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Abstract. Control systems are small components that control the be-
havior of larger systems. In the last years, sophisticated controllers have
been widely used in the hardware/software embedded systems contained
in a growing number of everyday products and appliances. Therefore,
the problem of the automatic synthesis of controllers is extremely impor-
tant. To this aim, several techniques have been applied, like cell-to-cell
mapping, dynamic programming and, more recently, model checking. The
controllers generated using these techniques are typically numerical con-
trollers that, however, often have a huge size and not enough robustness.
In this paper we present an automatic iterative process, based on genetic
algorithms, that can be used to compress the huge information contained
in such numerical controllers into smaller and more robust fuzzy control
systems.

1 Introduction

Control systems (or, shortly, controllers) are small hardware/software compo-
nents that control the behavior of larger systems, the plants. A controller con-
tinuously analyzes the plant state (looking at its state variables) and possibly
adjusts some of its parameters (called control variables) to keep the system in a
condition called setpoint, which usually represents the normal or correct behav-
ior of the system.

In the last years, the use of sophisticated controllers has become very common
in robotics, critical systems and, in general, in the hardware/software embedded
systems contained in a growing number of everyday products and appliances.

Therefore, the problem of the automatic synthesis of control systems starting
from the plant model is extremely important. This problem is particulary diffi-
cult for non-linear systems, where the mathematical model of the plant is not
analytically tractable. To this aim, several techniques have been developed, based
on a more or less systematic exploration of the state space. One can mention,
among others, cell-to-cell mapping techniques [1] and dynamic programming [2].
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Recently, model checking techniques have also been applied [3, 4] in the field
of automatic controller generation. In particular, this approach can be actually
considered as a planning technique. Indeed, a model checking-based controller
generator does not simply look for good local actions towards the setpoint, but
searches for the best possible sequence of actions to bring the plant to the set-
point. Therefore, with this technique it is possible to find an optimal solution to
the control problem.

The controllers generated using all these techniques are typically numerical
controllers, i.e. tables indexed by the plant states, whose entries are commands
for the plant. These commands are used to set the control variables in order to
reach the setpoint from the corresponding states. Namely, when the controller
reads a state from the plant, it looks up the action described in the associated
table entry and sends it to the plant. However, this kind of controllers can present
two main problems.

The first problem is the size of the table, which for complex systems may
contain millions of entries, since it should be embedded in the control system
hardware that is usually very limited.

The second problem is the controller robustness. A controller is robust if it is
able to handle all the possible plant states. Due to approximation of continuous
variables, plants unavoidably present states that are not known to the controller,
although they may be more or less close to some states in the table. In numerical
controllers this problem is typically handled by interpolation techniques (e.g.,
see [2]). However, interpolation does not always work well [1]: table based control
may also give a bumpy response as the controller jumps from one table value to
another. Therefore, other approaches have been proposed (e.g. see [5, 6]).

A natural solution to these problems is to derive, from the huge numerical
information contained in the table, a small fuzzy control system. This solution
is natural since fuzzy rules are very flexible and can be adapted to cope with
any kind of system. Moreover, there are a number of well-established techniques
to guide the choice of fuzzy rules by statistical considerations, such as in Kosko
space clustering method [7], or by abstracting them from a neural network [8].
In particular, the approach that we have adopted in the present paper is inspired
by [1]. However, there are several substantial differences.

The crucial point is of course the algorithm to extract the fuzzy rules from the
numerical controller table. We used genetic algorithms [9]. This choice is based
on the following considerations:
– genetic algorithms are suitable to cope with very large state spaces [9]; this

is particularly important when the starting point is the huge table generated
by model checking techniques;

– the crossover mechanism ensures a fair average behavior of the system,
avoiding irregularities;

– the fitness function, which is the core of any genetic algorithm, can be ob-
tained in a rather direct way from the control table of the numerical con-
troller;

– the genome coding can also be derived from the structure of the sought-for
fuzzy system.
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Therefore, the process is almost automatic. Only a few parameters, such as
the number of fuzzy sets, have to be determined by hand. However, also the
choice of such parameters can be automatized or at least supported by an au-
tomatic process. Indeed, the correctness of the resulting fuzzy controller can be
verified [10], so in case of a poor behavior the parameters are changed and the
process restarted. This automatic loop is stopped when the right values for the
parameters are detected. Of course [11], it is possible that no such values ex-
ist, that is the system is so complex that the controller table turns out to be
incompressible.

