
A Desktop-Integrated Semantic Platform for Personal Information Management

Maria Teresa Pazienza, Noemi Scarpato, Armando Stellato, Andrea Turbati

ART Research Group, Dept. of Computer Science,

Systems and Production (DISP) University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

{pazienza, scarpato, stellato, turbati}@info.uniroma2.it

Abstract

The Semantic Web dream of a real world-wide graph of interconnected resources is – slowly but steadily – becoming a concrete
reality. Still, the whole range of models and technologies which will change forever the way we interact with the web, seems to be
missing from every-day technologies available on our personal computers. Ontologies, annotation facilities and semantic querying
could (and should) bring new life to Personal Information Management, supporting users in contrasting the ever-growing information
overload they are facing in these years, overwhelmed by plethora of communication channels and media.
In this paper we present our attempt in bringing the Semantic Web Knowledge Management paradigm at the availability of diverse
personal desktop tools (Web Browser, Mail clients, Agenda etc…), by evolving Web Browser Semantic extension Semantic Turkey to
an extensible framework providing RDF data access at different levels: java access through OSGi extensions, HTTP access or
dedicated JavaScript API for the whole range of tools from the open source suite of Mozilla applications

1. Introduction

The Semantic Web is becoming ever and ever a concrete
reality: with SPARQL reaching W3C recommendation
early this year (Prud'hommeaux, 2008), languages for data
representation and querying have finally reached
standardization, while interests and research in Semantic
Web technologies have definitely migrated from mere
ontology development (which has now met industry
standards) aspects to the discovery and devise of
applications which can both show and exploit Semantic
Web full potential.
Despite this encouraging trend of Semantic Web models
and technologies, these seem to be missing from
applications which we use every day on our personal
desktop computers. Hopefully, they could surely
contribute to improve the quality of personally managed
data by supporting users with powerful vocabularies
(ontologies) which can be extended (by adapting them to
personal needs) and shared through different applications
and with other people.
Recently, several efforts have been spent towards
definition of applications and solutions for implementing
the so called Semantic Desktop (Iturrioz, Díaz, Fernández
Anzuola, & Azpeitia, 2003; Sauermann, 2005; Groza, et
al., 2007).
All the Semantic Desktop approaches cited above usually
aim at centralizing an RDF Semantic Repository as a local
information management resource, which can be accessed
by diverse applications on the desktop sharing common
data but providing different services over them.
In this work, we present our proposal for a Semantic
Integrated Environment for the Mozilla suite (though it
can be exploited also by other applications) of desktop
utilities (Firefox, Sunbird, Thunderbird etc…). This
project originated from our ontology tool Semantic
Turkey (Griesi, Pazienza, & Stellato, 2007), which was
originally thought as a Semantic extension for the Firefox
Web Browser and lately evolved into a multi-layered
extensible framework for Knowledge Management and
Acquisition.

The current framework which still backbones Semantic
Turkey, is two-fold in its offer: by first, being of interest
for ontology developers and domain experts, since it aims
at facilitating the process of knowledge acquisition and
development, and, on the other side, providing an
extensible infrastructure over which SW applications,
needing and relying on rock-solid web browsing
functionalities as well as on RDF management capacities,
can be developed and deployed. In this paper we present
the different service layers which are exposed by current
version of Semantic Turkey, and how they can be
accessed by Mozilla-based and other external applications
to give life to a new multimodal Semantic Desktop.

2. Other works

Beside the main research stream which is conducted in
this field, other researchers are focusing on finding new
powerful and versatile ways of interaction with the user,
which can exploit the advanced possibilities given by the
Semantic Desktop. as in (Iturrioz, Díaz, & Fernández
Anzuola, 2008) where the seMouse (Semantic Mouse)
offers a Mouse extension (cabled at Operating System
level) allowing for easy classification, authoring, retrieval
etc… of files on the desktop and of their textual content.
Since it is acting at OS level, this mouse extension is not
limited to any specific working environment/application:
no matter whether the user is working with Word, Power-
Point, Netscape, etc, the semantic button is available for
annotation/authoring and the user does not have to move
to a new dedicated editor when annotating.
Though intuitions such as the one of seMouse centered the
limitations of past approaches with respect to their
concrete usability in real life, most recent trends tend to
favor the centralization of core knowledge services, thus
giving the possibility to all desktop applications to feature
even very specific and advanced functionalities while
interacting together with (and possibly be coordinated by)
the central semantic repository.
The most recent (and sensible) effort following this trend
has been represented by the FP6 EU funded project
NEPOMUK (Groza, et al., 2007) where a massive range

