

EXTRACTING MUSIC FEATURES WITH MIDXLOG

Roberto Basili Alfredo Serafini Armando Stellato
AI Research Group,

Dept. of Computer Science,
Systems and Production

University of Roma, Tor Vergata
Via del Politecnico 1 00133

Rome (Italy)
basili@info.uniroma2.it

AI Research Group,
Dept. of Computer Science,

Systems and Production
University of Roma, Tor Vergata

Via del Politecnico 1 00133
Rome (Italy)

serafini@info.uniroma2.it

AI Research Group,
Dept. of Computer Science,

Systems and Production
University of Roma, Tor Vergata

Via del Politecnico 1 00133
Rome (Italy)

stellato@info.uniroma2.it

ABSTRACT
Every machine learning process must rely, first of all,
on a good collection of appropriate features from
examined data sets. Even before feature selection stages
and cascades of learning steps for creating complex
features may lead to the creation of proper decisional
spaces, the process of extracting basic features may
reveal to be a long and cumbersome task, which
depends on the nature of the examined information and
on the way it is represented. In this sense, obtaining
good and easy-to-use tools for examining collected data
may help researchers on focusing on what they need,
instead of dealing on how to get it. We present here our
approach in easing the extraction of features from
symbolic music notation, which led to the development
of MidXLog, a query language for MIDI files built on
top of the logic programming language Prolog. We
briefly introduce some of the characteristics of this
language, and then describe its use in processing MIDI
files to obtain an interesting range of features for the
MIREX challenge

Keywords: Query-Language for MIDI, Feature Space
Representation, Feature Extraction.

1 DEVELOPING MIDXLOG
After our first exploration on music genre recognition
[1], we felt the need for a tool, not only useful to ease
the feature extraction process, but also able to support
statistical analysis of MIDI data on the fly. We did not
just required indeed a tool, but a complete query
language over MIDI files.

Our approach has thus been oriented towards extend-
ing an existing language, which matched the following
requirements:
• be an interpreted language: on the fly querying of

MIDI files is a must for researcher performing ex-
tensive analysis of data. A compile–and–run ap-
proach is mostly suited for systems which already
know what to do, while the possibility of interact-
ing via console grants more possibilities during
domain analysis, testing and debugging.

• be a declarative language: language expressions
should be oriented as much as possible towards de-
scribing the results rather than explaining how to
get them

• be a Turing-complete language: the expressive
power of a Turing-complete language could help
not only properly in querying midi files, but also to
manipulate their content.

Our choice fell on the logic programming language
Prolog [3], as for its easy-handling capabilities for lists
and structures, proved to be a good basis upon which
developing our query language. We thus built on top of
Prolog a series of high-level primitives for querying
MIDI files, which, combined with standard logical
predicates, produced an easy-to-use and powerful query
language: MidXLog. Instead of adopting a dedicated
Prolog-driver for reading MIDI files, we developed a
translator from standard MIDI format to the MidiXML
format [2], using standard Java APIs for querying MIDI
events. When started over a given MIDI File, the
MidXLog interpreter thus calls the Java translator and
then loads the produced MidiXML document into
memory, as a complex structure representing MIDI
general data and lists of MIDI events.

We do not enter in details on all the characteristics
of the language, just limiting to mention the main gen-
eral filtering primitive, which assumes the following
form:
filter_events(F, Events, FiltEvents)
where Events is the list of MIDI Events, FiltEvents is
the list of Filtered Events and F may be a filter of the
form:
filter(FTYPE, Event)
where FTYPE may express different filters based on
time intervals, channels, tracks, Note On/Off etc…
and/or complex combinations of them.
The query-by-proof approach of Prolog helps in easily
redefining particular filters which are subject to specific
exceptions. For example, the semantics of a “Note Off”
may be expressed both through a real “NoteOff” event
than through a “NoteOn” event with Velocity=”0”. So,
while the generic filter(type(TYPE), Event) filters
events using TYPE as unique index, the specific call to
filter(type(“NoteOn”), Event) or filter(type(“NoteOff”),
Event) behaves differently according to the above con-
straint.