The paper is organized as follows. In Section 2 we present the numerical con-
trol systems and we summarize the methods for their synthesis, while in Section
3 we describe the fuzzy control systems. In Section 4 we give an overview of
genetic algorithms and in section 5 we describe how we use them to automat-
ically synthesize fuzzy controllers. In Section 6 we present a case study and
experimental results. Section 7 concludes the paper.

2 Numerical Control Systems

As mentioned in the Introduction, a numerical controller is a table, indexed by
the plant states, whose entries are commands for the plant.

The use of such kind of controller is very suitable (and often necessary) to
cope with non-linear systems, which have a dynamics too complex to allow an
analytical treatment [3, 4]. On the other hand, the table size of a numerical
controller could be huge, especially when we are interested in the efficiency of
controller and thus we use a high precision. In these cases, we could have ta-
bles containing millions of state-action pairs and if we are working with small
embedded systems, the table size could be a potential issue.

2.1 Numerical Control System Synthesis

There are a number of well-established techniques for the synthesis of numer-
ical control systems. For short, we mention only three of them: (1) dynamic
programming, (2) cell mapping and (3) model checking.

The classical dynamic programming approach for the synthesis of controllers
of a plant P (see [2] for details) is based on an optimal cost function J defined
as follows:

J(x) =def inf
u

[
∞∑

t=0

l(f(x, ut), ut) ] (1)

where f(x, u) is the continuous dynamics of the plant, l(x, u) is a continuous,
positive definite cost function and u stands for a generic control sequence: u =
{u0, u1, u2, . . .}.

J is well defined (i.e. the infimum always exists in the region of interest) if
and only if the plant P is controllable. So, assuming that J is well defined, then
it satisfies the so-called Bellman Equation:
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J(x) = inf
u

[l(x, u) + J(f(x, u))] (2)

and it can be computed by the following iterative method:

JT+1(x) = infu[l(x, u) + JT (f(x, u))]
J0 =def 0, T ∈ Z+

0
(3)

In the cell mapping method [1], the trajectories (i.e. sequences of state-control
pairs) in the continuous space are converted to trajectories in the discrete cell
state space. The discrete cells have rectangular shape and each point of the
continuous space is represented with the center of the cell containing the point
itself. Then, the dynamic f(x, u) of the plant is transformed into a dynamic
fC in the discrete cell space. The image of a cell under fC , can be determined
as follows: for a given cell z(k), first find the coordinates of its center x(k).
Under control action u, x(k +1) is determined as the image of x(k) by the plant
dynamic, that is x(k + 1) = f(x(k), u). If the cell corresponding to the point
x(k+1) is z(k+1), then z(k+1) is the image cell of the cell z(k) and the control
action u, that is we put fC(z(k), u) = z(k + 1).

Finally, we recall how model checking techniques can be applied for the syn-
thesis of controllers. This kind of methodology allows to automatically synthesize
optimal controllers starting from the plant description [3, 4]. The main idea is
that, in order to build a controller for a plant P , a suitable discretization of the
state space of P is considered, as well as of the control actions u.

The plant behavior, under the (discretized) control actions, gives rise to a
transition graph G, where the nodes are the reachable states and a transition
between two nodes models an allowed control action between the corresponding
states. In this setting, the problem of designing the optimal controller reduces to
finding the minimum path in G between each state and the nearest goal state (a
discretization of the setpoint). Clearly, a transition graph for complex, real-world
systems could be often huge, due to the well-known state explosion problem.
However, model checking techniques developed in the last decades have shown
to be able to deal with very huge state spaces. In particular, in [3, 4] a model
checking based methodology for the automatic synthesis of optimal controllers is
presented, and it is also shown that the methodology can cope with very complex
systems (e.g. the truck-trailer obstacles avoidance parking problem). Finally, the
methodology presented in [3, 4] has been implemented in the CGMurphi tool [12]
that, given a model of the plant, automatically generates a controller.

Note that, in the case study of this paper, we consider the numerical controller
generated with the CGMurphi tool.

3 Fuzzy Control Systems

Fuzzy logic derives from the fuzzy set theory and is used to deal with approx-
imate reasoning. In the fuzzy set theory, the set membership is expressed by a
number usually ranging from 0 to 1, indicating different “membership degrees”.
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In other words, an element may have a partial membership in many different
(and disjoint) fuzzy sets.

In the same way, in the fuzzy logic there are several degrees of truth and
falsehood, and a fuzzy logic statement may be at the same time partially true
and partially false. Indeed, there may be several conflicting fuzzy logic statements
that are satisfied by the same conditions with a different “degree of truth”.

