

Semi-Automatic Generation of GUIs for RDF Browsing

Maria Teresa Pazienza, Noemi Scarpato, Armando Stellato

ART Research Group, Dept. of Computer Science, Systems and Production (DISP)

University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

{pazienza, scarpato, stellato}@ info.uniroma2.it

Abstract
In this paper we present an approach to automatic

generation of GUI for browsing of RDF data based on

observation of existing forms and their adaptation to
available RDF graphs. The objective of such an

approach is the rapid prototyping of forms and their

associated queries by exploiting the vast amount

examples that is already available from the Web, and

trying to automate those steps requiring human

intervention (form template extraction, query

specification) for customizing found examples to

developer’s specific needs.

Keywords--- RDF Browsing, Fresnel, GUI

generation, Query Induction, SPARQL.

1. Introduction

Interaction with RDF [1] data is a crucial aspect for

the Semantic Web [2] vision, where independent

machines will be able to mediate information between

them and autonomously present them to the user in the

most appropriate way.

RDF graph management deals with different task as

storage, manipulation, presentation and visualisation of

this kind of data. While the processes of interaction and
manipulation of RDF data have reached a substantial

maturity, those regarding visualization and interaction,

though not in their infancy, are undergoing diverse

interesting proposals [3] so that they may be well

considered at the peak of their evolution.

The objective of this field of research is visualizing

the RDF data in a visually comprehensible form and

show its expressive power. This tasks consisting of

specifying which information contained in an RDF graph

should be presented and how this information should be

presented. There are two major approaches to Semantic
Web data visualization: adopting and applying existing

Information Visualization solutions (as in [4]) or

developing completely new techniques specifically

tailored for the knowledge representation paradigms of

the Semantic Web (like in [5]). The information that is

visualized in forms originated from RDF data is a

subgraph, which can be extrapolated by proper queries:

selecting and composing these queries (for which a

standard is available from early 2008, in the form of the

SPARQL query language [6]) requires a combination of
domain/technical expertise to be applied.

Another key point of Semantic Web Data

Visualizations lies in the definition of the same graphic

elements that are associated to domain information. They

can be elected to expose a representation on their own,

and Semantic extensions to RDF, such as RDFS/OWL or

other standards such as SKOS may play a pivotal role in

representing this information, through expressly

dedicated ontologies of visualization, addressing merely

graphical aspects such as graphical templates from which

UI widgets are decorated, geometrical aspects (size,

width, depth etc...), or other aspects close to their binding
with the source data (the order in which certain

collections of resource are displayed, or the way they are

clustered etc...). It is very important to point up that the

pairs of type: <rdf_resource, representation> are

relevant information on their own, which can be

exposed, collected and reused by generic RDF browsers

and viewers according to the same paradigm which is

proposed by the Semantic Web for resource shareability

and reuse.

In this paper we take up the challenge of defining an

architecture for semi-automatic:

 generation of graphical widgets for visualization

of RDF data

 induction of SPARQL queries for their

population

through selection of un-annotated samples (such as

HTML tables, forms etc...).

In the following section we describe related works

on models for information visualization and the state of

the art of RDF browser. In section 3 we sketch the basis

for our proposal, in section 4 we provide details about

the architecture and in section 5 we show how users will

interact with this system. The conclusions analyzes the

possibilities of this technology and next directions for

realization of this system.

2. Related Works

An important step towards data visualization has

been taken by Fresnel [7]: an RDF vocabulary (actually,

an ontology modelled after the OWL language) for RDF
information visualization. Fresnel provides a generic way

to define the presentation of context information and

sharing this presentation knowledge between compliant

generic RDF Browsers. Fresnel’s two basic concepts are

lenses and formats. Lenses define which properties of

one or more RDF resources to display and their order of

presentation. Formats determine how to render the

resources, their properties and values.

