
CONGAS: a COllaborative ontology development

framework based on Named GrAphS

Daniele Bagni, Marco Cappella, Maria Teresa Pazienza, Armando Stellato

ART Group, Dept. of Computer Science, Systems and Production
University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy
{ daniele.bagni, marco.cappella }@gmail.com

{ pazienza, stellato }@info.uniroma2.it

Abstract. The process of ontology development involves a range of skills and
know-how often requiring team work of different people, each of them with his
own way of contributing to the definition and formalization of the domain
representation. For this reason, collaborative development is an important

feature for ontology editing tools, and should take into account the different
characteristics of team participants, provide them with a dedicated working
environment allowing to express their ideas and creativity, still protecting
integrity of the shared work. In this paper we present CONGAS, a collaborative
version of the Knowledge Management and Acquisition platform Semantic
Turkey which, exploiting the potentialities brought by recent introduction of
context management into RDF triple graphs, offers a collaborative environment
where proposals for ontology evolution can emerge and coexist, be evaluated

by team users, trusted across different perspectives and eventually converged
into the main development stream.

1. Introduction

The process of ontology development requires different skills and know-how, such as

a deep understanding of the domain to be represented and proper expertise in domain

modeling, which rarely can be found in one single person. Moreover, assessing the

knowledge structure of an ontology typically involves different refinement steps,

personal rethinking and discussion. For this reason, even the realization of medium-
size ontologies often requires the collaboration of several experts, each of them

bringing their own knowledge and skills towards the development of a consistent,

hopefully stable, and potentially reusable domain representation.

As a natural consequence for the fact, and thanks to the maturity now reached by

ontology development tools and to the proliferation of collaborative solutions brought

by the advent of Web 2.0, we have seen in the last years an emerging interest in the

research community towards the identification of requirements [1,2] and the proposal

of innovative solutions [3,4,5] for collaborative development of ontologies.

The requirements and features which have emerged in these works mainly address

the integration of tools supporting communication and discussion among users, the

resolution of issues related to concurrent editing, and the definition of standard access

2 Daniele Bagni, Marco Cappella, Maria Teresa Pazienza, Armando Stellato

control and contribution modalities. What lacks thereof is the ability for users to go

beyond simple discussion or voting about round-the-corner ontology modifications, to

follow or even create arbitrary evolution paths for the ontologies they are working on.

In our research work, we have tried to propose a novel approach to collaborative

ontology development which would fill the above gap, by accounting the effort and

results of the Semantic Web Interest Group on Named Graphs [6], and by exploiting

the possibilities offered by their introduction.

In our approach, ontological knowledge is distributed across different contexts
(identified by diverse named graphs), which identify the branched workspace of team

members as well as the main development trunk shared by all of them. Users can thus

freely work in their personal context (which is given by the merge of the named graph

assigned to them and of the main development trunk), but can also inspect other

contexts, access their content, and trust (part of) the statements contained there, thus

virtually importing them into their context. This poses unlimited possibilities to the

creativity of each single team member, who can bring his work ahead and lately have

it discussed through traditional communication gadgets or even implicitly promoted

as he finds other users accepting and trusting his proposals.

Thanks to the introduction of Named Graphs into a few of the currently available

triple store technologies, such as Jena [7] (through the NG4J [8] library extension),

and Sesame 2.0 [9], we have also been able to develop and present here CONGAS, a
novel system for collaborative editing of Semantic Web ontologies, which has been

developed as a parallel collaborative version of the Knowledge Management and

Acquisition platform Semantic Turkey [10].

2. Related Works

The first published result on Named Graphs dates back to the work of Carroll et al.

