
A Suite of Semantic Web Tools Supporting

Development of Multilingual Ontologies

Maria Teresa Pazienza, Armando Stellato, Andrea Turbati

ART Group, Dept. of Computer Science, Systems and Production

University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

{pazienza, stellato, turbati}@info.uniroma2.it

Abstract The multilingual aspects which characterize the (Semantic) Web and

the constant demand for more understandable and easy-to-share forms of know-

ledge representation, push for a more “linguistically aware” approach to ontology

development and foresees an environment where formal semantics could coexist

with natural language, contributing to improve “shareability” of the content they

describe. As a consequence ontologies should be enriched to both cover formally

expressed conceptual knowledge as well as to expose content in a linguistically

motivated fashion. In this paper we present a suite of tools, libraries and ontolo-

gies, ranging from ontology development to language resources access and man-

agement, supporting the development of multilingual ontologies. The contribution

of this work, going beyond mere tool presentation, is two-fold: the presented tools

implicitly embody a new way (methodology?) of rethinking the development of

ontologies in terms of making their content easy reusable and comprehensible;

moreover, they represent living proofs of software engineering principles asso-

ciated to software reuse, documentation, modularity, interaction analysis, applied

to the domain of Knowledge Management Software

Introduction

Semantic Web ontologies represent the shared vocabularies through which ma-

chines can read and access content from the Web, or even communicate between

them, to exchange information or cooperate for achieving some goal. This defini-

tion implicitly assumes that in an heterogeneous scenario like the whole WWW,

the same concepts will be represented by the same ontologies and that, therefore,

ontological models of data will be consistent; conversely, sensible effort will be

put in trying to match these “not-so-shared” vocabularies. If that general assump-

tion may hold true for reduced-size, very specific and data-oriented ontologies

(e.g. the WGS84 Geo Positioning RDF vocabulary1, which contains only a few

properties for describing latitude, longitude and point-in-space concepts), for larg-

er domain descriptions, requiring different levels of abstraction and different pers-

pectives depending on local needs, we expect to see several, different ontologies

arise from independent organizations, often addressing overlapping domains.

Two issues then urge to be solved: first, facilitating people and automated sys-

tems in performing alignments between ontologies where they represent the same

concepts and, secondly, make their vocabularies more explicit to humans, so that

they can be re-used consistently in different scenarios and by different actors; in

this sense, logical consistency may only help in restricting the range of possible

interpretations which may be assigned to logical symbols, while common-sense

human reasoning using these vocabularies may beneficiate a lot by the presence of

clear and exhaustive documentation. Extensive use of Natural Language contents,

providing free descriptions, synonymical expressions and translations in different

idioms of the intended meaning of a vocabulary, appears thus as the most intuitive

kind of documentation for data structures such as ontologies, dealing with repre-

sentation of domains. Several efforts have been undertaken to cover different as-

pects of this problem, motivating the adoption of linguistic resources for enriching

ontology vocabularies with natural language contents [25,32,34,31,15], showing

useful applications exploiting these combined resources [2,30,6], providing stan-

dards for representing this enrichment/integration, like in SKOS2 (Simple Know-

ledge Organization Systems) and in [4], and promoting the development of tech-

niques for automating this task [26].

Objective of our research work, which moves in between the Ontology Engi-

neering and Natural Language Processing areas, is to strongly integrate conceptual

and linguistic knowledge to reduce the everlasting gap which exists between these

two forms of knowledge representation, breaking down the barrier between what

is known as the “world model” of intelligent systems, and what is the “world out-

side there”, characterized by real documents written in natural language.

In this context, a suite of tools, libraries and ontologies dedicated to the devel-

opment of multilingual ontologies will be presented. First, the Linguistic Water-

mark Ontology Suite and Java Library: a suite of ontologies for describing both

linguistic resources and software interfaces for accessing their content, other than

representing (multi)lingual information inside ontologies, and a java extensible li-

brary providing interfaces (and a few implementations) for covering all of the

above tasks. Then, the OntoLing Framework will be showed: a portable extension

for ontology development tools supporting manual and semi-automatic annotation

of ontological data with information from different, heterogeneous linguistic re-

sources. Lastly, we describe Semantic Turkey, a Web Browser extension for

Knowledge Management and Acquisition of Semantic Web data, and introduce

for the first time OntoLing-ST, an implementation of the recent OntoLing 4.0

which, thanks to its high portability across different platforms and ontology stan-

1 http://www.w3.org/2003/01/geo/wgs84_pos
2 http://www.w3.org/TR/swbp-skos-core-guide/

dards, has been easily integrated in the Semantic Turkey environment. Before in-

troducing the above tools, section 2 will discuss state-of-the-art on language repre-

sentation and linguistic resource modeling, while section 3 exposes our desiderata

in reconsidering the process of ontology development, and details requirements

for building applications for multilingual ontology development.

State of the Art and Standards for Linguistic Resources and

Language Representation

“The term linguistic resources refers to (usually large) sets of language data and

descriptions in machine readable form, to be used in building, improving, or eva-

luating natural language (NL) and speech algorithms or systems”[8]. Examples of

linguistic resources are written and spoken corpora, lexical databases, grammars,

treebanks and field notes. In particular, this definition includes lexical databases,

bilingual dictionaries and terminologies (which can all be indicated as lexical re-

sources), which may reveal to be necessary in the context of a more linguistic-

aware approach to KR. In past years, several lexical resources were developed and

made accessible (a few for free), and a wide range of resources is now available,

ranging from simple word lists to complex MRDs and thesauruses. These re-

sources largely differentiate between the explicit linguistic information they ex-

pose, which may vary in format, content granularity and motivation (linguistic

theories, task or system-oriented scope etc…).

Multiple efforts have been spent in the past towards the achievement of con-

sensus among different theoretical perspectives and systems design approaches.

The Text Encoding Initiative (www.tei-c.org) and the LRE-EAGLES (Expert Ad-

visory Group on Linguistic Engineering Standards) project [5] are just a few, bear-

ing the objective of making possible the reuse of existing (partial) linguistic re-

sources, promoting the development of new linguistic resources for those

languages and domains where they are still not available, and creating a coopera-

tive infrastructure to collect, maintain, and disseminate linguistic resources on be-

half of the research and development community.

A more recent effort is given by the Lexical Markup Framework [11] – which

is now pursuing ISO standardization – a UML-based model for the description of

Lexical Resources. However, at the present time, a definitive standard is not avail-

able. Often, even a local agreement on the model adopted to describe a given (a

series of) resource does not prevent from an incorrect formulation of its content.

This is due to the fact that many resources have been initially conceived for hu-

mans and not for machines. As an example, in existing available dictionaries, the

definitions of words and synonyms are not always managed the same way: in

some cases synonyms are clustered upon the senses which are related to the par-

ticular term being examined (among others, Babylon, www.babylon.com, and

Dict, www.dict.org/bin/Dict dictionaries, where the senses are separated by a “;”

symbol), other simply report flat lists of terms without even identifying their dif-

ferent meanings (as in Freelang dictionaries: www.freelang.com). In several dic-

tionaries, synonyms are mixed with extended definitions (glosses) in an unpredict-

able way and it is not possible to automatically distinguish them. Terms reported

as synonyms may sometimes not be truly synonyms of the selected term, but may

represent more specific or general concepts (this is the case of the Microsoft Word

synonymn prompter). Of course, the ones mentioned above represent mere dictio-

naries not adhering to any particular linguistic model, though they may represent

valuable resources on their own.