of technologies comprehended several extensions for
existing applications centered around an RDF Data server
activated by the Operating System.
Eventually, a Semantic Desktop could probably rely on a
combination of both approaches, which are not in contrast
with each other.
Another important aspect of research is the definition of
the metamodels which should contradistinguish such
powerful organization systems: in PIMO (Sauermann, van
Elst, & Dengel, 2007) a multilayered ontology model is
presented. The PIMO (Personal Information Models)
Ontology offer a first distinction between three conceptual
categories: Native Resources (files, e-mails, contacts
etc…), Native Structures (representing organizational
schemas for the above, such as folders, bookmark folders,
tags etc…) and lastly the Mental Model provides a
cognitive representation of the knowledge a user is
intended to manage, which is indipendent of (though may
be linked to) the above.
PIMO is the structured according to five layers which
account for different levels of specification (such as for
the first three levels: PIMO-Basic, PIMO-Upper and
PIMO-Mid) as well as for the specific exigencies of the
user (PIMO-User) and of the working/social environment
where he acts (Domain ontologies).
The necessity for addressing different facets of knowledge
in organization systems is also present (though in a less
general perspective, which is specifically aimed at
enterprise organizations) in (Apostolou, Mentzas, &
Abecker, 2008), where a single Knowledge Object (KO)
may be characterized according to descriptors which are
provided by different facets of the whole ontology. These
facets are: Business, Domain, Community, Context and
Content, describing where a KO may be used, according

to which conditions its use is suggested, the range of users
which may be interested in it, and the like.

3. From Semantic Bookmarking to
Knowledge Management and Acquisition

Semantic Turkey was born inside a national project –
funded by the FILAS agency (Finanziaria Laziale di
Sviluppo) under contract C5748-2005 – focused on
innovative solutions for browsing the web and for
collecting and organizing the information observed during
navigation.
The prototype for the project immediately took the form
of a Web Browser extension allowing users to annotate
information from visited web sites and organize it
according to a personally defined domain model:
Semantic Turkey paradigmatic innovation was in fact to
“obtain a clear separation between (acquired) knowledge
data (the WHAT) and web links (the WHERE)” pointing
to it. That is, to be able, through very easy-to-use
drag’n’drop gestures, to select textual information from
web pages, create objects in a given domain and annotate
their presence in the web by keeping track of the selected
text and of its provenience (web page url, title etc…). We
coined the expression “semantic bookmarking” for this
kind of activity.
Due to its proverbial extendibility, the Firefox platform
(http://www.mozilla.com/en-US/firefox/) had been chosen
as the hosting browser for our application, while Semantic
Web standards and technologies were the natural
candidate for representing its knowledge model.
Semantc Turkey (Fig 1) was thus born. Standing on top of
mature results from research on Semantic Web
technologies, like Sesame (Broekstra, Kampman, & van
Harmelen, 2002) and OWLim (Kiryakov, Ognyanov, &

Fig. 1 Semantic Bookmarking with Semantic Turkey

Manov, 2005) as well as on a robust platform such as the
Firefox web browser, ST (Semantic Turkey) differentiated
from other existing approaches which are more
specifically tailored respectively towards knowledge
management and editing (Gennari, et al., 2003), semantic
mashup and browsing (Dzbor, Domingue, & Motta,
Magpie: Towards a Semantic Web Browser, 2003;
Huynh, Mazzocchi, & Karger, 2005) and pure semantic
annotation (Ciravegna, Dingli, Petrelli, & Wilks, 2002;
Kahan & Koivunen, 2001), by introducing a new
dimension which is unique to the process of building new
knowledge while exploring the web to acquire it.
By focusing on this aspect, we went beyond the original
concept of Semantic Bookmarking and tried to amplify
the potential of a new Knowledge Management and
Acquisition System: we thus aimed at reducing the
impedance mismatch between domain experts and
knowledge investigators on the one side, and knowledge
engineers on the other, providing them with a unifying
platform for acquiring, building up, reorganizing and
refining knowledge.