Being the standard query language for RDF,

SPARQL is obviously the first choice to be used inside

Fresnel lenses to specify the graph patterns to be

extracted and projected over the UI elements. Other
possible choices are FSL (Fresnel Selector Language) or

simple lists of RDF nodes which need to be shown. In

general RDF browsers compliant with Fresnel require to

be setup with one or more configuration files realized by

experts of the considered domain. This file contains

specifications for all the lenses that will be applied on

data and their related formats.

The rationale behind Fresnel relies in applying to

lenses and formats the same Semantic Web principles of

openness, shareability and reuse that are applied to

knowledge resources, by creating reusable pairs of
ontologies/configuration files, which can be searched,

browsed, filtered according to user specific needs,

downloaded and finally applied to local browser.

According to Palmér et al. [8] it is possible to define

an Annotation Profile that explicates the data that must

be displayed and its template of representation.

The concept of Annotation Profile is derived from

the concept of Application Profile [9]. Application

profiles specify which metadata to use in a specific

application while an Annotation Profile has the

additional purpose of allowing automatic generation of

user interfaces for the adopted metadata. An Annotation
Profile is composed of a graph pattern model and of a

form template model, the graph pattern model is

responsible for capturing and creating subgraphs of

considered RDF graphs, the form template model defines

representation, order and grouping of each subgraph.

This approach requires metadata and/or domain experts

that define annotation profiles according to metadata

vocabularies.

2.1. State of the art on RDF browsers

One of the main peculiarities of traditional web

browsers is that they can work with any content,

providing that it is specified according to some given
standard they accept: RDF Browser do the same, by

complying with Semantic Web paradigm of reusability

and sharing of information.

There are many works on RDF Browsing in

literature (many of which have lead to the realization of

prototype tools). All of them, propose even really

different strategies for browsing RDF data; some tools

provide nested boxes layouts, as Haystack [10] and

Tabulator [11], that is, recursively contained boxes of

property value pairs.
Others combine link navigation with facets: facets

are different dimensions, perspectives, of the underlying

data. Often, the values of this dimension are

hierarchically structured to represent relevant

categorization of data driven by each perspective. Facets

are used in many different RDF Browsers like Longwell

[12] and /facets [13].

Another approach is graph representation: different

tools have been developed to support the visualization of

RDF graphs such as:

 RDFSViz [14], a visualization service for

ontologies represented in RDF schema;

 OntoViz [15], a highly configurable ontology

visualization tool integrated in Protégé ;

 IsaViz [5] a flexible tool for RDF graph

visualization, with a number of functions for

zooming, editing, searching and browsing the

graph structure ;

 RDF Gravity [16] a tool for visualizing and

navigating directed graphs built in RDF and

OWL, with the possibility to zoom, search, filter

out and visualize specific parts of RDF graphs;

 Cluster Map [3] a key component of the
Spectacle system, used for the visualization of

ontological data, with a very expressive and

configurable interface;

 GVis [17] a general purpose, flexible and highly

customizable graph visualization tool is, used in

the context of the Hera project for visualizing

large RDF graphs;

 Welkin [18]

 Semantic Turkey [19], a Knowledge

Management and Acquisition tool, providing

graph exploration of edited ontology.
RDF graphs may not be intuitive to understand, in

particular when they are very large and the relationships

between its concepts are numerous. Moreover, though

quite self-explicative, also RDF needs some non intuitive

constructs to represent its data, such an in the

representation of n-ary relationships, which needs to

reify relationships and constructs chains of blank nodes

which need to be properly interpreted (and thus shown

accordingly).

Last generation RDF Browsers use the Fresnel

vocabulary to define patterns of representation, as in
LENA [20] and in last versions of Longwell and IsaViz.

3. Overall Concept

The layer-cake of technologies and languages for

information representation in traditional Web content

identifies well separated levels of competence where

artistic work, content development and technological

aspects may be assigned to the most appropriate figures.