A much stronger model is offered by WordNet [21,10], which, being a struc-

tured lexical database, presents a neat distinction between words, senses and

glosses, and is characterized by diverse semantic relations like hyperny-

my/hyponymy, antonymy etc… Though not being originally realized for computa-

tional uses, and being built upon a model for the mental lexicon, WordNet has be-

come a valuable resource in the human language technology and artificial

intelligence. Due to its vast coverage of English words, WordNet provides general

lexico-semantic information on which open-domain text processing is based. Fur-

thermore, the development of WordNets in several other languages [37,33,35] ex-

tends this capability to trans-lingual applications, enabling text mining across lan-

guages.

Linguistic Enrichment of Ontologies: motivation and desiderata

Ontology Development is a task requiring considerable human involvement and

effort, at a large extent with the objective of providing a shareable perspective

over domain related knowledge. What “shareable” means, depends on the nature

of the task(s) the ontology is thought for. The scenario offered by the Semantic

Web is in fact characterized by distributed services which must both realize and

rely on a proper connection of machine-accessible formal semantics and more tra-

ditional Web content.

For this connection to be true, a complete Ontology Development process

should consider the formal aspects of conceptual knowledge representation, as

well as guarantee that the same knowledge be recognizable amongst its multiple

expressions which are available on real data: that is language.

To achieve such an objective, we should reconsider the process of Ontology

Development to include the enrichment of semantic content with proper lexical

expressions in natural language. Ontology Development tools should reflect this

need, supporting users with dedicated interfaces for browsing linguistic resources:

these are to be integrated with classic views over knowledge data such as class

trees, slot and instance lists, offering a set of functionalities for linguistically

enriching concepts and, possibly, for building new ontological knowledge starting

from linguistic one.

By considering some of our past experiences [1,29,27] with knowledge based

applications dealing with concepts and their lexicalizations, a few basic functio-

nalities for browsing linguistic resources (from now on, LRs) emerged to be man-

datory:

 Search term definitions (glosses)

 Ask for synonyms

 Separate different sense of the same term

 Explore genus and differentia

 Explore resource-specific semantic relations

as well as some others for ontology editing:

 Add synonyms (or translations, for bilingual resources) as additional labels for

identifying concepts

 Add glosses to concepts description (documentation)

 Use notions from linguistic resources to create new concepts

While ontologies have undergone a process of standardization which culminated,

in 2004, with the promotion of OWL as the official ontology language for the se-

mantic web, linguistic resources still maintain heterogeneous formats and follow

different models, which make tricky the development of such an interface.

In the next sections we present our suite of tools for multilingual ontology de-

velopment, starting by first through our ontology development and knowledge ac-

quisition framework Semantic Turkey, and then presenting the suite of ontologies,

software libraries and tools supporting multilingual enrichment of ontologies

Fig. 1: Semantic Bookmarking with Semantic Turkey

Semantic Turkey

Semantic Turkey [14] was born inside a national project – funded by the FILAS

agency (Finanziaria Laziale di Sviluppo) under contract C5748-2005 – focused on

innovative solutions for browsing the web and for collecting and organizing the

information observed during navigation (Fig. 1).

The prototype for the project immediately took the form of a Web Browser ex-

tension allowing users to annotate information from visited web sites and organize

it according to a personally defined domain model: Semantic Turkey paradigmatic

innovation was in fact to “obtain a clear separation between (acquired) knowledge

data (the WHAT) and web links (the WHERE)” pointing to it. That is, to be able,

through very easy-to-use drag’n’drop gestures, to select textual information from

web pages, create objects in a given domain and annotate their presence in the

web by keeping track of the selected text and of its provenience (web page url,

title etc…). We coined the expression “semantic bookmarking” for this kind of ac-

tivity.

Due to its proverbial extendibility, the Firefox platform3 had been chosen as

the hosting browser for our application, while Semantic Web standards and tech-

nologies were the natural candidate for representing its knowledge model.

Standing on top of mature results from research on Semantic Web technolo-

gies, like Sesame [3] and OWLim [18] as well as on a robust platform such as the

Firefox web browser, ST (Semantic Turkey) differentiates from other existing ap-

proaches which are more specifically tailored respectively towards knowledge

management and editing[13], semantic mashup and browsing [9,16] and pure se-

mantic annotation [7,17], by introducing a new dimension which is unique to the

process of building new knowledge while exploring the web to acquire it.

By focusing on this aspect, which has been further investigated in the two years

of finalization leading to the current release, we went beyond the original concept

of Semantic Bookmarking and tried to amplify the potential of a new Knowledge

Management and Acquisition System: we thus aimed at reducing the impedance

mismatch between domain experts and knowledge investigators on the one side,

and knowledge engineers on the other, providing them with a unifying platform

for acquiring, building up, reorganizing and refining knowledge.

Semantic Turkey Architecture

The architecture (Fig. 2) of Semantic Turkey follows a three layered design, with

the presentation layer embodying the true Firefox extension and the other two lay-

ers built around java technologies for administering the business logic and data

access.

3 http://www.mozilla.com/en-US/firefox/

Everything relating user interaction is directly managed by the Firefox exten-

sion, thanks to a solution directly integrated in the browser. This approach has two

main advantages: total reuse of the functionalities of a well assessed, stable and

complete software for web browsing, and a non invasive offer for the user, who

can still use the web browser he has been acquainted with.

The second layer, the service layer, is realized through a collection of Java Web

Services, published through the Web Server “Jetty”4. Jetty is implemented entirely

in Java, and the architecture foresees its use as an embedded component. This

means that the Web Server and the Web Application run in the same process,

without interconnection overheads and other sort of complications.

The following sections describe more in detail the three layers which constitute

the architecture of Semantic Turkey

Presentation Layer. The User Interface has been created through a combined use

of the XML User Interface Language XUL5, XBL6 and Javascript language.
The UI physically appears as a set of Firefox sidebar, representing ontological

information. User requests are handled through the Ajax [12] paradigm: the data –
in XML format – is thus mainly exchanged between the two layers in an asyn-
chronous way, to preserve good performance and to not penalize the activity of the
browser.

Javascript XPCOM7 components have been developed and the Simile Java
Firefox Extension8 has been adopted for linking the chrome part and the Java part
to start the Jetty embedded java server.

Middle Layer. This layer offers services which may be invoked through http re-

quests submitted according to the Ajax paradigm, thus enabling communication

between the client (Firefox extension) and the server. The server receives the re-

quests coming from the client by GET or POST http calls, carries out the opera-

tions associated to these calls, and in case replies with an XML response. If a call

implies the return of a XHTML page, an XSLT transformation is being performed,

in order to decouple the data model with its manifestation in the presentation

layer.
The majority of invocations to the server are being completed in an asynchro-

nous way, so that, independently from the workload that is subjected the server,
the browser can continue to respond to the user. This is a crucial issue for the us-
ability of the application: expensive computations blocking normal behavior of
the browser would otherwise not be tolerated by the user.

