DECODING DISTRIBUTED TREE STRUCTURES

L. Ferrone ${ }^{1} \quad$ F.M. Zanzotto ${ }^{1} \quad$ X. Carreras ${ }^{2}$
${ }^{1}$ University of Rome "Tor Vergata" ${ }^{2}$ Xerox Research Center Europe

xerox Xerox Research Centre Europe

INTRODUCTION

FROM SYNTACTIC TREES TO DISTRIBUTED TREES

- Natural language processing tasks benefit from syntactic information

FROM SYNTACTIC TREES TO DISTRIBUTED TREES

- Natural language processing tasks benefit from syntactic information

Directly

- Symbolic Tree Structures

- Tree Kernels (Collins; 2001)

FROM SYNTACTIC TREES TO DISTRIBUTED TREES

- Natural language processing tasks benefit from syntactic information

Directly

- Symbolic Tree Structures
- Tree Kernels (Collins; 2001)

Indirectly

- Distributed Tree Structures

FROM SYNTACTIC TREES TO DISTRIBUTED TREES

- Natural language processing tasks benefit from syntactic information

Directly

- Symbolic Tree Structures

- Tree Kernels (Collins; 2001)

DISTRIBUTED TREES

Distributed Trees (Zanzotto; 2012)

- Approximate tree kernels (Collins; 2001)

$$
\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}\right\rangle \approx \operatorname{TK}\left(T_{1}, T_{2}\right)
$$

DISTRIBUTED TREES

Distributed Trees (Zanzotto; 2012)

- Approximate tree kernels (Collins; 2001)

$$
\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}\right\rangle \approx \operatorname{TK}\left(T_{1}, T_{2}\right)
$$

- Faster to compute than tree kernels

DISTRIBUTED TREES

Distributed Trees (Zanzotto; 2012)

- Approximate tree kernels (Collins; 2001)

$$
\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}\right\rangle \approx \operatorname{TK}\left(T_{1}, T_{2}\right)
$$

- Faster to compute than tree kernels
- Can be used as input in any algorithm
- Neural network
- Support Vector Machines

WHAT'S IN A DISTRIBUTED VECTORS?

DECODING TREES

Question

- How much information is stored in a distributed vector?
- In other words, can we decode the structured representation from a distributed vector?

OUR IDEA

Our Idea

- Traditional parsing:
- CYK algorithm (and others)
- Use distributed vectors to "guide" the algorithm choices

CYK ALGORITHM

CYK (Cocke, Younger, Kasami; 1967)
Given a sentence s of length n and a grammar G :

- builds a $n \times n$ table which contains the partial parses of the sentence

CYK ALGORITHM

Grammar:
$S \rightarrow N P$ VP

$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
VP \rightarrow V NP
$V P \rightarrow V P P P$

CYK ALGORITHM

Grammar:
$S \rightarrow N P V P$

$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
VP \rightarrow V NP
$V P \rightarrow V P P P$

CYK ALGORITHM

Grammar:
$S \rightarrow N P V P$

CYK ALGORITHM

Grammar:
$S \rightarrow N P V P$

CYK ALGORITHM

Grammar:
$S \rightarrow N P V P$

CYK ALGORITHM

Grammar:
$S \rightarrow N P V P$

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow$ NP PP
							$P \mathrm{P} \rightarrow \mathrm{PNP}$
							$\mathrm{VP} \rightarrow \mathrm{VNP}$
							$V P \rightarrow V P$ PP
NP	V	DET	N	P	DET	N	
	saw	th	an		he		pe

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow N P$ PP
							$\mathrm{PP} \rightarrow \mathrm{PNP}$
							$\mathrm{VP} \rightarrow \mathrm{VNP}$
							$V P \rightarrow V P$ PP
NP	V	DET	N	P	DET	N	
	saw	th	man		the		