 Styles (e.g. css), content structure (HTML tags),

embedded data (e.g. microfornats1 and RDFa [21]) and

server-side and client-side technologies for dynamic

content publishing provide different levels of abstraction

where all of the above figures find their role. This clear
separation has led to highly specialized development

tools allowing management of the aspects of interest for

each figure, but also the proper abstraction from the

other layers, and the simplification which is required for

their competencies. In the same way, the RDF Browsers

should provide a user interface that binds the graphical

structure to metadata, and allow ontology experts,

graphical artists and web/UI designers to cooperate under

well defined interaction modalities. We want to go a step

further towards this direction, by introducing a further

level of abstraction which is provided by
interdisciplinary work of domain experts, needing to

provide the above developers with rapidly deployed

mock-ups of desired interfaces, possibly already working

at a basic level of detail (thus requiring some fine-tuning,

which is requested to the developers). Our proposed

approach is to devise a mechanism and a chain of

processes (to identify a realizable architecture) that

automatically generates the queries for extracting the

desired subgraph, starting from available examples , and

defines the right representation for the selected

resources. By adopting Fresnel [7] vocabulary, we may

then collect above information in a list of pairs:
<lenses , formats> that will be used to configure the

users interface and finally generate the GUI.

1
 http://microformats.org/

For each UI to be built for a given domain, there are

surely lot of pages out there, on the (traditional) web,

providing useful examples (tables, forms etc..), which

could be used. The contribution of these examples is

two-fold:

1. They provide a sample of the graphical structures
upon which the desired UI will be built

2. They tell how this structure needs to be populated

The second point is of particular importance: the

found examples do not need to have been produced by

the same dataset possessed by the user; they just need to

contain data representing information originating from
the same domain (or, at least, sharing a sensible overlap

with it). This information can then be searched over the

real dataset owned by the user, hoping that a good

percentage of the data will be recognized upon it and that

the system would thus be able to induct the queries

needed to extract analogous data from the dataset.

The following use case describe a possible scenario

of application of our induction mechanism: Mario has an

OWL ontology describing the domain of football, and a

lot of data for the past two seasons of the local football

league modeled after this ontology. During his

navigation on the web, Mario finds a table showing
football players from the same league together with the

teams in which they play, the number of goals marked in

the current season and other interesting information. He

thus uses its UI induction tool to realize an identical

table, which is lively populated with data queried from

its personal RDF dataset. He thus uses the tools by first

highlighting the html source of the table, and then

submitting its content to the system. The system then

creates a Fresnel format abstraction for the given table

(which is thus independent from the UI technology

Figure. 1 System Design.

which is being adopted) and then tries to induct the most

specific2 SPARQL query which will project the data over

the table. Mario then submits the Fresnel output to its

colleagues (web designer and RDF expert), which can

then apply further refinement to the output. The UI

extraction can be achieved by two alternative

approaches: one is to apply wrapper induction [22]

techniques, to extract the wrapping elements where the

target information is contained, (so that they can
eventually be found on other similar pages and extracted

automatically), the other one is by simply recognizing

predefined patterns (tables, lists etc…) on the selected

structure and project them over the Fresnel abstraction.

The induction of the queries is instead performed by

applying ontology matching [23] techniques between the

user RDF dataset and data contained in the example.

The results of those process have a double

significance, on the one hand, the system has inducted

the proper graph patterns to populate extracted form with

live data from the dataset. On the other hand we can

populate our RDF dataset with additional data extracted
from similar pages. This is a collateral but interesting

effect of applying our approach: the difference with

respect to ordinary data mining (such as the above

wrapper induction) is that the data template is not known

a-priori, but is inducted from the available knowledge

model.

2
 Since the found values are not necessarily coming from the same

exact dataset, the inducted query may not contain all the constraints

which select the exact subgraph fitting table values

 At the end of the above process, the user has

collected all the needed information to automatically

generate a configuration file that contains lenses and

formats.

Our approach can thus be reassumed in the

following aspects:

 Configuration files are lively created when the

user starts a learning process over data observed

from a browsed example

 The patterns of representation are determine by

the users

 The query identifying the interesting subgraphs

is learnt by an automatic process;

 The information about the pattern of

representation are stored and placed at user's

disposal for future sessions of navigation (or to

be exported for other interested

users/developers).