Fig. 2 shows the different annotation/knowledge
acquisition possibilities offered by the functionalities
based on interaction with the hosting web browser. In the
new version of ST, support for all kind of properties has
been introduced and reflected in the bookmarking facility:
when a portion of text is selected from the page and
dragged over an individual, the user may choose (as in the
old version) to add a new annotation for the same
individual or to use the annotation to fill one property slot
for it. In the second case, the user can now choose from a
list of properties (see small window in) the one which
will be filled: this list includes those properties having
their rdfs:domain including one of the types of the
selected instance, but may be extended to cover all
properties (letting the inference engine do the rest). If the
property selected for enrichment is an object property, the
user is prompted with a class tree (rooted on the
rdfs:range of the selected property) and is given the
possibility of creating a new individual named after the
text selected for the annotation or to choose an existing
one: in both cases the selected individual is bound –

User Semantic Turkey

[resource is a Class]

Drag'n'drop text over resource add an Individual named after the selected text

[resource is an Individual]

show the Annotation DialogChoose which action to undertake

[action is: add new Annotation]

add a new Annotation for the selected individual

[action is:

add new value for Property of selected individual]

Choose which property to fill

[property is: AnnotationProperty]

[property is: DatatypeProperty]

bind&create or bind an existing object as value for the property

ask for language

add property Value

[property is: ObjectProperty]

show Class Tree

[value = new object]

[value = existing object]

add new Individual named after selected text

relate object with subject through selected property

annotate object

Fig. 2 Activity diagram for semantic bookmarking/annotation

through the chosen property – to the one where he
originally dropped the text; a bookmark is also added for
it, pointing to the page where the object has been
observed. Even in this case, the user may choose to
visualize the entire class tree and not the one dominated
by the range of the property: the inference engine will
automatically assign the pointed instance to that range.
The above interaction modalities for knowledge
acquisition/annotation/bookmarking can be used in the
main Ontology Editor tool, as well as be exported as
pluggable functional objects, into other client applications
willing to adopt them in simpler user-centered
environments for Personal Data Management. The next
sections describes the different service layers which are
available through Semantic Turkey and how they can be
used to propel Semantic based desktop applications.

4. Service Layers for Applications

The main underlying application consists of an RDF
framework made of an HTTP application server (which in
Semantic Turkey is automatically started through Firefox)
based on Java technologies and of a set of client layers
facilitating access by users or third party applications.
The whole extension mechanism of the framework is
implemented through a proper combination of the Mozilla
extension framework (which is used to extend the user
interface, drive user interaction, add/modify application
functionalities and provide javascript API for the whole

set of Mozilla desktop utilities) and the OSGi java
extension framework (OSGi RFC0112, 2005) which
provides extension capabilities for the service and data
layers of the architecture. A comprehensive description of
Semantic Turkey architecture can be found in (Griesi,
Pazienza, & Stellato, 2007) and in (Pazienza, Scarpato,
Stellato, & Turbati, 2008). In this section we focus instead
on the different layers (see Fig. 3 above) and extension
points which characterize Semantic Turkey as an open
RDF framework with specialized functionalities for
Personal Information Management.