As an additional feature, it is possible to combine
different filters through logical operators AND, OR and
NOT so that, for example:
filter_events(((F;G),\+H), Evs, FEvs)

retrieves all the elements which satisfy filter F or G and
which do not satisfy filter H.

As mentioned above, filtering primitives may then
combined with list/set-based logical predicates and
math operators which are part of Prolog, to offer a
complete query language for MIDI.

2 FEATURE EXTRACTION
ARCHITECTURE FOR MIREX

Before extracting features, each MIDI file is subject to a
pre-processing phase in which some of the structures
which will be often reused during the feature extraction
step are generated. The motivations behind these
preprocessing phase can be roughly bring back to two
main concepts:
• normalization: different descriptions of the same

musical information (on quantitative and qualita-
tive grounds) must be projected in unique represen-
tational plane

• optimization: in this case, the information is simply
maintained as it is (or even reduced), but is trans-
lated in a new form which can reduce computa-
tional time for many of the queries needed in the
feature extraction phase.

In the following sections we present some of the pre-
processing steps which we adopted for our feature ex-
traction system.

2.1 Handling sections with different TimeSignature
And/Or KeySignature

For analysis of a certain kind, it is important to keep
track of the Time and Key Signature on the different
sections. To this end we preferred to separate, once for
all, the whole set of MIDI events in different sections
where the Time and Key Signature remain constant.

The output of this step is a sequence of structures of
the form:
(TimeSignature,KeySignature)-Section
where Section is the partition of the whole set of
events which is characterized by the given TimeSig-
nature and KeySignature, the value of which is
decided by the following heuristic:

If (“midiPiece contains only one KeySignature”
 AND
 KeySignature(time(0)) == 'C')
Then guessKeySignatures(midiPiece)
Else computeKeySignatures(midiPiece)

where both computeKeySignatures and guessKeySigna-
tures try to guess which is the harmonic tonal centre of
the piece basing on note distribution of pitched instru-
ments (patches 0-111 played on all channels apart from
10) and on other heuristics, with the sole difference that
computeKeySignatures takes the number of reported
fifths as a strong and reliable evidence for computing
the Key Signature, while guessKeySignatures is only
partially biased by the solution represented by C (or
Am) but must verify this conjecture over solid data veri-
fication. This approach is due to typical lack of reported
KeySignature, which is then exported by sequencers in

the form of a misleading value of 0 on MIDI piece’s
fifths value.

Guessing in advance the central tone of the piece is
crucial as we reported many of the note-related features
in terms of their relative grade (with reference to the
fundamental tone) instead of their absolute value.

2.2 Handling instrument sections

Due to different MIDI formatting styles which depends
on user habits and conventions, we often found
disturbing phenomena which fall in these two
categories:
• multiple tracks per same channel/instrument (e.g.

left/right hands tracks and/or channels used for
piano-like instruments, or many tracks per channel
10 used for separating drum instruments)

• multiple instruments on the same channel (e.g. in
line program changes) and vice versa (e.g. six-
channelled instruments, necessary choice when
playing guitar-synths).

For dealing with such phenomena, we almost com-
pletely ignored (except when it may reveal useful) the
concept of track, in favour of analysis based exclusively
on adopted:
• channels
• instruments played on those channels
We thus take account of program changes on the same
track as well as of cases where the same instrument is
played on two or more different tracks/channels, and
produce a list of entries like the following:
instr(Instr,InstrSectionDelimiters)
where Instr is a given instrument which is played
along the piece and InstrSectionDelimiters is
in turn a list of elements like:
StartTS-EndTS-ListOfChannels
reporting Timestamp intervals where the instrument is
played, and for every interval the list of channels
hosting notes for Instr.