Besides supporting the communication with the client, the middle layer pro-
vides the functionalities for definition, management and treatment of the data.
Several objects are described through an ontological model (see next section), to

4 http://jetty.mortbay.org/jetty/
5 http://www.mozilla.org/projects/xul/
6 http://www.mozilla.org/projects/xbl/xbl.html
7 http://www.mozilla.org/projects/xpcom/
8 http://simile.mit.edu/java-firefox-extension/

http://jetty.mortbay.org/jetty/
http://www.mozilla.org/projects/xul/
http://www.mozilla.org/projects/xbl/xbl.html
http://www.mozilla.org/projects/xpcom/
http://simile.mit.edu/java-firefox-extension/

represent both pure conceptual knowledge as well as application required informa-
tion.

Data layer. It is mainly constituted by the component for managing the ontol-
ogy. This has recently been rewritten as a series of dedicated API for accessing
ontological data: these offer both RDF triple-level access methods as well as more
object oriented facilities, which have been appreciated in RDF libraries like Jena
[20]. Semantic Turkey API constitute an interface which can be implemented by
building wrappers for existing ontology libraries, so that we could easily select
those which best fit the needs of a given situation (like working with small or
large repositories, on a local or collaborative environment etc…) without having
to modify the whole application. The first implementation of these API has been
developed as a wrapper for Sesame [3] and the OWLIM plugin [18], which has
been added for reasoning over OWL [38] data.

Fig. 2 Architecture of Semantic Turkey and of its extensions

Semantic Turkey also features an extension mechanism supporting both technolo-

gies belonging to the Front End and the Business and Data Layers.

The whole extension mechanism is obtained by a proper combination of the

Mozilla extension framework (which is used to extend the user interface, drive us-

er interaction and add/modify browser functionalities of ST) and the OSGi java

extension framework [23] (providing extensions capabilities for the service and

data layers of the architecture). OSGi compliance is obtained through the OSGi

implementation developed inside the Apache Software Foundation, called Felix

(felix.apache.org/).

Two main extension points have been introduced: a Service extension and a

Repository Extension. The first one allows for the development of arbitrary ser-

vices which can be added dynamically to the system. Extensions of this type typi-

cally need to realize both a client extension through Mozilla technology, by add-

ing new functionalities (and hooks for them in the user interface) to the system, as

well the corresponding Service which is added dynamically through OSGi.

The second kind of extension provides openness to different triples store tech-

nologies; Semantic Turkey is in fact no more strictly based on the Sesame + OW-

Lim libraries for RDF management, but features proprietary APIs for querying the

managed ontologies. These API are defined through a set of interfaces, which can

be implemented to adopt different triple stores. This can be of particular interest in

specific scenarios where the target user has to connect to a specific triplestore, or

where a service extension is being built by annexing an existing application, and

in either case, these are based on a different triple store technologies.

Both kind of extensions are deployable as an xpi (cross-platform installers)

packages which, once installed inside Firefox, are handled by Semantic Turkey

extension discovery system, which extracts OSGi bundles and installs them in the

main application. This assures easy installation for the user, which can install ST

extensions as any other Firefox one, by dragging the xpi over Firefox and restart-

ing the browser.

Fig. 3 Class and Property panels in Semantic Turkey

User Interaction

Semantic Turkey offers editing operations for populating the personal ontology

with annotations from visited web sites, as well as search and navigation function-

alities which facilitate the recovery of already acquired knowledge.

Main functionalities The user may interact with the ontology panel to modify its

personal ontology, through a series of operations, which we describe here, orga-

nized into categories.

Interaction with the browser. These mainly include drag&drop operations which

allow to annotate information from the visited sites:

 Drag and drop of a selection of a text from an html document displayed in the

browser, on the icon that represents a class, in order to create an individual of

that class. The selection will become the local name of the new individual,

which will be shown inside the instances panel

 Drag and drop of a selection of text from an html document, on the icon that

represents an individual, in order to add a further bookmark for that individual,

or to characterize a property which that individual owns. A specific window

will open, prompting the user to choose the appropriate functionality. In the

first case, a new semantic annotation is taken for the individual, with a new

webpage as a bookmark for it and the new textual occurrence of that individual

in the observed page. In the other case, the user can choose a property for

enriching the description of the chosen individual through the selected text. If

the selected property is an owl:ObjectProperty, the selection will become the

name of a new individual created as an instance of the range class of the chosen

property, or a further annotation for an existing individual. In both cases, the

two individuals are bound through the selected property. In case of an

owl:Datatype or owl:AnnotationProperty, a new value will be added.

 Drag and drop of a selection of text from an html document, on the icon that

represents an individual, in order to define a further lexicalization for that indi-

vidual. The user can choose, from the same panel described before, if the selec-

tion characterizes a range of a property or a new lexicalization

These functionalities have been conceived to speed up typical series of operations

which characterize both the worlds of ontology development and semantic annota-

tion. For example, the second one which has been described above performs, in

case of an object property, the creation of a new instance, its annotation with the

current web page and the assertion of a relationship between the new individual

and the selected one, at the cost of just a drag&drop and a selection.

Direct Ontology Editing. These functionalities operate exclusively on the ontolo-

gies, as it should be important for the user to integrate the knowledge acquired

through semantic bookmarking with information he could get through other me-

dia. All typical ontology editing operations (Fig. 3) are carried out through buttons

and context menus associated to the nodes of the tree, in a way much similar to

traditional ontology editing tools, like Protégé [13] or TopBraid Composer9. By

offering complete interaction with the ontology via the XUL interface (instead of

an HTML interface, like in Piggy-Bank), the user is not diverted from his current

navigation (i.e. the main browser panel is still focused on the visited web page,

which would otherwise be replaced by the HTML UI) and may, at the same time,

maintain its attention over the observed web page. Extended support for natural

language descriptions of ontology objects is also present in the system, allowing

for explicit representations of the same objects through different synonimical ex-

pressions, or translation for different idioms, thus accounting for multilinguism.

This is a further aspect to be distinguished from keeping track of the several ways

in which ontology objects have been annotated over web pages, since this last is

thought for addressing other phenomena, like acronyms, misspells and other idio-

syncratic expressions.

Semantic Browsing As an additional feature, the user may graphically explore the

ontology, thanks to the SemanticNavigation component: a customized version of

the TouchGraph library10 allowing for a graph-like exploration of ontology nodes.

A Java applet will be loaded on a new tab of the browser, displaying the graph

view of the ontology, allowing the user to navigate its content. The nodes of the

9 http://simile.mit.edu/java-firefox-extension/
10 http://touchgraph.sourceforge.net/

Fig. 4 Class and Property panels in Semantic Turkey

http://simile.mit.edu/java-firefox-extension/
http://touchgraph.sourceforge.net/

graph will be displayed in different manners, according to the nature of the onto-

logical entity: classes, properties or individuals. By dragging the mouse pointer on

a node that represents an individual, it is possible to open a popup window, which

contains the URLs of the pages where that instance has been annotated.