3.1. Scenario

In figure 1 interaction between the identified

components is being shown. These components and

relevant objects are:

 A Semantic Repository containing RDF

resources

 A GUI Generator that performed the automatic

generation of user interface

and relevant objects are:

 HTML pages the content of which is being

selected by the users

 The automatically generated UI

Figure. 2 Architecture.

The RDF Repository contains one or more

ontologies describing the domain of interest (the model)

as well as the data provided by the user and/or collected

retrieved during the processing of inputs. Also, data

modeled for representation purposes and describing the

created pairs (rdf resource , representation) through

Fresnel lens and formats. Initially, if the RDF repository
contains already enough amount of data, it can

immediately be used as a seed to learn new UIs from

available examples extracted from the Web, with no

needed supervision. If it is empty and lot of similar

examples are available from web pages, it can be

automatically populated by semantically annotating even

very few pages (as reported in [24], very few annotated

examples are needed when applying wrapper induction

techniques to very similar pages, which are usually

produced by an original pattern populated by backed

data). The GUI Generator receives as input html pages

selected by the user (and highlighted parts of them),
containing the formatted UI structure that the user wants

to replicate, and the available RDF dataset. The GUI

Generator analyzes the input and automatically generates

a GUI mock-up with raw SPARQL queries for extracting

plausible values. In the next section we describe in

details the architecture of GUI Generator.

4. Architecture

In figure 2 the architecture of the UI Induction

System is shown. The first component, named GUI

Pattern Generator, performs the wrapper induction
process, the goal of this process is to carry out the

wrapper induction algorithm. Since the its first definition

[22], many evolutions and implementation of different

algorithms for wrapper induction have been realized, like

in [25] or [24]; in particular there are algorithms

performing wrapper induction on structured text (e.g.

web pages) like [26]. As anticipated in section 3, the

GUI Pattern Generator also applies heuristics-based

processes oriented at recognizing predefined

representation patterns and to extract data contained in it.

For instance if the user submits part of a web page that

contains a table, our algorithm extracts table elements
such as <table>, <tr>, <th> tags and other

information about content like number of columns and

rows, furthermore it extract the content of columns head

and the content of the rows of the table. The Query

Generator receives both the data contained into the

pattern recognized by the Pattern Generator component

and the RDF graph provided by the user, and adopts

ontology matching techniques to identify the best

matching query. This query is expected to produce

results which are sound upon a mere classification aspect

(i.e. we expect to find resources constrained to the right
headers in a table, such as instances of class foaf:Person

under the header of the football players in previous

example) though may not be properly constrained as to

obtain the desired subgraph. In literature, there are many

ontology matching techniques aiming at different

purposes, in particular we are interested on

methodologies supporting navigation on the semantic

web, this techniques allowed to make tools like

PowerMagpie [27] that is able to identify occurrence of

instances of an ontology in a web page. The

Configuration File Composer unifies inducted queries

and related data to create the Fresnel <lens, format>

pairs. Furthermore this component stores all pairs into
the representation ontology that is put at hand of rdf

resources furnished by the users into RDF Repository.

The GUI Composer component then generates a

GUI (depending on the output technology which is

selected for implementing the Fresnel abstraction layer)

according to produced <lens, format> pairs. If are

presents additional data, that are contained into example

of representation provided by the users, the Data

Manager component show them into generated GUI to

the users that can validate this information. Finally the

Data Manager component stores additional data into

RDF repository.

5. User Interaction

Though partially automatic, our approach deserves a

centric role for users, in that they provide the

semantically annotated examples and where appropriate

validate data retrieved from web pages.

