Adverbial Chunk
CongCo Coordinative Conjunction Chunk
CongSub Subordinative Conjunction Chunk
Nom Nominal Chunk
Prep Prepositional Chunk
VerFin Finite Verbal Chunk
VerGer -ing Verbal Chunk
VerInf Infinite Verbal Chunk
VerPart Past Paricle Verbal Chunk
VerPred Predicative Adjectival Chunk
VerNom Nominal Verbal Chunk
VerPrep Preposiotional Verbal Chunk
? Unknown Chunk

3.5 Inter-Constitent Dependency Categories over Chunk Types

Label Grammatical Dependency Category

V Sog Grammatical Subject
V Obj Grammatical Object
V NP Indirect Object
V PP Verb Preposition Modifier
V Adv Verb Adverb Modifier
NP PP Noun Prepositional Modifier
PP PP Noun Prepositional Modifier (originated from a prepositional chunk)
NP Adj Noun Adjectival Modifier
PP Adj Noun Adjectival Modifier (originated from a prepositional chunk)
NP VPart Noun Verb Past Particle Modifier
PP VPart Noun Verb Past Particle Modifier (originated from a prepositional chunk)
Adj PP Adjective Prepositional Modifier
Adv PP Adverb Prepositional Modifier

4 How to ... navigate the Java Documentation

If you want to integrate the chaos processor in one of your applications or you want
to integrate a new module you cannot avoid to go into the Java Api Documentation

13

that you find enclosed with the system. There are two main packages to know:

• the chaos.XDG package that describes how an eXtended Dependency Graph
is implemented

• the chaos.processors packace that describes how processors are organized
and implemented

Good luck! For any inconvenient please contact chaos@info.uniroma2.it

14