The Linguistic Watermark

The Linguistic Watermark [28] is an ontological and software framework for de-

scribing, referring and managing heterogeneous linguistic resources and for using

their content to enrich and document ontological objects. It articulates into two re-

sults: first, a set of coordinated RDF vocabularies providing descriptors for

representing linguistic resources (ranging from lexical to frame-based ones) and

their software counterparts (data structures, access libraries etc…), as well as of-

fering metadata for describing the linguistic enrichment of ontologies, both on

quantitative and qualitative grounds. The second result is a software library for

evaluating the quality of automatic linguistic enrichment tools, through compari-

son of enriched ontologies compiled against the above vocabularies.

The Linguistic Watermark Ontology Suite

The Linguistic Watermark suite of RDF vocabularies is composed of three ontol-

ogies:

 The Linguistic Watermark (LW) vocabulary, describing linguistic resources

through their purposes and structure organization

 The Ontological Linguistic Watermark (OLW) vocabulary: a set of metadata

descriptors for characterizing the linguistic expressivity of ontologies

 The LW Linguistic Interfaces vocabulary (LWLI), providing concepts for de-

scribing software libraries which grant access to specific (or ranges of) lin-

guistic resources

The Linguistic Watermark (LW) Vocabulary

While the Linguistic Watermark vocabulary partially covers general linguistic

concepts like term, word, lexical/semantic relation, frame, agent etc... its main ob-

jective is to provide descriptors or characterizing the purpose and structure of lin-

guistic resources: whether they represent translation vocabularies, synonyms col-

lections, lexicons, frame based resources or terminologies, if they are organized

around some kind of semantic structure or merely <entry, description> pairs etc..

Though originally conceived to cover any kind of Linguistic Resource, the first

version of the Linguistic Watermark (Fig. 5) was limited to represent only lexical

resources: by proper combination of its LW ontological descriptors, one could be

able to represent very different linguistic resources, from simple synonym dictio-

naries, to complex resources such as WordNet[21]. This provided a shared and

homogeneous vocabulary upon which multilingual (and multi-resource) applica-

tions could be defined.

In this work we have extended le LW vocabulary into two main directions:

 RDF Porting: now the LW model can be expressed as an RDF vocabulary

 Instantiation: now the vocabulary is not only used to describe linguistic re-
sources, but even to predicate over their content (see section 4.2.2 for de-

tails)

Frames description: covering frame/class based linguistic resources, such as

FrameNet and VerbNet (see [22] for further details).

The Ontological Linguistic Watermark (OLW)

The characterization given by the OLW is expressed in terms of the linguistic con-

tent of the described ontology and with respect to the resources which have been

adopted for enriching its concepts. As stated in [30], where its adoption has been

considered in a scenario involving Semantic Coordination of FIPA agents, its me-

tadata assume great significance in all the contexts where ontologies sharing a

common domain, but no explicit semantic bridging between their respective voca-

bularies, need to be automatically aligned or merged. Resource-based algorithms

for ontology alignment and semantic coordination agents can in fact inspect the

OLW data of the ontologies to be compared and configure at best the resources

Fig. 5 An excerpt (focused on main descriptors for Linguistic Resources) from the Linguistic

Watermark vocabulary

and facilities to be used for matching their content. This is an aspect which has of-

ten been underestimated in literature: setting up the resources to be adopted in a

realistic scenario, while being not a trivial task, influences dramatically the out-

come and performances of any mediation activity.

The LWLI takes its roots from the first version of the Linguistic Watermark

software library11 – developed by the University of Rome, Tor Vergata – a com-

ponent providing uniform access to different and heterogeneous linguistic re-

sources, which has been used in several resource-based tools, such as the OntoL-

ing Protégé plug-in [25]. The LW presented in that work, was just a class diagram

offering several interfaces and abstract classes whose combination could be used

to describe the main aspects of a linguistic resource: implementing the proper sub-

set of those (software) interfaces would result in the definition of a linguistic

wrapper for accessing a particular linguistic resource. The LW library thus offered

a combination of descriptive (with regard to the resources to be wrapped) and

operative aspects (delineating the operations which the required wrapper had to

implement). Later on, the exigencies which brought to developing the OLW, re-

quired a formal ontological representation, merely focused on resource descrip-

tion, to be extracted from the original class diagram, which led to the LW.

Now, it was time to close the circle, and with the LWLI we recovered the orig-

inal intent of the LW library.

The LW Linguistic Interfaces vocabulary (LWLI)

LWLI contains concepts describing parameters needed by software libraries for

setting up access to their target linguistic resources. This third ontology complete-

ly migrates the original framework to RDF, thus providing a complete vocabulary

at the hand of Semantic Web tools which rely on the use of linguistic resources or

are even expressly dedicated to the integration of ontologies with linguistic re-

sources.

The LWLI includes concepts like:

 LinguisticInterface: for describing a specific implementation of a wrapper for

a linguistic resource

 LinguisticInterfaceConfiguration: representing instances of basic runtime

configurations for a given LinguisticInterface.

 LinguisticInterfaceInstanceConfiguration: each instance of this class pro-

vides data for completing a single runtime configuration for accessing a spe-

cific linguistic resource, basing on partial configuration from a given Lin-
guisticInterfaceConfiguration.

and properties for specifying these configuration settings, among which, we list

the following ones:

11 http://art.uniroma2.it/software/LinguisticWatermark/

 configuredInterface: this property tells which LinguisticInterface is being

configured through the described configuration

 interfaceableResource: tells which linguistic resources are made accessible

through the described Linguistic Interface

 ConfigurationProperty: a property defining configuration parameters for ac-

cessing a linguistic resource through a dedicated linguistic interface. This

property is never instantiated, though it has a few relevant subproperties for
telling whether a given configuration parameter points to the file system, if a

property is relevant for configuring a linguistic interface (InterfaceProperty)
as a whole, or just for accessing specific resources (InstanceProperty) etc..

As for the LW, even this vocabulary provides an upper ontology which, though

extensible in principle to match the specification of each represented software li-

brary, already contains all the required descriptors for automatically driving dif-

ferent linguistic resources under a shared knowledge model.

The Linguistic Watermark library

Following the recent improvements on the LW suite, we are releasing a new ver-

sion of the Linguistic Watermark library (LW 3.0), which offers java API for ac-

cessing linguistic resources through dedicated Linguistic Interfaces, both entities

being defined according to the LW and LWLI vocabularies. In particular, a map-

ping between the above ontologies and newly added java interfaces allows imple-

mented java wrappers for linguistic resources to declare themselves as new in-

stances of the LinguisticInterface class and accept strongly typed configuration

parameters, thus enabling data consistency checks and providing hooks for auto-

matic generation of configuration user interfaces for hosting applications.

To implement this mechanism we adopted and OSGi compliant java extension

framework: Apache Felix (felix.apache.org/). Each OSGi bundle (the OSGi name

given to the extension packages) contains a class that extends the abstract class LI-
Factory (see class diagram in Fig. 6), which is in charge of generating objects im-

plementing the LinguisticInterface interface. Each class that implements the Lin-
guisticInterface interface has some of its fields representing specific

InterfaceProperty and InstanceProperty properties (they are automatically identi-

fied through java annotations). InterfaceProperties share their value among all the

instances, so they are declared as static fields, while InstanceProperties have val-

ues specific to each object (identifying a specific linguistic resource present in the

host). LIFactories release new instances of LinguisticInterface by getting their

needed configuration (i.e. InterfaceProperties and InstanceProperties values),

which is stored in a LinguisticResource object, from a loaded LW LingModel. We

implemented two serializations (and related loaders/writers) of the LingModel: one

compact xml represention (handled my LingModelXMLIO) and an RDF representa-

tion which follows the LW RDF Vocabulary (LingModelRDFIO).