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow N P$ PP
							$P \mathrm{P} \rightarrow \mathrm{PNP}$
							$\mathrm{VP} \rightarrow \mathrm{VNP}$
							$V P \rightarrow V P$ PP
NP	V	DET	N	P	DET	N	
	saw	th	man		he		pe

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow N P$ PP
							$\mathrm{PP} \rightarrow \mathrm{PNP}$
							$\mathrm{VP} \rightarrow \mathrm{VNP}$
							$V P \rightarrow V P$ PP
NP	V	DET	N	P	DET	N	
	saw	th	man		the		

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow N P$ PP
							$P \mathrm{P} \rightarrow \mathrm{PNP}$
							$\mathrm{VP} \rightarrow \mathrm{VNP}$
							$V P \rightarrow V P$ PP
NP	V	DET	N	P	DET	N	
1	saw	the	man		the		ope

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow N P P P$
							PP \rightarrow P NP
							$V P \rightarrow$ NP
							$V P \rightarrow V P$ PP
		NP					
NP	V	DET	N	P	DET	N	
1	saw	the	man	with	the		ope

CYK ALGORITHM

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow N P P P$
							PP \rightarrow P NP
							$V P \rightarrow$ NP
							$V P \rightarrow V P$ PP
		NP	.				
NP	V	DET	N	P	DET	N	
1	saw	the	man	with	the		ope

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow N P P P$
							PP \rightarrow P NP
							$V P \rightarrow$ NP
							$V P \rightarrow V P$ PP
		NP					
NP	V	DET	N	P	DET	N	
1	saw	the	man	with	the		ope

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow$ NP PP
							$\mathrm{PP} \rightarrow \mathrm{PNP}$
							$\mathrm{P} \rightarrow \mathrm{V}$ NP
							$V P \rightarrow V P$ PP
		NP			NP		
NP	V	DET	N	P	DET	N	
	saw	the	man	th	the	coper	促

CYK ALGORITHM

Grammar:

CYK ALGORITHM

Grammar:

							P \rightarrow DET N
							$P \rightarrow N P$ PP
							$\rightarrow \mathrm{PNP}$
							$\rightarrow V N P$
	VP						\rightarrow VP PP
		NP			NP		
NP	V	DET	N	P	DET	N	
1	saw	the	man	with	the	sco	

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow$ NP PP
							$\mathrm{PP} \rightarrow \mathrm{PNP}$
							$\mathrm{P} \rightarrow \mathrm{V}$ NP
	VP						$V P \rightarrow V P$ PP
		NP			NP		
NP	V	DET	N	P	DET	N	
	saw	the	man	th	the	coper	e

CYK ALGORITHM

Grammar:

							$N P \rightarrow$ DET N
							$N P \rightarrow$ NP PP
							$\mathrm{PP} \rightarrow \mathrm{PNP}$
							$\mathrm{P} \rightarrow \mathrm{VNP}$
	VP		.				$V P \rightarrow V P$ PP
		NP			NP		
NP	V	DET	N	P	DET	N	
I	saw	the	man	th	the	coper	e

CYK ALGORITHM

Grammar:

							P \rightarrow DET N
							$\mathrm{P} \rightarrow$ NP PP
							$P \mathrm{P}$ P NP
							$P \rightarrow V N P$
	VP			PP			$P \rightarrow V P$ PP
		NP			NP		
NP	V	DET	N	P	DET	N	
I	saw	the	a	with	the	sco	pe

CYK ALGORITHM

Grammar:

CYK ALGORITHM

Grammar:
$S \rightarrow$ NP VP

CYK ALGORITHM

CYK ALGORITHM

Grammar:
$S \rightarrow$ NP VP

CYK ALGORITHM

Ambiguity

- Even in this small example there are two plausible interpretations

CYK ALGORITHM

Ambiguity

- Even in this small example there are two plausible interpretations
- In general there are (exponentially) many more!