4.1. Javascript extensibility

Thanks to javascript dynamic programming paradigm,
where functions are first-class citizens of the language,
functionalities such as the annotation resolver described in
section 3, can be dynamically imported and associated to
logically coherent events in different client applications of
the Mozilla suite. The pluggable functional objects
mentioned in section 3 can thus be considered
independent components which can be exported and be
reused in web browser as well as in email clients. For
example, highlighting text in a web page within Firefox,
and dropping it over a class, could invoke the same
behavior when selecting text in emails from within
Thunderbird. Conversely, reacting to changes in the
underlying knowledge could produce different effects
depending on the client platform which is connected to the

Knowledge Services

Data Layer

Middle Layer

Servlet Java

Client

Presentation Layer

AJAX request

JavaScript HTTP API

Extension

Client Side

Server Side

JavaScript

Service API

JavaScript

Service API

JavaScript Code

JavaScript

Code

Java Service

Java OSGI

Java Service

Fig. 3 Architecture of the different Access layers for Mozilla Semantic Desktop

Semantic Desktop: finding RDFa (Adida & Birbeck,
2007) data on a web page from within the web browser,
detailing scheduled events, could lead to the import of that
data inside the semantic desktop’s ontology, and the
consequent export of this data inside other desktop
applications for calendar management such as Lightning
or Sunbird

1
.

4.2. OSGi extensibility

OSGi compliance is obtained through the OSGi
implementation developed inside the Apache Software
Foundation, called Felix (felix.apache.org/).
Two main extension points have been introduced: an
OntologyManager Extension and a Service extension.
The OntologyManager Extension point allows different
triple-store technologies implementing low level RDF
data storage, to be plugged to the system. Current
implementations provide support for Sesame2, OWLIM
and Jena (McBride, 2001) – through its NG4J extension
(Bizer, Cyganiak, & Hartig) supporting named graphs –
technologies.
The service extension point allows new java services to be
plugged to the system, this way further desktop
applications can automatically deploy and add their
functionalities to the main service.
The set of services offered by the Knowledge Server
provide high-level, macro operations, other than standard
ontology management ones. The pure triple-level RDF
data layer is not obfuscated by macro-operations, and is
directly accessible through java API as well as replicated
in a set of basic knowledge services for RDF
manipulation.
A third extension point allows for the registration of plug-
ins: these act as collectors for set of services sharing a
common logical ratio. While standard service extensions
are sort of add-ons to the main application and are always
available unless deactivated or removed, extensions bound
to plug-ins are activated/deactivated according to the
status of the plug-in. Plug-ins are assigned to projects and
their status and persistent information is stored with the
metadata for each project.
The project-based behavior of the platform comes from its
ontology-editor ancestry, while when it is being used as
Semantic Desktop Server, a single project (called main-
project), is always active and automatically started at
system initialization. Each application based on the
Semantic Desktop and needing customized services thus
registers itself as a plug-in and installs all of its required
services via OSGi.
Finally, a data extension point allows for the declaration
of support and application ontologies which are loaded by
the system to drive its behavior and the one of its
extensions and connected applications. These ontologies
are not treated the same way as imported domain/user
ontologies and are explicitly registered for their role.
Registering an ontology through this extension point has a
variety of consequences: these are loaded automatically at
system startup even if they are not explicitly imported by
the edited domain ontologies and application ontologies’
content (and content classified after application
ontologies’ concepts) is not shown explicitly but only

1 http://www.mozilla.org/projects/calendar/

managed and exposed indirectly through applications’
services.
We enabled this classification of ontologies since all the
data which is available through the Mozilla Semantic
Desktop (MSD from now on) is available as RDF triples:
it was thus mandatory to separate the knowledge which is
being managed by the user, from the one which is being
used by the Semantic Desktop to coordinate its activities.
Despite this “conceptual separation” – ontology spaces are
managed through the use of named graphs (Carroll, Bizer,
Hayes, & Stickler, 2005) – having a single RDF cauldron
where all triples are being stored allows for more tight
connection between these spaces, so that, for example,
data in the application space could be used to organize the
domain information according to different facets, or add
annotations which should not be available as domain
ontology. As an example of application ontology, the
basic version (i.e. no extensions installed) of MSD
declares an application ontology called Annotation