The interaction of users with the system consists

first of all in defining what is the RDF resources that

they want to represent. Then they browse the web and

search pages that have the same domain of the RDF

repository. When the user meets a graphical pattern of
representation for data he is interested in, then he selects

it and asks the system to extract an UI widget and to

induct a query for populating it with data from the

available RDF resources, by comparing plausibility of

results from the proposed query with respect to those

presented in the selected examples. The system then

starts the chain of processes and propose a widget to the

user, with the option of first modifying and then saving

the Fresnel format, then edit the query (e.g. to add more

restrictions or simply change some of its characteristics)

and finally save even the Fresnel lens. This last sequence

of steps can be reiterated several times to refine the UI
and change the associated query accordingly.

6. Conclusion and Future Works

In this paper we have defined an architecture to

realize a GUI Generator able to analyze heterogeneous

RDF resources and to generate for them dedicated UI

from available samples.

The proposed approach can be implemented and

integrated in very different scenarios, as an extension for

Semantic Enhanced Web Browsers, RDF Browsers,

Ontology Editors and Annotation Tools.
Users beneficiating of this application are both

ontologists as well as domain experts.

We are currently implementing the GUI Pattern

Generator and defining the query induction techniques.

Then we will implement the remaining components

according to define architecture.

A future research direction for this kind of systems

is in exploring the possibility of combining several

configuration files to generate more complex GUIs,

possibly specifying interrelationships (i.e. semantic

constraints) between them. While this could simply be
seen as a further refinement process resulting in more

complex Fresnel configurations, we would stress the

importance for the user of being able to specify

compositional patterns for reusable atomic Fresnel units,

in a sort of Semantic Mash-up. This would open up the

way for reusable, shareable libraries of active UIs (i.e.,

bringing with them the information on how to populate

them from available data), which should be easily

searched (according to different perspectives, what they

show, how they show it etc…), accessed, imported (into

heterogeneous Semantic UI developing environment)

and composed according to user/developer needs, in the
spirit of the Semantic Web vision.

7. References

[1] Graham Klyne, Jeremy J. Carroll, and Brian McBride.
(2004, February) Resource Description Framework(RDF)
:Concepts and Abstract Syntax,W3C Recommendation.
[Online]. http://www.w3.org/TR/rdf-concepts/

[2] Tim Berners-Lee, James A. Hendler, and Ora Lassila,
"The Semantic Web: A new form of Web content that is
meaningful to computers will unleash a revolution of new
possibilities," Scientific American, vol. 279, no. 5, pp. 34-
43, 2001.

[3] Vladimir Geroimenko and Chaomei Chen, Visualizing the
Semantic Web, XML-based Internet and Information
Visualization, Second Edition ed. London: Springer-
Verlang, 2006.

[4] Tamara Munzner, "H3: Laying out large directed graphs
in 3D hyperbolic space.," in Proceedings of the 1997
IEEE Symposium on Information Visualization, Phoenix,
AZ, 1997, pp. 2-10.

[5] IsaViz Overview. [Online].
http://www.w3.org/2001/11/IsaViz/

[6] Eric Prud'hommeaux and Andy Seaborne. (2008, January)
World Wide Web Consortium - Web Standards. [Online].

http://www.w3.org/TR/rdf-sparql-query/

[7] Emmanuel Pietriga, Christian Bizer, David Karger, and
and Ryan Lee, "Fresnel - A Browser-Independent
Presentation Vocabulary for RDF," in 5th International

Semantic Web Conference, Athens, GA, USA, 2006.

[8] Matthias Palmér, Fredrik Enoksson, Mikael Nilsson, and
Ambjörn Naeve, "Annotation profiles: Configuring forms
to edit RDF," in International Conference on Dublin Core

and Metadata Applications, 2007.

[9] Thomas Baker, Makx Dekkers, Thomas Fischer, and
Rachel Heery. (2000) Dublin Core application profile
guidelines. [Online].

http://dublincore.org/usage/documents/profile-guidelines/

[10] Dennis Quan, David Huynh, and David R. Karger,
"Haystack:A Platform for Authoring End User Semantic
Web Applications.," in 2th International Semantic Web

Conference, Sanibel Island, Florida, USA, 2003.