CYK ALGORITHM

Ambiguity

- Even in this small example there are two plausible interpretations
- In general there are (exponentially) many more!
- Usually parsers use probabilistic grammars to disambiguate
- Each rule of the grammar has an inherent probability (which must be learned)

DISTRIBUTED CYK

Idea

We show that a reference distributed vector of the correct parse is enough to eliminate ambiguity
(and thus reconstruct the original parse)

DISTRIBUTED CYK

Ingredients:

DISTRIBUTED CYK

$$
\begin{aligned}
& \text { Grammar: } \\
& S \rightarrow \text { NP VP } \\
& N P \rightarrow D E T N \\
& N P \rightarrow N P P P \\
& P P \rightarrow P N P \\
& V P \rightarrow V N P \\
& V P \rightarrow V P P P
\end{aligned}
$$

DISTRIBUTED CYK

Grammar:

$S \rightarrow N P$ VP
$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
$\mathrm{VP} \rightarrow \mathrm{V}$ NP
$V P \rightarrow V P P P$

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:
$S \rightarrow N P$ VP

$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
VP \rightarrow V NP
$V P \rightarrow V P P P$
$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}$

DISTRIBUTED CYK

Grammar:
$S \rightarrow N P$ VP

$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
VP \rightarrow V NP
$V P \rightarrow V P P P$
$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}$

DISTRIBUTED CYK

Grammar:
$S \rightarrow N P V P$

$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
VP \rightarrow V NP
$V P \rightarrow V P P P$
$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}$

DISTRIBUTED CYK

Grammar:
$S \rightarrow N P V P$

$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
VP \rightarrow V NP
$V P \rightarrow V P P P$
$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}$

DISTRIBUTED CYK

Grammar:
$S \rightarrow N P V P$

$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
VP \rightarrow V NP
$V P \rightarrow V P P P$
$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}$

DISTRIBUTED CYK

Grammar:

$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
VP \rightarrow V NP
$V P \rightarrow V P P P$
$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

							$P \rightarrow$ DET N
							$P \rightarrow$ NP PP
							$P \rightarrow P N P$
							$P \rightarrow V N P$
							$P \rightarrow V P$ PP
NP	V	DET	N	P	DET	N	
I	saw	the	man	th	the		pe

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

							$P \rightarrow$ DET N
							$P \rightarrow$ NP PP
							$P \rightarrow P N P$
							$P \rightarrow V N P$
							$\mathrm{P} \rightarrow \mathrm{VP}$ PP
NP	V	DET	N	P	DET	N	
1	saw	the	man	with	the	sco	NP

$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d} \quad r=(0.005,0.043, \ldots, 0.016)$

DISTRIBUTED CYK

Grammar:

$\langle\mathrm{t}, \mathrm{r}\rangle$
DET N
$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d} \quad r=(0.005,0.043, \ldots, 0.016)$

DISTRIBUTED CYK

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d} \quad r=(0.005,0.043, \ldots, 0.016)
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

							$P \rightarrow$ DET N
							$P \rightarrow$ NP PP
							$P \rightarrow P N P$
							$P \rightarrow V N P$
	VP						$P \rightarrow V P$ PP
		NP			NP		
NP	V	DET	N	P	DET	N	
I	saw	the	an	with	the	sco	pe

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d} \quad r_{1}=(0.005,0.043, \ldots, 0.016)$

DISTRIBUTED CYK

Grammar:

I saw the man with the telescope VP
$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
$V P \rightarrow V N P$
$V P \rightarrow V P P P$

DISTRIBUTED CYK

Grammar:

I saw the man with the telescope VP
$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
$V P \rightarrow V N P$
$V P \rightarrow V P P P$

DISTRIBUTED CYK

$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d} \quad r_{1}=(0.005,0.043, \ldots, 0.016)$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}$
$r_{2}=(0.001,0.008, \ldots, 0.024)$

DISTRIBUTED CYK

Grammar:

$\left\langle t, r_{2}\right\rangle$

$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}$
$r_{2}=(0.001,0.008, \ldots, 0.024)$

DISTRIBUTED CYK

Grammar:

	VP,VP	
		NP
S		

$S \rightarrow N P V P$
$N P \rightarrow$ DET N
$N P \rightarrow N P$ PP
$P P \rightarrow P N P$
VP \rightarrow V NP
$V P \rightarrow V P P P$
$\left\langle\mathrm{t}, \mathrm{r}_{2}\right\rangle$

$t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}$
$r_{2}=(0.001,0.008, \ldots, 0.024)$

DISTRIBUTED CYK

			$\begin{aligned} & \left\langle t_{1}, \mathrm{t}\right\rangle \\ & \left\langle\mathrm{t}_{2}, \mathrm{t}\right\rangle \end{aligned}$			$\begin{aligned} & \text { Grammar: } \\ & S \rightarrow N P \text { VP } \\ & N P \rightarrow D E T N \end{aligned}$
	VP,VP					$N P \rightarrow N P$ PP
		NP				$P P \rightarrow P N P$
S						$\mathrm{VP} \rightarrow \mathrm{VNP}$
	VP			PP		$V P \rightarrow V P P P$
		NP			NP	
NP	V	DET	N	P	DET	N
I	saw	the	man	with	the	scope

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

DISTRIBUTED CYK

Grammar:

$$
t \rightarrow t=(0.011,0.212, \ldots, 0.008) \in \mathbb{R}^{d}
$$

EXPERIMENTS AND RESULTS

EXPERIMENTS

Dataset

Wall Street Journal sections of PennTree Bank:

- Sections 1~23: Grammar extraction
- Section 24: testing

EXPERIMENTS

Experimental pipeline

EXPERIMENTS

Experimental pipeline

- Parse the dataset and binarize the trees

EXPERIMENTS

Experimental pipeline

- Parse the dataset and binarize the trees
- Extract grammar from training set
- The set of all rules in the grammar, no probabilities learned

EXPERIMENTS

Experimental pipeline

- Parse the dataset and binarize the trees
- Extract grammar from training set
- The set of all rules in the grammar, no probabilities learned
- On test set (1346 sentences):
- Compute the distributed vector t

EXPERIMENTS

Experimental pipeline

- Parse the dataset and binarize the trees
- Extract grammar from training set
- The set of all rules in the grammar, no probabilities learned
- On test set (1346 sentences):
- Compute the distributed vector t
- use t to parse the sentence

EXPERIMENTS

Experimental pipeline

- Parse the dataset and binarize the trees
- Extract grammar from training set
- The set of all rules in the grammar, no probabilities learned
- On test set (1346 sentences):
- Compute the distributed vector t
- use t to parse the sentence
- compare the result with the correct tree

PARAMETERS

Parameters

PARAMETERS

Parameters

- d: Dimension of the vector representation

PARAMETERS

Parameters

- d: Dimension of the vector representation
- k: number of partial trees kept in each cell
- we only report $k=2$

RESULTS

Results

- Number of exactly reconstructed trees;
- (Labelled) precision, recall and f-measure;

RESULTS

1024	2048	4096	8192	16384
23.5%	52.32%	75.58%	87.5%	92.79%

Table 1: Percentage of exactly reconstructed sentence

RESULTS

	1024	2048	4096	8192	16384
precision	0.71	0.85	0.951	0.99	0.994
recall	0.477	0.78	0.929	0.967	0.976
f-measure	0.57	0.81	0.939	0.974	0.984

Table 2: Precision, recall and F-measure

SUMMARY AND FUTURE WORK

SUMMARY

Summary

- We showed that distributed trees are able to reconstruct almost always the original symbolic tree

SUMMARY

Summary

- We showed that distributed trees are able to reconstruct almost always the original symbolic tree

Future work

- Expand the experimental setting:
- from CNF to general grammars

SUMMARY

Summary

- We showed that distributed trees are able to reconstruct almost always the original symbolic tree

Future work

- Expand the experimental setting:
- from CNF to general grammars
- Use the reconstruction method on other distributed representations

QUESTIONS?