2

describing the textual occurrences from which entities
submitted by the user have been annotated, together with
details about the document (type of document, url for web
pages, title etc…) where these annotations have been
taken. An example of support ontology is instead provided
by the Sesame2 implementation of the OntologyManager
extension point: Sesame2 library does not support OWL
reasoning nor includes the OWL vocabulary; since
Mozilla Semantic Desktop relies on the OWL vocabulary,
this is being declared as a support ontology and
dynamically added to the core knowledge.
Data defined upon vocabulary from the Annotation
ontology (since it is an application ontology) is thus not
shown by default in all ontology editing interfaces, and its
content is made available to the user through MSD’s
functionalities (such as those for retrieving documents
associated to ontology resources, or for highlighting all
the annotations taken in a document), while resources
from the OWL vocabulary (being it a support ontology)
are shown but are kept separate from user data (owl
vocabulary is not saved together with user data nor it is
explicitly imported by user ontology).

4.3. HTTP Access

All of OSGi services are available via AJAX through
HTTP request. The response to these requests is codified
in XML or (in some cases) in JSON, depending on request
type, available standards and compactness of the content.
Due to its complete platform/technology independence,
this is the layer which can be exploited by any application
which has no direct connection with the service layer and
is not compatible with Mozilla technology.

4.4. Mozilla JavaScript API

Upon the above layer, a set of JavaScript API, completely
hiding the HTTP request/response interaction, has been
built by using Mozilla technology. These are the API
which are currently used inside Semantic Turkey
Semantic Web Browser.
These API are coded as exportable functions into Mozilla
modules, a proprietary Mozilla solution for JavaScript
allowing for persistence (JavaScript objects inside a
module persist upon different imports of the same

2 http://art.uniroma2.it/ontologies/annotation

module) and hiding/encapsulation (a module’s developer
must choose which objects/functions are exported by
users of the module and which ones just serve as hidden
internal machinery).
These JavaScript Modules (roughly paired with their
service counterparts in the service layer) can thus easily
be imported into any sheet of a Mozilla based application
(or extension). In the following example:

Components.utils.import(
 "resource://stservices/SERVICE_Cls.jsm",semanticturkey
)

all the objects and functions exposed by the SERVICE_Cls
module are imported into the variable semanticturkey:
this is a good practice to prevent variable clashing, as
Mozilla extensions share a common space where all script
code (from main application and all of its extension) is
pooled.
Once the above statement is explicated in a script
document, API methods contained in SERVICE_Cls can be
used in the same sheet, like in the following:

semanticturkey.STRequests.Cls.getInstanceList(clsName)

where all instances of class identified by clsName are
retrieved and returned by the method.
HTTP masking is handled by a common module:

resource://stmodules/SemTurkeyHTTP.jsm

which is shared by all API methods. The
SemTurkeyHTTP.jsm module contains convenience
methods for composing GET and POST requests, for
unmarshalling received XML/JSON over HTTP responses
and recomposing them in terms of dedicated JavaScript
objects.
Due to the masking of HTTP details by Mozilla
JavaScript Semantic API, all of their methods return
explicit JavaScript exceptions. These are classified as:

– errors: error JavaScript exceptions mask HTTP
communication errors as well as exceptions thrown at
run time by the invoked service and caught by the
HTTP Server. Usually it is not easy for the common
user to discover the problem which has been
generated, and these kind of exceptions are
considered as severe application faults

– exceptions: JavaScript exceptions marked as
application exceptions are due to predictable java
exceptions which occurred at server level. Usually
they contain understandable messages which may be
explicitly communicated to the user. Also, specific
management of these exceptions depending on their
type and the context where these occurred can be
performed by the application invoking the method
which threw them.

Developers of new applications based on the Mozilla
framework can thus invoke the underlying services and
handle exceptions depending on the context of invocation,
thus following a traditional structured programming
approach and producing readable “narrative scripting”
code, instead of writing complex code for client-server
interaction.
Application Developers willing to add further APIs for
interfacing with their software, can extend the service
layer through OSGi and then build new modules for the

JavaScript API, relying on the common
SemTurkeyHTTP.jsm infrastructure.