[11] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan
Connolly, and Ruth Dhanaraj, "Tabulator: Exploring and

Analyzing linked data on the Semantic Web.," in 3rd
International Semantic Web User Interaction Workshop in
International Semantic Web Conference, Athens, Georgia,
USA, 2006.

[12] (2003) SIMILE: Longwell RDF Browser. [Online].
http://simile.mit.edu/longwell/

[13] Jacco van Ossenbruggen and Lynda Hardman Michiel
Hildebrand, "/facet: A Browser for Heterogeneous

Semantic Web Repositories," in ISWC, 2006.

[14] Michael Sintek and Andreas Lauer. (2000) RDFSViz.
[Online]. (http://www.dfki.uni-kl.de/frodo/RDFSViz/

[15] Michael Sintek. OntoViz. [Online].
http://protegewiki.stanford.edu/index.php/OntoViz

[16] Sunil Goyal and Rupert Westenthaler. RDF Gravity (RDF
Graph Visualization Tool). [Online].
http://semweb.salzburgresearch.at/apps/rdf-gravity/

[17] Flavius Frasincar, Alexandru Telea, and Geert-
JanHouben, "Adapting graph visualization techniques for
the visualization of RDF data," in Visualizing the
Semantic Web: XML-based Internet and information
visualization. London: Springer-Verlang, 2006, ch. 9.

[18] welkin. [Online]. http://simile.mit.edu/welkin/

[19] Donato Griesi, Maria Teresa Pazienza, and Armando
Stellato, "Semantic Turkey - a Semantic Bookmarking
tool (System Description)," in 4th European Semantic

Web Conference (ESWC 2007), Innsbruck, Austria, 2007,
June 3-7.

[20] Jörg Koch and Thomas Franz, "LENA - Browsing RDF
Data More Complex Than Foaf," in 7th International

Semantic Web Conference, Karlsruhe Germany, 2008.

[21] Ben Adida and Mark Birbeck. (2007, October) World
Wide Web Consortium - Web Standards. [Online].
http://www.w3.org/TR/xhtml-rdfa-primer/

[22] Nicholas Kushmerick, "Wrapper induction for information
extraction," 1997.

[23] Jerome Euzenat and Pavel Shvaiko, Ontology Matching.
New York, USA: Springer-Verlag New York, Inc, 2007.

[24] Stephen Soderland, "Learning Information Extraction
Rules for Semi-structured and Free text," Machine
Learning, vol. 34, no. 1-3, pp. 233 - 272, February 1999.

[25] Ion Muslea, Steven Minton, and Craig A. Knoblock,

"Hierarchical Wrapper Induction for Semistructured
Informatin Sources," Journal of Autonomous Agents and
Multi-Agent Systems, 2001.

[26] Costin Badica, Amelia Badica, and Elvira Popescu, "A

New Path Generalization Algorithm for HTML Wrapper
Induction," in Advances in Web Intelligence and Data
Mining , 2006.

[27] Laurian Gridinoc, Marta Sabou, Mathieu d’Aquin, Martin

Dzbor, and Enrico Motta, "Semantic Browsing with
PowerMagpie ," in The Semantic Web: Research and
Applications, 2008, pp. 802-806.

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/2001/11/IsaViz/
http://www.w3.org/TR/rdf-sparql-query/
http://dublincore.org/usage/documents/profile-guidelines/
http://simile.mit.edu/longwell/
(http:/www.dfki.uni-kl.de/frodo/RDFSViz/
http://protegewiki.stanford.edu/index.php/OntoViz
http://semweb.salzburgresearch.at/apps/rdf-gravity/
http://simile.mit.edu/welkin/
http://www.w3.org/TR/xhtml-rdfa-primer/

	Semi-Automatic Generation of GUIs for RDF Browsing
	Introduction
	Related Works
	State of the art on RDF browsers

	Overall Concept
	Scenario

	Architecture
	User Interaction
	Conclusion and Future Works
	References