As a typical application, fuzzy logic is used to deal with systems described by
continuous variables (e.g., physical systems), where the density of the domain
and the consequent approximation problems make it difficult to express the
certainty required by the classical logic. Therefore, fuzzy logic is very suitable
to be applied in the control theory, especially when dealing with hybrid systems,
where the plant state is characterized by both continuous and discrete variables,
and in general systems that are subject to control and actuation errors (e.g.,
mechanical systems) too complex to allow an analytical treatment [13].

Fuzzy control systems (FCS in the following) are based on qualitative fuzzy
rules which have the form “if condition then control action”, where both con-
dition and control action are formulated making use of the so called “linguistic
variables”, which have a qualitative, non mathematical character [14].

In a FCS, the crisp input variables read from the plant state are mapped
into the ”linguistic variables” through the fuzzification process. The input vari-
ables’ domains are divided in (possibly overlapping) subranges, and particular
(fuzzy) membership functions are used to determine the degree of membership
of each variable to all the subranges of the corresponding domain. Then, the
controller makes its decision using the fuzzy rules on the fuzzified input values,
and generates a set of fuzzy values for the output (control) variables, that are
then converted back into crisp values and sent to the plant.

FCS are very effective in handling “uncertain” or “partially known” situations,
and therefore may be used to build very robust controllers for such kind of
complex systems. Moreover, FCS are well suited to low-cost implementations
based on limited devices, since the fuzzy knowledge representation is usually very
compact. Note that, in many cases, FCS can also be used to improve existing
controller systems, for example by adding an extra layer of intelligence and
robustness to the control algorithm.

The design of a FCS is usually accomplished by “translating” into fuzzy sets
and inference rules the knowledge derived from human experts or mathematical
models. Unfortunately, this process may be often difficult and error-prone. From
this point of view, designing an effective controller at a reasonable cost is the
real problem to deal with in the FCS field.

To this aim, different approaches have been studied to automatically generate
a FCS by analyzing the plant specifications and/or behavior. As shown in [1], a
FCS can be also generated from a numerical controller. These approaches are all
based on some kind of automatic statistical analysis, which can be done using
various techniques, including neural networks and genetic algorithms [15, 16, 17,
11]. In the present paper, we use genetic algorithms.
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4 Genetic Algorithms

Genetic algorithms (GA) are used to find approximate solutions to optimization
and search problems, using techniques inspired by evolutionary biology such as
inheritance, mutation, selection, and crossover [9].

Generally speaking, in a GA a population of abstract representations of pos-
sible solutions (individuals) to a problem evolves to find better solutions. The
information carried by each individual is called genome. The evolution develops
through a sequence of steps (generations), usually starting from a population
of randomly generated individuals. In each generation, the algorithm estimates
the fitness of every individual in the population, which represents the quality of
the problem solution encoded in its genome. If an individual fitness reaches the
given threshold, the evolution ends and the corresponding solution is returned.
Otherwise, some individuals are probabilistically selected from the current pop-
ulation, so that the higher is the their fitness, the higher is the probability of
being selected. The genomes are recombined and possibly mutated to form the
population of the next generation.

Therefore, a typical genetic algorithm requires a minimal startup informa-
tion: a representation of the solution domain in terms of genomes and a fitness
(quality) function of the solution domain

Note that no initialization data is usually required, and this makes GA very
suitable for problems having no known approximate solutions.

GAs are often able to quickly locate good solutions, even in difficult search
spaces. Moreover, such algorithms are very suitable to search irregular solution
spaces, since they do not usually get trapped by local optima.

Therefore, GA may be a very effective good tool to automatically synthe-
size FCS. However, as with all machine learning processes, many parameters of
a GA should be tuned to improve the overall efficiency. These parameters in-
clude the population size and the mutation/crossover probabilities. Moreover, a
good implementation of the fitness function considerably affects the speed and
efficiency of the algorithm. Due to the difficulty of tuning such parameters by
hand, some systematic process of trial-and-error should be used, as mentioned
in the Introduction. We plan to consider this aspect in a future work.

5 GA for Automatic Synthesis of the FCS

Many works in the literature use GA to generate part of a FCS. Usually, GA are
applied to generate membership functions when inference rules are known [11].
However, when the system under control has several control variables and/or a
complex dynamics, deciding the control setting to obtain a desired result may
be difficult, even when working with the probabilistic approximation of fuzzy
values. Therefore, an effective FCS generator should create both membership
functions and inference rules.