[11], though other works have addressed the problem of data provenance and locality

in the years before [12,13]. The introduction of Named Graphs has been a necessary

step for the Semantic Web, their ability to express meta-information about RDF

graphs is an important ingredient for addressing a range of its important requirements,

such as Data syndication, Information Access, RDF Signature [14] and Trust [15],

expressing propositional attitudes [16], scoping assertions and logic and managing

ontology versioning and evolution. All of the above mainly account for one necessity:

the ability to track provenance of single graphs merged into compound RDF

repositories.
To our knowledge, no collaborative environment for development of knowledge

graphs of the RDF family has widely exploited Named Graphs support, to introduce

user spaces. There are however other aspects of collaborative ontology development

which have been evidenced and widely experimented in several works. We mention a

few of them according to their specific contributions:

- Wiki adoption: [17] and [18] offer ontology development collaborative

environments based on (modified versions of) wiki platforms. Both of them do
not address the general target of ontology development, and are respectively

CONGAS: a COllaborative ontology development framework based on Named GrAphS 3

oriented towards Enterprise Modeling and acquiring consensus over the

definition of reusable Ontology Design Patterns [19]

- Ontology modularization: the Hozo ontology editor [3] enables asynchronous

development of ontologies that are subdivided into multiple inter-connected

modules. A developer checks out and locks a specific module, edits it locally,

and then checks it back in. Each module are however still owned by all team

members, thus limiting the freedom of action and rapid drafting of new ontology

branches

- Methodology: The Cicero tool [20] implements the DILIGENT [21]

methodology to for collaborative ontology development. The DILIGENT

methodology focuses on the process of argumentation, thus supporting the

generation of discussions about ontology maturing, both in general as well as for

specific resources

- Models: in [22] the authors present an ontology supporting the definition of

requirements for collaborative ontology development, while in [23] an

workflow ontology can be used to describe different kind of workflows for the

same task (they also experimented their model in expressing the DILIGENT

methodology cited above).

- Full integration into complete ontology development tools: in [5], an extension
for the popular Knowledge Management and Acquisition tool Protégé [24] is

presented, perfectly integrating several contradistinguish features for

collaborative ontology development, into the base tool (and thus beneficiating of

all of its traditional editing facilities): these include user management, enabling

discussions/annotations, workflow support (through the workflow ontology

cited above) and synchronous/asynchronous editing of available data.

3. True Collaboration through Interwoven Ontology User Spaces

The objective which has been targeted in the design of CONGAS was to develop a

completely new stereotype of collaboration, in which users could discuss, reject or

approve modifications to existing ontology resources (from very common ontological

axioms, such as classification and is-a organization, to detailed triple level analysis)

as well as (and this is the novelty with respect to existing tools and methodologies)

create and propose entirely new ontology branches, which can then be aligned/merged

to the core ontology.
In our model, each user is assigned his dedicated user space, and can develop new

extensions for the edited ontology without the need to propose them step-by-step on

the main development trunk, nor the risk of a totally unrestricted editing, resulting in

the production of noisy data which could be entropic for other users and thus for the

whole collaborative process. By default, each user is able to view in his space the

main development trunk and an ontology branch associated to him. The user has full

read/write privileges over his personal development branch, while he can only

propose changes to the main trunk and discuss them through ordinary

argumentation/voting mechanisms (forum, polls etcé). Note that this limitation over

the main trunk is confined to what is actually translated into deletion of triples (due to

4 Daniele Bagni, Marco Cappella, Maria Teresa Pazienza, Armando Stellato

the monotonic discipline of RDF [25]), but addition of axioms referring to resources

in the main trunk can be handled through the user space; for example, if the user is

willing to add a rdfs:subClassOf relationship between two classes (namely: main:A
and main:B) belonging to the main trunk, this is not considered a modification, since

it involves the sole creation of the triple:

main:A rdfs:subClassOf main:B

which can thus be stored in his personal ontology branch (that is, in his user space).

The component which is in charge of projecting the set of triples governed by the

rdfs:subClassOf predicate into a tree visualization of ontology classes, will take into

account this triple and show the tree accordingly, with class main:A arranged under

class main:B.
What thus happens is that different users could even participate in suggesting

changes to the main trunk (which is considered frozen) while they can freely

contribute to the evolution of the ontology taking their way on extending the set of

resources and their related axioms. User spaces, though assigned on a per-user basis

and granting write-privileges only to their owner, can however be browsed by other

users (see Fig. 1, where concepts and instances created by team members, and

associated to them by different colors, are browsed by current user): the content of

each space can be exported to the spaces of other users who decide to trust it and add

it to their respective evolution branch. This way, it is easy for new knowledge to be