4.5. Reusable widgets for Semantic Applications
based on this Mozilla Semantic Desktop

Applications exploiting the Mozilla Semantic Desktop
which are based on the same Mozilla technology, can
beneficiate of exportable widgets expressly dedicated to
Ontology Management. We are currently expanding this
aspect, which is currently limited to reusable widgets for
class and property trees, and for resource editors (class,
property, instance and ontology resource editor widgets)
to cover a whole range of widgets for ontology
maintenance and editing.
Also, to satisfy the more complex needs of end-user
applications, which should hide the ontology editing
aspects and show custom widgets more close to their
specific nature, we are considering the addition of a
dedicated UI generator based on the Fresnel model
(Pietriga, Bizer, Karger, & Lee, 2006) for browser
independent visualization of RDF graphs. Our UI
generator will provide a Fresnel parser and UI generation
facilities based on the XML User Interface Language
XUL, which is adopted by the suite of Mozilla tools.

5. Conclusions

We have presented here our ongoing work for a fully-
extensible RDF based platform realizing the Semantic
Desktop paradigm.
The strength of Mozilla Semantic Desktop is not in the
whole range of end-user services (which are currently
limited to the Semantic Bookmarking services offered by
its originating platform Semantic Turkey), but in the wide
spectrum of connections that are exposed to future
applications willing to interact with it.
A second point is on the depth and completeness of its
ontology management capabilities, providing a solid
platform with convenience methods for ontology editing,
disburdening the application developer from the non-
trivial effort of maintaining the underlying ontology.
Keeping the RDF graph clean (free from potential
redundancies and from dangling triples, i.e. triples out of
the reachability of any application insisting on them) is in
fact a non-trivial aspect from which applications should
abstract and which is not supported by default triple-store
systems. Advanced layers for RDF management should
consider the kind of triple-store they are using, the level of
reasoning which is supported (and, where necessary, the
“trivial reasoning” which should be computed by them to
present data in a readable way) etc.. to provide an
homogeneous interaction layer for the application
developer.
These “advanced management” requirements are not
limited to pure graph maintenance. RDF/OWL pushed
forward concepts such as explicit semantics, shareability
and interconnectivity: platforms supporting shared
knowledge for cooperation of RDF-based applications,
should be able to provide powerful tools for meta-
management: modularization, multi-faceted perspectives,
visualization, are all fundamental aspects which should
contradistinguish the layering of future RDF based
frameworks, and in special case for Semantic Desktop
Platforms.

References

Adida, B., & Birbeck, M. (2007, October 26). RDFa
Primer. Retrieved from World Wide Web Consortium -
Web Standards: http://www.w3.org/TR/xhtml-rdfa-
primer/

Apostolou, D., Mentzas, G., & Abecker, A. (2008).
Managing Knowledge at Multiple Organizational
Levels Using Faceted Ontologies. Journal of Computer
Information Systems , Winter 2008-2009, 32-49.

Bizer, C., Cyganiak, R., & Hartig, O. (Eds.). (n.d.). NG4J
- Named Graphs API for Jena. Retrieved May 14,
2009, from NG4J - Named Graphs API for Jena:
http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/

Broekstra, J., Kampman, A., & van Harmelen, F. (2002).
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. The Semantic Web -
ISWC 2002: First International Semantic Web
Conference (p. 54-68). Sardinia, Italy: Springer Berlin /
Heidelberg.

Carroll, J. J., Bizer, C., Hayes, P., & Stickler, P. (2005).
Named Graphs, Provenance and Trust. WWW '05:
Proceedings of the 14th international conference on
World Wide Web (p. 613-622). New York, NY, USA:
ACM Press.

Ciravegna, F., Dingli, A., Petrelli, D., & Wilks, Y. (2002).
User-system cooperation in document annotation based
on information extraction. 13th International
Conference on Knowledge Engineering and Knowledge
Management, EKAW02. Springer Verlag.

Dzbor, M., Domingue, J., & Motta, E. (2003). Magpie:
Towards a Semantic Web Browser. 2nd International
Semantic Web Conference (ISWC03). Florida, USA.

Gennari, J., Musen, M., Fergerson, R., Grosso, W.,
Crubézy, M., Eriksson, H., et al. (2003). The evolution
of Protégé-2000: An environment for knowledge-based
systems development,. International Journal of
Human-Computer Studies , 58 (1), 89–123.