While there should be exactly one LinguisticInterface which is responsible for

providing access to a specific loaded resource, proper handling of the LIFacto-
ry/LinguisticInterface pair can hide implementation issues related to wrapping and

reusing existing foreign libraries with different architectures into this framework.

As an example, one existing library for a particular kind of resource – let us

call it LRESLIB – could adopt one singleton object (ResManager) for managing

different linguistic resources of the same type (different versions or for different

languages). In this case, the LRESLIB library can be easily wrapped in the LW

framework by initializing, storing and hiding ResManager inside its built LIFacto-
ry implementation, while the associated LinguisticInterface implementation will

represent simple objects retaining reference to their LIFactory and invoking Res-
Manager methods (with parameters customized for their specific resource)

through delegation.

This approach guarantees reuse of existing libraries and tools for accessing lin-

guistic resources while porting their provided content inside an extensible frame-

work with well defined model, vocabulary and operations.

The OLW library and OLW vocabulary improvements

With the specific aim of obtaining a stable range of instruments for enriching

ontologies with lexical content, and of formalizing the model and associated for-

mat for representing this information, we have developed a dedicated component

Fig. 6 Class diagram of the main components of LW model

+getLinguisticInterfaceFactories() : Collection

+getLinguisticInterfaceFactory(in id : string) : LIFactory

+getLinguisticResources() : Collection

+getLinguisticResource(in id : string) : LinguisticResource

+getSelectedInstances() : Collection

-linguisticResources : HashMap

-linguisticInterfaceFactories : HashMap

-selectedInstances : Collection

-lmIO : LingModelIO

LingModel

+getLinguisticInterfaceFactory() : LIFactory

+getLinguisticInterface() : LinguisticInterface

+getId() : string

+getLinguisticIntefaceId() : string

+getPropertyValue() : string

+getProperties() : Collection

-LinguisticInterfaceID : string

-linguisticInterfaceFactory : LIFactory

-id : string

-linguisticInterface : LinguisticInterface

LinguisticResource

+getId() : string

+getLinguisticInterface() : LinguisticInterface

+getInstanceProperies() : Collection

+getInterfaceProperties() : Collection

+getPropertyValue(in id : string) : string

+getLinguisticInterfaceClass() : Class

-id : string

-lingIntCls : Class

LIFactory

+populateLingModel(in lm : LingModel)

+storeLingModel(in lm : LingModel)

«implementation class»

LingModelXMLIO

+populateLingModel(in lm : LingModel)

+storeLingModel(in lm : LingModel)

«interface»

LingModelIO

+initialize()

+getConceptualRelationList() : string []

+getLanguage() : string

+isTaxonominal() : bool

+hasGlosses() : bool

«interface»

LinguisticInterface

+populateLingModel(in lm : LingModel)

+storeLingModel(in lm : LingModel)

«implementation class»

LingModelRDFIO

«bind»

«bind»

1

0..*

1

0..*

0..* 1

1

1

1

1 1
0..*

which, together with the LW library, can be embedded in ontology based tools and

applications needing to incorporate linguistic content.

The OLW Integration Model

In modeling our framework for the integration of ontological and linguistic

content, we have taken into consideration the following requisites, which should

allow for:

 Reporting quantitative and qualitative information on the overall process of

enriching an ontology with content from a linguistic resource (this was the

primary objective of the OLW metadata ontology)

 Keeping track (at least maintain the possibility to do that) of the source used

for enriching the content

 Being able to properly map different kind of linguistic entities (words, lin-

guistic/semantic relations etc…) with (structures of) ontological objects

 Giving the user the possibility of adopting resources’ specific objects (e.g.

FrameNet frames or WordNet synsets) for enriching an ontology

 Embedding existing models for integration of ontologies and linguistic enti-

ties, still respecting the above priorities

 Assessing reliable links between ontological and linguistic objects as well as

taking into account for probabilistic matches produced by automatic enrich-

ment tools (which could also be used for evaluation purposes)

The first requisite has been satisfied by defining a set of meta-descriptors –

represented through object properties with domain set to owl:Ontology – for pro-

viding an overview of the “linguistic expressiveness” of ontologies. These proper-

ties may prove to be helpful for services/agents which, having to

map/merge/align/mediate different ontologies, may be willing to invoke the proper

linguistic resources for supporting this task. These mediators can thus beneficiate

of the overall statistical information provided by the OWL metadata, without in-

specting the entire ontologies’ content. This part of the OLW has already been de-

scribed in details in [30].

The second, third and fourth requisites have been accomplished by extending

the LW; in its first incarnation, which served solely as a conceptual driver for the

software library, the LW was able to express descriptions of linguistic resources,

without predicating about their specific content. Now it has been extended to

make possible the instantiation of objects from the described resources. The ex-

ample in Fig. 7 shows fragments originating from three different ontologies: the

first fragment is a description of WordNet synset 100001740 originating from the

WordNet-RDF vocabulary developed by the WordNet task force of the W3C

(http://www.w3.org/TR/wordnet-rdf/); the second one is the binding of concept

wn20schema:Synset to the lw:SemanticIndex, through a rdfs:subClassOf relation-

ship. Finally, a certain Noun concept coming from a fictitious ontology is enriched

with the meaning expressed by the above synset, through the

owl:semanticDescriptor property. With this extensible pattern, the LW+OLW of-

fer reusable vocabularies for describing linguistic resources which drive the beha-

vior of software applications serving the same task, while specific extensions

(both in terms of ontologies and software components) can be added to describe

specific lexical and semantic objects from new resources, without requiring mod-

ifications to the core vocabulary nor to the original application

Compatibility with existing (proposed) models As previously mentioned, several

formats exists or have been proposed for integrating ontological content with lin-

guistic information

While we did not intend to propose a new one, we tried to obtain cross-

compatibility with available standards and proposed models, by gearing our soft-

ware library with a OntoLinguisticModel interface, consisting of a series of

enrichment/retrieval operations defined upon abstract “slots” for representing lin-

guistic information. These slots can be then implemented according to a specific

onto-linguistic representation model, by specifying the properties and concepts

used to map/integrate linguistic information with ontological one.

Obviously, it is impossible to foresee in advance all the characteristics of each

model/interface-implementation which could be integrated in the future, thus we

provided a specific project/decode feature for projecting the linguistic information

extracted from linguistic resources according to the LW ontology, towards the

(possibly more fine-grained) adopted ontolinguistic model. For evaluative (see

next section) and comparative purpose in general, we demand to each specific im-

plementation the specifications of equivalence between the locally defined linguis-

tic objects.