Fig. 1 A user viewing ontology contributions proposed by other team members

CONGAS: a COllaborative ontology development framework based on Named GrAphS 5

produced by independent users, discussion is supported by forums/polls (which are

also enabled for foreign user spaces), while convergence of the result is assured by the

trust&import mechanism which allows several users to quickly share (portions of)

proposed branches and thus promote them for the next main trunk release. Seen from

the perspective of the triple store engine, the RDF repository is an aggregation of:

- several named graphs, representing foreign ontologies (which can only be
accessed with read privileges by all kind of users) imported by the main trunk

- a core graph, containing data from the frozen main trunk. It is accessible by all

users, and it is read-only for all standard users, though granting write

permissions to ontology administrators

- a set of named graphs associated to user spaces. Each of them can be inspected

by all users, has write permissions only for the owner of the space (though it can

be entirely removed, but not modified, by ontology administrators)

- a set of named graphs associated to foreign ontologies imported by development

branches from user spaces.

Management of ontologies to be visualized for each user is done by first importing all

the first three set of graphs from the above list. Then, the list of owl:imports
statements for the user development branch is inspected, and all named graphs from

the fourth set which is cited in the object of these statements is added to the

ontologies to be visualized for that user.

4. The Hosting Application: Semantic Turkey

CONGAS has been developed on top of Semantic Turkey (ST, from now on), a

Knowledge Management and Acquisition System realized by the ART group of the

University of Rome, Tor Vergata.

Developed as a Web Browser extension (available for the popular Web Browser

Firefox), Semantic Turkey aims at reducing the impedance mismatch between domain

experts and knowledge investigators on the one side, and knowledge engineers on the

other, by providing them with a unifying platform for acquiring, building up,

reorganizing and refining knowledge. Semantic Turkey offers in fact traditional menu

options for ontology development, but it is also able to react to a range of several

intuitive actions (such as dragônôdropping objects ï text in the standard version ï from

the web page to the ontology panels) with contextual outcomes (i.e. similar gestures

may result in even long sequences of ontology modifications which depend on the
kind of object dragged from the Web Page, on the type of resource where it is dragged

etcé). ST deeper interaction with Web content is not only limited to the possibility of

importing text and other sorts of media from Web Pages; it also features an extension

mechanism which covers all of its aspects and technologies: from user interaction,

through its UI extension points linked to the same Mozilla Extension mechanism

which is at the base of its hosting web browser, to knowledge management and

persistence (thorough standard OSGi service extendibility).

In realizing CONGAS, we have first examined the different possibilities which

were available for converting the system into a distributed environment. These

aspects will be discussed in the next section.

6 Daniele Bagni, Marco Cappella, Maria Teresa Pazienza, Armando Stellato

5. Architecture

For economy of space, we will limit ourselves here to describe those architectural

changes in Semantic Turkey which have been introduced to realize its collaborative

version CONGAS. For a detailed description of Semantic Turkey architecture and

knowledge model, the reader may refer to [10], while [26] contains relevant updates

related to the extension mechanism.

Semantic Turkey architecture is organized around a three-tier layering, with the
presentation layer embodying the true Firefox extension and the other two layers built

around java technologies for managing the business logic and data access.

Both the two interlayer interfaces could be, in principle, be separated in a

distributed environment (http communication is already adopted between the

presentation and middle layer, and data access interface can easily be implemented

towards remote RDF repositories) so, when thinking about needed reengineering of

this architecture for porting ST to a collaborative framework, we faced the following

possibilities:

- Centralizing the sole Persistence layer and realize collaborative client
applications with a rewritten business logic to support transaction based

communication with the RDF service.

- Keeping the presentation layer for client applications, and move both server and

persistency on the centralized collaborative server

- Split the middle layer into two components, one which is bundled with client

applications and provides the required business logic for their operations, and

the other one which coordinates collaboration between clients and manages all

related services

The first one has been discarded, since it would have produced nothing more than a

user interface for transaction-based knowledge repositories. The third option would

have proven to be the best solution, though one consideration about client technology

made us leaning towards the second one: what is reported as the presentation layer in

ST architecture, is actually represented by the whole array of technologies supporting

browser extendibility. For example, with respect to the current implementation

available for Firefox, an extension of the JavaScript language is adopted to support

business logic of extensions to be developed; it can thus be used to handle the

minimal support required by user interaction, while demanding to the collaborative

server most of the necessary computation. Analogous technologies satisfying the
minimal computation requirements of user interaction are expected to be found for all

classes of browsers, thus not invalidating the architecture on its own.