To augment performance in the feature extraction
phase for channel based queries, this structure may also
be rewritten in terms of "sections of Time per Channel
wrt a list of selected instruments”, so that, for example,
the list of instruments’ related info:
[instr(32, [0-355200-[2]]), instr(0,
[0-177200-[3]]), instr(29, [0-1920-
[16], 143828-212984-[16], 281236-
355200-[16]]), instr(30, [74676-
143828-[16]]), instr(7, [177200-
355200-[3]])]
is converted into this new form:
[2-[0-355200], 16-[0-1920, 74676-
212984, 281236-355200], 3-[0-355200]]
which is notably easier to handle once a bunch of
instruments has been selected.

3 USE OF MIDXLOG FOR MIREX
MidXLog proved to be a much useful instrument for
inspecting musical data. The high level MIDI querying
specific query calls, together with Prolog built-in logical

and meta-logical predicates offered a whole range of
operational primitives combined with the more
declarative aspects of a proper query language.
Unfortunately its development initiated just before our
adhesion to the challenge, and this affected the number
of feature categories we were able to prepare for our
system. These are the features we examined:

Notes Distribution: The frequency with which each

note appears in the piece (every note is a set compre-
hending its different octaves, and is expressed as a rela-
tive grade wrt the fundamental tone, which is in turn
recalculated for every section of the piece with a stable
Key Signature). Note frequency is normalized wrt the
number of notes played for the whole piece on pitched
instruments. For pitched instruments we intend all
STANDARD MIDI instruments belonging to patches 0-
111, to avoid disturbs which could arise from percus-
sive instruments (patches 112-119) repeatedly played
on only a few notes along the piece and to exclude notes
played on SFX instruments (patches 119-127), the pitch
of which typically bears a low correlation with a piece's
tonal mood.

Drum instruments Distribution: Same as notes dis-
tribution for pitched instruments, but in this case notes
are not reported as a relative grade wrt the fundamental
tone, nor collapsed upon different octaves of the same
tone, as each different pitch represent a totally different
drum instrument.

Pitched/Percussive/SFX/Drums Percentage: Per-

centage of notes played by these classes of instruments.

Melodic Intervals: All the basic melodic intervals
(for each instrument) within an octave are considered
as a numeric feature: legal values indicate the relative
frequency for each different melodic interval within the
MIDI song.

Instruments (Single Instruments, Binary and
Weighted): The 128 patches of the General Standard
MIDI patch set surrogates the notion of instrument tim-
bres. We reported both binary vectors which were cal-
culated upon simple presence of the instrument in the
piece, and vectors compiled upon the normalized
weighted presence of Instruments/Instrument Classes,
in terms of played notes per instrument wrt total num-
ber of played notes on all considered instruments.

Instrument Classes and Drum-kits: Analogous vec-
tors of those for single instruments, but related to in-
strument classes. Each GSM patch is associated to ex-
actly one of the common sixteen different instrument
classes (i.e. Piano-like instruments, Strings, Synth
Pads, Brass and so on). For drums, we considered the 8
different drum-sets always associated with the MIDI
channel 10. The different instrument classes and drum
kits are here expressed both as boolean features and
weighted normalized features.

Tempo Related Features: such as:
§ number of tempo changes inside the piece

§ standard deviation of stable times (stable times are
times where the tempo remains unchanged). Times
have been left as they were and being normalized
wrt the length of the piece.

§ standard deviation of relevant stable times only
(relevant times exclude local and gradual tempo
changes, as for crescendo over time).

§ weighted mean time: mean time taken upon
weighted measures of tempo changes, based on
their stable time extensions

Time-Signature Related Features: such as:
§ number of TS changes inside the piece
§ standard deviation of stable times (stable times are

times where the TS remains unchanged). Times
have been left as they were and being normalized
wrt the length of the piece.

§ standard deviation of relevant stable times only
(relevant times exclude local TS changes, as for TS
patch bars).