Griesi, D., Pazienza, M. T., & Stellato, A. (2007).
Semantic Turkey - a Semantic Bookmarking tool
(System Description). 4th European Semantic Web
Conference (ESWC 2007). Innsbruck, Austria.

Groza, T., Handschuh, S., Moeller, K., Grimnes, G.,
Sauermann, L., Minack, E., et al. (2007). The
NEPOMUK Project - On the way to the Social
Semantic Desktop. In T. Pellegrini, & S. Schaffert
(Ed.), Proceedings of I-Semantics' 07 (pp. 201-211).
JUCS.

Huynh, D., Mazzocchi, S., & Karger, D. (2005). Piggy
Bank: Experience the Semantic Web Inside Your Web
Browser. Fourth International Semantic Web
Conference (ISWC05), (p. 413-430). Galway, Ireland.

Iturrioz, J., Díaz, O., & Fernández Anzuola, S. (2008).
Toward the Semantic Desktop: The seMouse Approach.
IEEE Intelligent Systems , 23, 24-31.

Iturrioz, J., Díaz, O., Fernández Anzuola, S., & Azpeitia,
I. (2003). The Semantic Desktop: an architecture to
leverage document processing with metadata. In S.
Guier (Ed.), Multimedia and Data Document
Engineering (MDDE'03). Berlin, Germany.

Kahan, J., & Koivunen, M.-R. (2001). Annotea: an open
RDF infrastructure for shared Web annotations. WWW
'01: Proceedings of the 10th international conference
on World Wide Web (pp. 623-632). Hong Kong, Hong
Kong: ACM.

Kiryakov, A., Ognyanov, D., & Manov, D. (2005).
OWLIM – a Pragmatic Semantic Repository for OWL.
Int. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2005), WISE 2005. New York
City, USA.

McBride, B. (2001). Jena: Implementing the RDF Model
and Syntax Specification. Semantic Web Workshop,
WWW2001.

OSGi RFC0112. (2005). Retrieved from
http://www2.osgi.org/Download/File?url=/download/rf
c-0112_BundleRepository.pdf

Pazienza, M., Scarpato, N., Stellato, A., & Turbati, A.
(2008). Din din! The (Semantic) Turkey is served!
Semantic Web Applications and Perspectives. Rome,
Italy.

Pietriga, E., Bizer, C., Karger, D. R., & Lee, R. (2006).
Fresnel: A Browser-Independent Presentation
Vocabulary for RDF. In I. Cruz, S. Decker, D.
Allemang, C. Preist, D. Schwabe, P. Mika, et al. (Ed.),
The 5th International Semantic Web Conference
(ISWC06). LNCS 4273, pp. 158-171. Athens, GA,
USA: Springer Verlag.

Prud'hommeaux, E. :. (2008, January 15). SPARQL Query
Language for RDF. Retrieved from World Wide Web
Consortium - Web Standards:
http://www.w3.org/TR/rdf-sparql-query/

Sauermann, L. (2005). The Gnowsis Semantic Desktop
for Information Integration. 1st Workshop on Intelligent
Office Appliances(IOA 2005): Knowledge-Appliances
in the Office of the Future. Kaiserslautern, Germany.

Sauermann, L., van Elst, L., & Dengel, A. (2007). PIMO -
A Framework for Representing Personal Information
Models. In T. Pellegrini, & S. Schaffert (A cura di),
Proceedings of I-MEDIA '07 and I-SEMANTICS '07
International Conferences on New Media Technology
and Semantic Systems as part of (TRIPLE-I 2007).
Graz, Austria.

	A Desktop-Integrated Semantic Platform for Personal Information Management
	Maria Teresa Pazienza, Noemi Scarpato, Armando Stellato, Andrea Turbati
	ART Research Group, Dept. of Computer Science,
	Systems and Production (DISP) University of Rome, Tor Vergata
	Via del Politecnico 1, 00133 Rome, Italy
	{pazienza, scarpato, stellato, turbati}@info.uniroma2.it
	References