5.1. Coordination and Synchronization

Coordination between users is important in a collaborative environment, as well as

keeping sync between what they see while editing the ontology, and changes to the
model which can have been submitted by other users.

A refresh button is present in each client, which has the double function of

activating (when depressed) a complete refresh of the graphic view over the ontology

CONGAS: a COllaborative ontology development framework based on Named GrAphS 7

and of alerting (by blinking) users when a change has been made by another team

member. A log of changes to the whole ontology repository is also available, so that

the user can account for these changes in case they generate some conflict with or

provide useful input for the work he is doing.

The process of convergence towards a shared evolution for the ontology (i.e.

freezing proposed changes in the development trunk) is activated through different

triggering events: roughly divided as implicit triggers (e.g., when a certain percentage

of team members has reached consensus over a resource/statement, that is, is trusting,
and thus importing, the given resource/statement in its user space) and explicit ones

(e.g., by explicit approval, through argumentation services such as polls and forums,

see next section for details).

Access management divides users according to three main categories:

- Viewers who can access the ontology, view resources, and comment or vote on

the choices made (this role is usually assigned to domain experts). Those users,

then, can "look and speak"

- Users: in addition to the rights of viewers, they own a dedicated user space, so
that they can "look, speak, and propose".

- Administrators. An administrator has all the rights of a user, but it is also able to

modify the main development trunk, as well as provide other coordination

activity such as moderating forums and accepting proposals. Thus, an

administrator can ñlook, speak, propose and validate ".

Finally, a simple versioning system allows administrators to freeze snapshots of

developed ontologies at a certain time and store them with an assigned tag (usually, a
version number). A version manager enables then users to retrieve them and inspect

their content.

5.2. Services

In building CONGAS, we have tried to integrate several features and tools supporting

collaborative development, together with the concept of user space and model

trusting which pervade all of its architectural choices.

A poll-based mechanism allows users to express their opinions. They may choose

on open arguments for discussion (open polls), where both the theme and options for
polling are chosen by one of the users, as well as on validity of all statements

available in development trunk and branches (standard polls). Standard polls are

automatically associated by the system to their related statement, and can be easily

accessed when inspecting the projection of that statement (a class/property in the tree,

an individual in the list of instances of a class, or a valued property in a resource

description).

With a similar approach, also a forum has been added to the system, enabling both

the creation of free thematic discussions about ontology evolution, and of discussions

focused on proposed resources and statements ï e.g., whenever a user adds a new

resource, it is easy to open a discussion on it: the thread is automatically matched by

the resource URI and it can lately always be accessed from a context menu option for
that resource. Emailing is also supported, by retrieving public mail addresses of

registered users.

8 Daniele Bagni, Marco Cappella, Maria Teresa Pazienza, Armando Stellato

Finally, also query support has been integrated with the user spaces paradigm. A

SPARQL interface (Fig. 2) allows users to select which user spaces will be

considered (panel on the right) when retrieving tuples from the repository (the main

development trunk is put by default in the query template, though it may be excluded

by the user by manually changing the query code).

6. Conclusions

Apart from its services and functionalities for supporting collaboration, which are in

line with state-of-art tools on collaborative editing (and improve them in some cases,

as for the generation of forum threads and polls automatically-linked to proposed

ontology resources), the main contribution of CONGAS to collaborative ontology

development resides in its coordinated editing of evolution branches proposed by

users. The possibilities offered by Named Graphs open up a completely novel
scenario in which users may freely (and massively) contribute to the main trunk of

development of an ontology, without the risk of over-generating undesired axioms,

nor suffering from the impedance brought by a strictly disciplined update procedure.

It is this aspect, stressing autonomy and independence of the user, which fills the gap

between collaboration methodologies such as the already mentioned DILIGENT, and

current implementations of collaboration tools: where these latter (coll. Protégé, or

SWOOP [27]) provide support for collaboration and discussion on one single

ontology (which may thus implement the analysis and revision steps of DILIGENT),

Fig. 2 The SPARQL query panel, with facilities for restricting the domain of the query to

specific user contexts