§ Distribution of TS along the piece: distribution of
different TS along the piece, weighted over their
persistence in the piece. Several Time Signatures
have been considered as a possible feature, while a
generic “OthersTimeSignature” has been adopted
for weighting unknown TSs.

Key-Signature Related Features: such as:

§ number of KS changes inside the piece
§ standard deviation of stable times (stable times are

times where the KS remains unchanged). Times
have been left as they were and being normalized
wrt the length of the piece.

§ standard deviation of relevant stable times only
(relevant times exclude local KS changes, as for
certain kinds of modulations).

§ Distribution of KS along the piece: distribution of
different KS along the piece, weighted over their
presence (time) in the piece.

Pitch Wheel Related Features: This class of fea-

tures gives some more notion about playing style of the
music piece (synth-soloing, guitar bending etc…). For
this contest we limited our investigation to analyzing
which instruments exhibit a Pitch Wheel control during
their performance.

4 CONCLUSIONS
The final MIREX results are more than encouraging.
The two partecipating systems were based on standard
machine learning algorithms (Naïve-Bayes (NB) and
Decision trees) and no specific tuning on the MIREX
task has been carried on. Most of the effort has in fact
been spent on the development of the MidXLog-based
infrastructure (e.g. design and development of the
language itself, algorithms for feature matching in the
logical formalism adopted). As a result not much time
was available to extend the range and type of features
according to the target musical genres [4]. Nonetheless,
the NB classifier on the set of extracted features simpler
than other proposals ranked slightly below the best
overall system.

A first analysis could suggest that normalization of
MIDI data, handled during the preprocessing stages in

MidXLog, may have played a strong role in removing
some MIDI idiosyncrasies which may have been dan-
gerous. A relevant aspect is the relatively small number
of feature types (about 20) with respect to other propos-
als. In particular, some of these are novel, as far as we
know, in the literature. Extensive testing will be re-
quired to judge their individual quality and how they
impact on global performances if combined with al-
ready explored features (as in [4]). A further dimension
to explore is the learning algorithmics: for example, in
[1] we noticed that NB and decision trees were not al-
ways optimizing the classification accuracy. Alternative
learning methods ([5]) or an analysis of more complex
learning processes (e.g. stacking or voting among cas-
cades of classifiers) is thus also a future line of research
not explored in this work.

The statistics behind our score, and their comparison
with the best results of MIREX suggests that large mar-
gins for improvement exist. The overlap between the
two outcomes is rather low. In particular, our 55% ac-
curacy for recognition of the “classical” genre is
strongly under the 100% of the best reported result.
Notice how this task is easier according to some our
previous tests ([1]). On the other hand, some of our
100% accuracy are achived over very specific genres
(e.g. Ragtime). This is surprising as no specific feature
set has been designed targeted to those genres. These
discrepancies let us foresee possible improvements
when extension including features inspired by other
systems are applied. This would be a suitable outcome
from the MIREX panel discussion with the other par-
ticipants.

ACKNOWLEDGEMENTS
We would like to thank Stephen Downie and M.
Cameron Jones for all their support and patience during
the run of the contest experiments.

REFERENCES
[1] Basili R., Serafini A., Stellato A.: “Classification

of Musical Genre: A Machine Learning
Approach”. ISMIR 2004. 5th International
Conference on Music Information Retrieval,
Barcelona, Spain, October 13, 2004

[2] Good, M., “MusicXML: An Internet-Friendly
Format for Sheet Music”. In XML 2001
Conference Proceedings, Orlando, FL, December
9-14, 2001

[3] Kowalsky. R. Predicate logic as a programming
language. In Proceedings of the 1FlPS Conference
1974. North-Holland, Amsterdam, pp. 569-574

[4] McKay, C. 2004. Automatic genre classification of
MIDI recordings. M.A. Thesis. McGill University,
Canada.

[5] N. Cristianini, J. Shawe-Taylor, An Introduction to
Support Vector Machines and other Kernel-based
learning methods, Cambridge University Press,
2000.