Implementations of OntoLinguisticModel have been developed for the tradi-

tionally adopted RDFS annotation properties (rdfs:label and rdfs:comment), for

the base SKOS vocabulary (by extending the above with skos:prefLabel and

skos:altLabel), for SKOS +SKOS-Mapping12 vocabularies (thus including

skos:broader/skos:narrower and skos:related, to map ontology concepts with in-

12 http://www.w3.org/2004/02/skos/mapping/spec/

<wn20schema:NounSynset rdf:about="wn20instances:synset-entity-noun-1" rdfs:label="entity">

 <wn20schema:synsetId>100001740</wn20schema:synsetId>

</wn20schema:NounSynset>

<rdf:Description rdf:about="wn20schema:Synset">

<rdfs:subClassOf rdf:resource="lw:SemanticIndex"/>

</rdf:Description>

<someOntology:Noun>

 <olw:semanticDescriptor rdf:resource="wn20instances:synset-entity-noun-1">

</someOntology:Noun>

Fig. 7 an example of resource wrapping: binding WordNet-RDF synsets to a class concept

stances of lw:SemanticIndex from the LW ontology) and, finally, for the LingInfo

model, by wrapping the linginfo:linginfo property and linginfo:LingInfo class. The

above integration model satisfied our fifth requirement, while the resolution of the

sixth one is part of the discussion presented in the next section.

The evaluation framework

The newly developed OLW Library provides a framework for evaluating the qual-

ity of algorithms for Linguistic Enrichment of ontologies with respect to previous-

ly defined reference standards, by using standard precision&recall metrics [36].

The OLW library can accept pairs of linguistic enrichment documents (that is:

ontologies with integrated linguistic content), where one is the Oracle and the oth-

er one is the result to be tested, providing that the following extensions are in-

cluded in the library and properly configured:

 Enrichment Model and related software extension

 Resource(s) description (and their wrapper implementation) used for

enrichment

 Match Specification and Evaluation (MSE) extension, if different enrich-

ment entries differ from simple links between ontological and linguistic ob-

jects

With the ones above, the library is able to seek the enrichment properties (at least,

those which need to be considered) in the ontology documents (first extension)

and to properly identify the elements used for the enrichment (second extension).

The third one is an extension needed for those cases where an algorithm produces

any kind of probabilistic/quantitative result, so that the enrichment links in the

tested document cannot be evaluated just in terms of correct/wrong matches ver-

sus those in the Oracle. Inter-annotator agreement can as well be measured against

two enrichment documents compiled by human annotators, with no further re-

quirement apart from above.

OntoLing

OntoLing [24] is, in its last incarnation (OntoLing 4.0), a generic architecture for

extending Ontology Development tools with functionalities for enriching ontolog-

ical knowledge with linguistic content. The architecture of OntoLing will be im-

plementable through realization and composition of different components:

By first a core component exposing the following characteristics:

 can be interfaced with the Linguistic Watermark software library to access

linguistic resources, and with different enrichment algorithms and models

(see Linguistic Watermark description in previous section) for enriching the

content of ontologies with information gathered from loaded resources

 knowledge of the main functionalities and user interfaces characteristics ex-

posed by common ontology development tools and of the extensions which

should be brought by the OntoLing framework

 high portability: the core component has a module called UIReasoner (User
Interface Reasoner) which is able to describe – according to an abstract re-

presentation formalism – the way the UI should appear to the user (which

depends on the characteristics of the loaded linguistic resource) as well as

describe actions and events which happen inside it. This way, a concrete im-

plementation of this component could be easily ported and reused across dif-

ferent development environments. Moreover, if the abstraction layer is suffi-

ciently expressive, changes to the core component should not require (heavy)

modifications on each of its multiple implementations available for current

ontology development tools

Second, trivially: the Linguistic Watermark library

Third: a set of linguistic resources (and wrappers for them, compatible with Lin-

guistic Watermark API)

Fourth: an ontology development tool

Fifth (and last), an adapter between OntoLing core component and the ontology

development tool, which directly wraps its API and provides concrete implemen-

tations for OntoLing User Interface extensions.

OntoLing Core Application

The core component of the architecture is responsible for interpreting the Water-

mark of linguistic resources and for exposing those functionalities which suit to

their profile. Moreover, the behavior of the whole application is dependent on the

nature of the loaded resource and is thus defined at run-time. Several methods for

querying LRs and for exposing results have been encapsulated into objects inside

a dedicated library of behaviors: when a given LR is loaded, the core module

parses its Linguistic Watermark and assigns specific method-objects to each GUI

event.

With such an approach, the user is provided with a uniform view over diverse

and heterogeneous linguistic resources, as they are described in the Linguistic Wa-

termark ontology, and easily learns how to interact with them (thus familiarizing

with their peculiarities) by following a policy which is managed by the system.

For example, with a flat resource, a search on a given term will immediately re-

sult in a list of (potential) synonyms inside a dedicated box in the GUI; instead,

with a conceptualized resource, a list of word senses will appear in a results table

at first, then it will be browsed to access synonymical expressions related to the

selected sense. Analogous adaptive approaches have been followed for many other

aspects of the Linguistic Watermark (mono or bidirectional Bilingual Translators,

presence of glosses, Taxonomical structures and so on…) sometimes exploding

with combinatorial growth.

Future development of Ontoling will go in the direction of considering super-

vised techniques for automatic ontology enrichment; selecting and modeling the

right strategies for the adopted LRs is another task the core module is in charge

for.

OntoLing User Interface

Once activated, the plug-in displays two main panels, the Linguistic Browser on
the left side, and the Ontology Panel on the right side (see Fig. 9).
The Linguistic Browser is responsible for letting the user explore the loaded lin-
guistic resource. Fields and tables for searching the LR and for viewing the re-
sults, according to the modalities decided by the core component, are made avail-
able. The menu boxes on the left of the Linguistic Browser are filled at run time
with the methods for exploring LR specific Lexical and Conceptual relations.
The Ontology Panel, on the right, offers a perspective over ontological data in the
classic Protégé style. By right-clicking on a frame (class, slot or instance), the typ-
ical editing menu appears, with some further options provided by OntoLing to:
1. search the LR by using resources names as keys

OntoLing Extension

for specific

Ontology Develop.

Framework

Linguistic Browser

Ontology Browser
GUI Facade

OntoLing Core

UI

Reasoner

GUI

Adapter

<<interface>>
User

Linguistic Watermark

Linguistic Interface API

WordNet

EuroWordNet

Working

Ontology

Hosting Ontology Development

Application

Freelang

Linguistic Enrichment

OLW

LW

Linguistic Resource Access

Freelang

Wrapper

EuroWordNet

Wrapper

WordNet

Wrapper

LWLI

Linguistic

Enrichment

Algorithm

ALE

<<interface>>

LingInt

<<interface>>

OntoLing

Kernel

Automatic

Linguistic

Enrichment

Fig. 8 OntoLing Framework Architecture

2. change the name of the selected resource by using a term selected from the
Linguistic Browser

3. add terms selected from the Linguistic Browser as additional labels for the se-
lected resource

4. add glosses as a description (rdfs:comment) for the selected resource
5. add IDs of senses selected from the linguistic browser as additional labels for

the resources
6. create a new resource with a term selected from the Linguistic Browser as re-

source name
7. only in class and property browser: if the LR is a TaxonomicalLR, explore

hyponyms (up to a chosen level) of the concept selected on the Linguistic
Browser and reproduce the tree on the resource browser, starting from the se-
lected resource, if available

These functionalities allow not only for linguistic enrichment of ontologies, but

can be helpful for Ontologists and Knowledge Engineers in creating new ontolo-

gies or in improving/modifying existing ones.