The concrete implementation of the fitness function is determined by the kind
of FCS that the GA should generate. Indeed, we may want to
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1. create a FCS for the entire plant completely from scratch, or
2. create one or more FCS to assist a pre-existing plant controller in certain

critical situations, or
3. create one or more FCS to encode the complete knowledge of a pre-existing

controller.

The first task is very difficult to accomplish in a general setting, whereas the
second and third are usually applied to add robustness to a given controller.
The third kind of FCS has a further advantage: besides building a more robust
controller, it may act as a controller compressor. Indeed, the knowledge encoding
given by a FCS can greatly decrease the amount of memory needed to store the
controller.

Moreover, in the first two cases above a plant simulator is needed to check
the fitness of the generated FCS, whereas in the third case the fitness function
can be simply derived from the the original controller.

Therefore, in the following we will discuss how GA can act on a numerical
controller to transform it in a compact and robust FCS.

5.1 Implementation

To make the process almost automatic we have made some simplifications. In
particular, we have supposed that the membership function is always triangular
and it is coded by the position of its vertices. So, each fuzzy set is represented
by 3 bytes as shown in Fig. 1.

Fig. 1. Fuzzy sets and rules coding

As usual, a matrix codes the structure of the fuzzy rules [11] . An example is
shown in Fig. 1.

The fuzzy sets and the fuzzy rules, encoded as described above, form the
genome of any individual of the population, as shown in Fig. 2, where MF1. . .
MF7 are the membership functions of a FCS.

Therefore, each individual of the population is a complete FCS. The individu-
als forming the first generation have a random initialization. Finally, the fitness
function is defined as follows.
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Fig. 2. Genome of an individual of the population

First we partition the plant state space into smaller regions to make the
learning process easier. In the following, by numerical controller we mean the
numerical controller restricted to a given region R. Given a starting point p in
R, we require the individuals to completely learn the trajectory of the numerical
controller starting from p. To this aim, the fitness function is defined to be the
distance between the trajectory generated by the individual and the trajectory
stored in the numerical controller.

We repeat the GA for a sample set of points p1, ..., pk ∈ R, generating k FCSs,
F1, ..., Fk, where each Fi is able to drive the system from pi to the setpoint. Then
we analyze the capability of each Fi to perform well on the other points of R,
and select the one who is able to drive all points of R to the setpoint in the most
efficient way. If no one is able to cope with all points of the region, we can restart
the process with other points. After a given number of negative outcomes, we
conclude that the region R is too large to be compressed in the space given
by the genome. Then, we may either split the region into smaller subregions or
augment the number of fuzzy sets and fuzzy rules (so each individual can store
more information), and restart the process.

Fig. 3. The genome representation in GAlib

To support the development of our GA technique, we used Galib, an efficient
multiplatform open source library containing a set of C++ objects that imple-
ment several different kinds of genetic algorithms and genetic operations [18].

The GAlib library defines the main components of the genetic algorithm, but
allows to freely choose the genome representation that best fits the problem
to solve. In our case, the genome should contain the knowledge base of a fuzzy
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controller. In particular, we implemented our genome representation using the
built-in Galib GAAlleleSetArray class. Each element of this array is a
GAAlleleSet which represents the (range of) possible different values of a spe-
cific gene.

As an example, in the car parking fuzzy controller described in Section 6 we
used four different kinds of GAAlleleSet: three to encode the membership func-
tions (two input variables and one output variable), and one to encode the fuzzy
rules. Each kind of GAAlleleSet define a specific range of values (see Fig. 3).
The complete genome is a GAAlleleSetArray containing the genes required to
encode the fuzzy sets of each variable (3nx + 3ny + 3no genes, where nx, ny and
no are the number of fuzzy sets for variables x, y and o, respectively) and the
fuzzy rules (nr genes). Each group of genes is created from the corresponding
GAAlleleSet.

Finally, GAlib allows to define a fitness function and a terminator function.
The latter is used to specify the terminating condition of the GA, which may
be, e.g., a particular value of fitness.

6 A Case Study: The Car Parking Problem

To prove the effectiveness of our approach, in this section we show how it can be
applied to the well-known car parking problem. After describing the problem set-
ting, we consider the optimal control system generated with the CGMurphi tool,
and finally we present experimental results related to the automatic synthesis of
a fuzzy controller that compresses the optimal one.