In OntoLing-Protégé, how terms and glosses are added to the description of on-

tologies concepts, depends on the ontology model which is being adopted and is

explained in detail in the following section.

Using OntoLing with Protégé and Protégé OWL

The first version of OntoLing was developed expressly as an extension for the

Protégé Ontology Editor. All of the work which radically modified its backing ar-

chitecture has not changed much the way OntoLing appears to its users. In this

section we describe choices and history of this first extension.

When a frame-based approach was first adopted in Protégé as a knowledge

model for representing ontologies and knowledge bases, no explicit effort was

dedicated to the representation of possible alternate labels (synonyms) for con-

cepts neither to support the idea of multilingualism in Ontologies. Frame names

were almost as equivalent as IDs, and people were only encouraged, as it is com-

mon practice in computer programming when addressing variable names, to adopt

“meaningful and expressive names” to denote these IDs. The Protégé model was

indeed quite strong and expressive, so that every ontology developer could deal

with his linguistic needs at a meta-ontological level and find the right place for

them, though no official agreement was yet established.

Later on, with the advent of OWL as a KR standard for the Semantic Web, and

with the official release of the Protégé OWL plug-in [19], things started to con-

verge towards a minimal agreement for the use of language inside ontologies.

When we first started working on OntoLing, the OWL plug-in had just been re-

leased, and the majority of users continued to use Protégé in the usual way, so we

had to find a solution that was quite easy (for the user) to make do with this lack in

the standard Protégé model.

To this end, we defined the notion of terminological slot, as a slot which is

elected by the user to contain different linguistic expressions for concepts. Any

string-typed slot with cardinality set to multiple, can potentially be selected as a

terminological slot, and, for easiness of use, OntoLing prompts the user only with

this class of slots. This way, to use Ontoling with standard Protégé, a user only

needs to define a proper metaclass and metaslot, containing the elected termino-

logical slot; naturally, the same slot can be dedicated to instances at class level.

Multilingual ontologies can also be supported by creating different slots and se-

lecting each of them as terminological slots during separate sessions of Linguistic

Enrichment, with diverse LRs dedicated to the different chosen languages. Con-

cerning glosses, these can be added to the common “documentation” slot which is

part of every frame by default.

Conversely, Linguistic Enrichment of OWL Ontologies follows a more pre-

dictable path, thanks to OWL’s language dedicated Annotation Properties, such as

rdfs:label and owl:comment. When Ontoling recognizes a loaded ontology as ex-

pressed in the OWL language, the terminological slot is set by default (though

modifiable) to rdfs:label. In this case the xml:lang attribute of the label property is

automatically filled with the language declared by the Linguistic Interface.

Fig. 9 OntoLing Screeshot (Protégé version)

Conceptual and

Lexical Relations

explorers

Results Table
Linguistic

Browser

Ontology

Panel

Conceptual

and

Lexical Relation

explorers

Conceptual

and

Lexical Relation

explorers

Fields for: Sen-

seID, Glosses

and Synonyms

OntoLing as an extension to Semantic Turkey

While recent changes to the architecture of OntoLing have not produced (they

were not meant do that) sensible impact on interaction with the user, they surely

allowed for more flexible development of new functionalities as well as fast-to-

produce porting over different applications.

Our experience in porting the new version of OntoLing on the Semantic Turkey

architecture revealed that we were able to keep down realization costs by more

than two thirds of the whole development effort, since we had to:

 realize its user interface

 realize a ST service extension which includes the OntoLing Core component

 serialize abstract UI actions produced by OntoLing Core component as XML

messages sent from ST server

 develop handlers for UI actions sent by the server, realizing necessary handling

of requested actions over the Firefox UI of OntoLing

Of the above, only the first part required sensible effort, due to the completely dif-

ferent UI technology adopted by Firefox with respect to traditional Java Swing

adopted by Protégé, thus preventing even minimal reuse of code. On the other

hand, this aspect is a necessary step for any porting attempt, while we totally bene-

ficiated of the complex UI management (depending on the ling. watermark of the

loaded resource) which has been completely demanded to the included core com-

Fig. 10 Ontoling in Semantic Turkey

ponent. Also, apart from the effort, this approach is not requiring deep knowledge

of the framework nor of its inner logic, since most relevant and critical aspects are

concentrated inside the core component and need not to be re-implemented: this

lowers requirements in terms of development personnel and eases even more the

porting process.

Though we focused in obtaining a portable and completely replicable multilin-

gual extension for Ontology Development systems, we plan to obtain the best

from the combination of OntoLing with the possibilities of our ontology develop-

ment environment, deriving from its inherent connection with the Web and, as a

consequence of that, with the many different information sources (Wikipedia, on-

line dictionaries etc…) which can be explored in such an open environment.

Conclusion

In this paper we presented a collection of software libraries, tools and ontologies

for supporting multilingual development of Semantic Web ontologies. The pre-

sented work is the result of different research efforts which we tried to converge

towards a common goal, though this can be seen just as “end of the beginning” of

this exploration.

We expect that our work, through its tangible proofs-of-concepts, may give a

contribution or at least motivate the standardization of models, methodologies and

tools for the effective integration of ontologies and linguistic resources: something

which is much felt as a need for the future of Web 3.0 – which on the one side fo-

resees a web of data made accessible by machines, and on the other one expects

this data to be self-explanatory and human-comprehensible on a multicultural and

multilingual ground – but which is until now demanded to specific efforts and ar-

bitrary solutions.

References

[1] Paolo Atzeni et al., "Ontology-based question answering in a federation of university sites:

the MOSES case study," in 9th International Conference on Applications of Natural

Language to Information Systems (NLDB'04), Manchester (United Kingdom), 2004,

Month: June.

[2] Roberto Basili, Michele Vindigni, and Fabio Massimo Zanzotto, "Integrating Ontological

and Linguistic Knowledge for Conceptual Information Extraction," in IEEE/WIC

International Conference on Web Intelligence, Washington, DC, USA, 2003.

[3] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen, "Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema," in The Semantic Web -

ISWC 2002: First International Semantic Web Conference, Sardinia, Italy, 2002, pp. 54-

68, June 9-12.

[4] Paul Buitelaar et al., "LingInfo: Design and Applications of a Model for the Integration of

Linguistic Information in Ontologies," in OntoLex06, Genoa, Italy, 2006.

[5] Nicoletta Calzolari, John McNaught, and Antonio Zampolli, "EAGLES Final Report:

EAGLES Editors Introduction," Pisa, Italy, EAG-EB-EI, 1996.

[6] A. Cappelli, E. Giovannetti, and P. Michelassi, "Ontological Knowledge and Language in

Modelling Classical Architectonic Structures," in Ontology and Lexical Resources -

OntoLex 2004, Lisboa, Portugal, 2004.

[7] Fabio Ciravegna, Alexiei Dingli, Daniela Petrelli, and Yorick Wilks, "User-system

cooperation in document annotation based on information extraction.," in 13th

International Conference on Knowledge Engineering and Knowledge Management,

EKAW02, 2002.

[8] R. A. Cole et al., Eds., Survey of the State of the Art in Human Language Technology.

Cambridge, UK: Cambridge University Press, 1997.

[9] Martin Dzbor, John Domingue, and Enrico Motta, "Magpie: Towards a Semantic Web

Browser," in 2nd International Semantic Web Conference (ISWC03), Florida, USA, 2003.

[10] Christiane Fellbaum, WordNet: An Electronic Lexical Database. Cambridge, MA:

WordNet Pointers, MIT Press, 1998.

[11] Gil Francopoulo et al., "Lexical Markup Framework (LMF)," in LREC2006, Genoa, Italy,

2006.

[12] J.J. Garrett. (2005, February) Ajax: A New Approach to Web Applications. [Online].

http://www.adaptivepath.com/publications/essays/archives/000385.php

[13] John Gennari et al., "The evolution of Protégé-2000: An environment for knowledge-based

systems development, ," International Journal of Human-Computer Studies, vol. 58, no. 1,

p. 89–123, 2003.

[14] Donato Griesi, Maria Teresa Pazienza, and Armando Stellato, "Semantic Turkey - a

Semantic Bookmarking tool (System Description)," in The Semantic Web: Research and

Applications, 4th European Semantic Web Conference, ESWC 2007, Innsbruck, Austria,

June 3-7, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4519, 2007, pp.

779-788, Innsbruck, Austria, June 3-7.

[15] C. Huang, "Sinica BOW: Integrating bilingual WordNet and SUMO Ontology. Ontology

and Lexical Resources - OntoLex 2004. Lisboa, Portugal,".

[16] D. Huynh, Stefano Mazzocchi, and D.R. Karger, "Piggy Bank: Experience the Semantic

Web Inside Your Web Browser," in Fourth International Semantic Web Conference

(ISWC05), Galway, Ireland, November, 2005, pp. 413-430.

[17] José Kahan and Marja-Ritta Koivunen, "Annotea: an open RDF infrastructure for shared

Web annotations," in WWW '01: Proceedings of the 10th international conference on

World Wide Web, Hong Kong, Hong Kong, 2001, pp. 623-632.

[18] A. Kiryakov, Damyan Ognyanov, and D. Manov, "OWLIM – a Pragmatic Semantic

Repository for OWL," in Int. Workshop on Scalable Semantic Web Knowledge Base

Systems (SSWS 2005), WISE 2005, New York City, USA, 2005, 20 November.

[19] Holger Knublauch, Ray W. Fergerson, Natasha Friedman Noy, and Mark, A. Musen, "The

Protégé OWL Plugin: An Open Development Environment for Semantic Web

Applications," in Third International Semantic Web Conference - ISWC 2004, Hiroshima,

Japan, 2004.

[20] Brian McBride, "Jena: Implementing the RDF Model and Syntax Specification," in

Semantic Web Workshop, WWW2001, 2001.

[21] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine

Miller, Introduction to WordNet: An On-line Lexical Database., 1993.

[22] Alessandro Oltramari and Armando Stellato, "Enriching Ontologies with Linguistic

Content: an Evaluation Framework," in The role of ontolex resources in building the

infrastructure of Web 3.0: vision and practice (OntoLex 2008), Marrakech, Morocco,

http://www.adaptivepath.com/publications/essays/archives/000385.php

2008, May, 31.

[23] (2005) OSGi RFC0112. [Online].

http://www2.osgi.org/Download/File?url=/download/rfc-0112_BundleRepository.pdf

[24] Maria Teresa Pazienza and Armando Stellato, "An open and scalable framework for

enriching ontologies with natural language content," in Advances in Applied Artificial

Intelligence, 19th International Conference on Industrial, Engineering and Other

Applications of Applied Intelligent Systems, IEA/AIE 2006, Annecy, France, June 27-30,

2006, Proceedings. Lecture Notes in Computer Science, vol. 4031, Annecy, France, 2006,

pp. 990-999, June 27-30, special session on Ontology & Text.

[25] Maria Teresa Pazienza and Armando Stellato, "Exploiting Linguistic Resources for

building linguistically motivated ontologies in the Semantic Web," in Second Workshop on

Interfacing Ontologies and Lexical Resources for Semantic Web Technologies

(OntoLex2006), Genoa, Italy, 2006.

[26] Maria Teresa Pazienza and Armando Stellato, "Linguistic Enrichment of Ontologies: a

methodological framework," in Second Workshop on Interfacing Ontologies and Lexical

Resources for Semantic Web Technologies (OntoLex2006), Genoa, Italy, 2006.

[27] Maria Teresa Pazienza, Armando Stellato, Lina Enriksen, Patrizia Paggio, and Fabio

Massimo Zanzotto, "Ontology Mapping to support ontology-based question answering," in

Second MEANING workshop, Trento, Italy, 2005, Month: February.

[BO] Maria Teresa Pazienza, Armando Stellato, and Andrea Turbati, "Linguistic Watermark 3.0:

an RDF framework and a software library for bridging language and ontologies in the

Semantic Web," in Semantic Web Applications and Perspectives, 5th Italian Semantic Web

Workshop (SWAP2008), FAO-UN, Rome, Italy, 2008, 15-17 December.

[29] Maria Teresa Pazienza, Armando Stellato, Michele Vindigni, Alexandros Valarakos, and

Vangelis Karkaletsis, "Ontology integration in a multilingual e-retail system," in HCI

International 2003, Crete, Greece, 2003.

[30] H. Peter, H Sack, and C. Beckstein, "SMARTINDEXER – Amalgamating Ontologies and

Lexical Resources for Document Indexing," in Workshop on Interfacing Ontologies and

Lexical Resources for Semantic Web Technologies (OntoLex2006), Genoa, Italy, 2006.

[31] A. Philpot, Edward Hovy, and Patrick Pantel, "The Omega Ontology," in Ontology and

Lexical Resources (OntoLex2005), Jeju Island, South Korea, 2005.

[32] Laurent Prevot, S. Borgo, and Alessandro Oltramari, "Interfacing Ontologies and Lexical

Resources," in OntoLex2005 - Ontologies and Lexical Resources, Jeju Island, South Korea,

2005.

[33] Adriana Roventini et al., "ItalWordNet: A Large Semantic Database for the Automatic

Treatment of the Italian Language," in First International WordNet Conference, Mysore,

India, January 2002.

[34] J. Scheffczyk, C. F. Baker, and S. Narayanan, "Ontology-based Reasoning about Lexical

Resources," in Workshop on Interfacing Ontologies and Lexical Resources for Semantic

Web Technologies (OntoLex2006), Genoa, Italy, 2006.

[35] S. Stamou et al., "BALKANET: A Multilingual Semantic Network for the Balkan

Languages.," in First International Wordnet Conference, Mysore, India, January 2002, pp.

12-14.

[36] C. J. Van Rijsbergen, Information Retrieval. London, United Kingdom: Butterworths,

1975.

[37] Piek Vossen, EuroWordNet: A Multilingual Database with Lexical Semantic Networks.

Dordrecht: Kluwer Academic Publishers, 1998.

[38] W3C. [Online]. http://www.w3.org/TR/owl-features/

http://www2.osgi.org/Download/File?url=/download/rfc-0112_BundleRepository.pdf
http://www.w3.org/TR/owl-features/