6.1 Problem Definition

In the car parking problem, the goal is backing a car up to a parking place
starting from any initial position in the parking lot [10, 7]. As shown in Fig. 4,
we describe the car state with three real values:

– the abscissa and the ordinate of the car x, y ∈ [0, 12], referred to the center
of the rear wheels;

– the angle ϕ ∈ [−90◦, 270◦] of the longitudinal axis of the car w.r.t. the
horizontal axis of the coordinate system.

The objective is to move the car to a final position satisfying x = 6, ϕ = 90◦.
Note that, as in [7], we have no restrictions on the y coordinate, since we assume
the initial position to be sufficiently far away from the parking place: if the final
x position is reached, to move the car to the parking place it is sufficient to drive
back without steering the wheels.

A controller for the car parking problem takes as input the car position and
outputs a suitable steering wheels angle θ ∈ [−30◦, 30◦].
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Fig. 4. The simulated car and parking lot

6.2 Experimental Setting and Results

To synthesize the FCS for the car-parking problem, we first partition the state
space as follows:

– the abscissa and the ordinate of the car x, y ∈ [0, 12], are partitioned into 4
regions: [3i, 3(i + 1)] × [0, 12], i = 0, . . . , 3;

– the angle ϕ of the longitudinal axis is partitioned into 8 adjacent regions of
45 degrees.

Therefore, the state space is partitioned into 32 regions. In each region Ri, we
sample 10 points p1, . . . , p10 and use the GA to synthesize a FCS for each point,
using the following algorithm.

Given a starting point pi, the task of any individual is to learn the set of
control actions, stored in the numerical controller generated by the CGMurphi
tool, which drives the car from pi to the parking position. Recall that each
individual codes a complete FCS. The fitness of a FCS is obtained by summing
up the modula of the distances between the numerical controller actions and the
corresponding fuzzy controller actions on the same trajectory. Therefore, the
population evolution terminates when the fitness of some individual is zero (i.e.,
the FCS acts exactly as the numerical controller).

More formally, the evolution process has the following steps:

1. get from the controller table the trajectory from the stating point pi to the
goal; let this trajectory be composed of k +1 positions pi1, . . . , pik+1 and let
r1, . . . , rk be the corresponding control actions;

2. WHILE (fitness > 0)
(a) run the genetic algorithm to synthesize the fuzzy controller S;
(b) determine the action r′j of S in each position pij ;

(c) calculate the fitness function: fitness =
�k

j=1(||rj−r′
j ||)

k ;

The outcome of the previous process is, for each region Ri, a set of 10 FCS
F1,i, . . . , F10,i. Between these, we select the FCS that is able to drive the car to
the parking position starting from any point in Ri.

To evaluate the performance of the FCS, we have considered all the trajecto-
ries starting from each state in the optimal controller table and we have compared
the number of steps required to reach the setpoint.
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Table 1 shows experimental results of comparison. Note that the FCS is able to
cope with a larger number of states, and this proves the improvement in terms
of robustness. On the other hand, the FCS performs worse than the optimal
one with a degrade of 100%, but however this is an expected result since the
CGMurphi-based controller has a tabular representation of optimal trajectories.

Moreover, Table 1 shows that with the FCS we obtain a compression of 90%
in terms of memory occupation.

Table 1. Experimental comparison between fuzzy and optimal controller performance

Control Number of Average Number of Memory
System Controlled States Steps to Setpoint Occupation

FCS 46128 7.568 36608 bytes

CGMurphi 38256 3.614 382560 bytes

7 Conclusions

In this paper we have shown a genetic approach to the automatic generation of
fuzzy control systems from preexisting numerical controllers.

Our methodology splits the problem state space in smaller ranges and iter-
atively uses a GA to synthesize a restricted FCS for each area. The fitness of
a FCS is evaluated by comparing its behavior with the one of the numerical
controller. The resulting controllers have an average size that is 1/10 of the
corresponding numerical controllers, thus achieving a considerable compression
ratio. Moreover, the FCS are inherently more robust than the numerical coun-
terparts, so they actually encode a larger state space using a smaller memory
size.

As a natural next step, we are studying how to merge the FCSs generated
through our methodology in a single FCS that could be used to drive the system
to the setpoint from any position of the state space. We feel that this merge
could result in a further compression, since there may be knowledge redundancy
between the single FCSs. Moreover, we are interested in finding algorithms for
dynamically tuning the GA parameters (e.g., crossover and mutation ratio) in
order to speed up the algorithm convergence.
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