
MASKKOT 

A Tool for Annotating Entities through OKKAM Service 

Armando Stellato
1
, Heiko Stoermer

2
, Stefano Bortoli

2
, Noemi Scarpato

1
, 

Andrea Turbati
1
, Paolo Bouquet

2
, Maria Teresa Pazienza

1
 

1 ART Group, Dept. of Computer Science, Systems and Production 

University of Rome, Tor Vergata 

Via del Politecnico 1, 00133 Rome, Italy 
{stellato,scarpato,turbati,pazienza}@info.uniroma2.it 

 
2 ART Group, Dept. of Computer Science, Systems and Production 

University of Rome, Tor Vergata 

Via del Politecnico 1, 00133 Rome, Italy 
{bortoli, bouquet, stoermer}@disi.unitn.it 

Abstract. The Semantic Web is facing the important challenge to maintain its 

promise of a real world-wide graph of interconnected resources. Unfortunately, 

while URIs almost guarantee a direct reference to entities, the relation between 

the two is not bijective. Many different URI references to same concepts and 

entities can arise when -- in such a heterogeneous setting as the WWW -- 

people independently build new ontologies, or populate shared ones with new 

arbitrarily identified individuals. The proliferation of URIs is an unwanted, 

though natural effect strictly bound to the same principles which characterize 

the Semantic Web; reducing this phenomenon will improve the recall of 

Semantic Search engines, which could rely on explicit links between 

heterogeneous information sources. To address this problem, in this paper we 

present an integrated environment combining the semantic annotation and 

ontology building features available in the Semantic Turkey web browser 

extension, with globally unique identifiers for entities provided by the okkam 

Entity Name System, thus realizing a valuable resource for preventing diffusion 

of multiple URIs on the (Semantic) Web 

1. Introduction 

Whichever name it will assume, be it Web 3.0, Giant Global Graph, or any other, the 
Semantic Web will have to face an important challenge to maintain its promise of a 
real world-wide graph of interconnected resources: their identity and retrieval. If 
entities are uniquely identified in the Web, then anyone can make statements about 
them, thus incrementing their intensional description and contributing to their success 
and retrievability.  
Unfortunately, while URIs almost guarantee a direct reference to entities, the relation 
between the two is not bijective. Many different URI references to same concepts and 
entities can easily arise when, in such a  heterogeneous setting as the WWW, people 



2      Armando Stellato1, Heiko Stoermer2, Stefano Bortoli2, Noemi Scarpato1, 

Andrea Turbati1, Paolo Bouquet2, Maria Teresa Pazienza1 

independently build new ontologies, or populate shared ones with new arbitrarily 
named individuals. 
In this work we present an integrated framework combining the semantic annotation 
and ontology building features provided by the Semantic Turkey web browser 
extension, with global, unique identifiers for entities provided by the OKKAM Entity 
Name System (ENS). The integration has been carried out through the development 
of a dedicated ENS extension for Semantic Turkey – maskkot -- which extends its 
ordinary ontology building functionalities with entity search over the okkam service. 
Through maskkot, users can create, extend and/or populate ontologies with 
individuals, while maintaining reference to their okkam unique identifiers, giving life 
to a virtuos cycle in which they may contribute and/or get additional information from 
the ENS-empowered semantic search engine, and at the same time fighting a 
proliferation of identifiers for the same entity. 
It is a commonly accepted fact that whenever a computer system needs to describe an 
object (or ``entity'' as we call it), it needs to create some kind of identifier in the 
system which is then regarded as the placeholder or proxy for this object. This holds 
true for e.g. database systems, but is of special significance for the Semantic Web, 
where the notion of the Uniform Resource Identifier (URI) fulfills exactly this task, 
but has the additional goal of linking information about entities in a distributed but 
global fashion. In this way, distributed information sources are supposed to become 
integrateable on the fly, to create links between pieces of information that were 
previously not linked before, enabling systems to answer queries that were previously 
impossible to answer. 
The Semantic Web in its current state suffers from several weaknesses which we are 
trying to address in this paper: 

– A lack for convenient, user-friendly tools for semantic annotation of Web 
content. While solutions exist and are described in more detail in section 2, we 
believe that means for semantic annotation should be given as pervasively as 
possible, and should be (almost) as easy as creating a bookmark. 

– A proliferation of URIs for entities. As we have argued in (Bouquet, Stoermer, & 
Bazzanella, 2008), to date no scalable and open service is available to make 
possible and to support a consistent reuse of identifiers for entities, and this 
undermines the practical possibility of a seamless integration of distributed 
knowledge into a global knowledge space. 

The work presented in this paper attempts to contribute to the state of the art in the 
Semantic Web on several levels: firstly, by providing an intuitive tool for the creation 
of semantic content; secondly, by making sure that the semantic annotations created 
are also globally aligned on the identifiers for entities, enabling seamless, syntactical 
integration of data without the need for complex ex-post alignment mechanisms; and 
thirdly, by contributing to an ever-expanding public space of entity identifiers which 
offers significant positive network externality effects1  

                                                           
1  See (Liebowitz & Margolis, 1998) or http://en.wikipedia.org/wiki/Network_effect for an 

introduction. 



MASKKOT 

A Tool for Annotating Entities through OKKAM Service      3 

2. Related Work 

The maskkot integrated platform is rather original in its combination of ontology 
editing/annotation/semantic browsing functionalities supported by an entity 
identification service. We therefore report here relevant past works related to the most 
relevant features characterizing the presented tool. 

2.1. Semantic Browsing and Semantic/Social Bookmarking/Annotation 

One of the first examples of Semantic Browser can be probably traced back to the 
Haystack (Quan & Karger, 2004) web client. Developed at the MIT laboratories, 
Haystack was conceived as an application that could be used to browse arbitrary 
Semantic Web information in much the same fashion as a Web browser can be used 
to navigate the Web. Standard point-and-click semantics let the user navigate over 
aggregation of RDF repositories from different arbitrary locations. The application 
had been built as an extension for the popular Integrated Development Environment 
Eclipse2  this choice facilitated extension of the tool thanks to Eclipse flexible plug-in 
mechanism, but required the user to adopt Eclipse as a platform for browsing the web 
and collecting data from it: a strong requirement for the user, who would just prefer to 
rely on his trusted personal web browser and try out other features which are not too 
invasive for his usual way of working. 
Such a less invasive approach was followed by Magpie (Dzbor, Domingue, & Motta, 
2003), that was deployed as a plug-in for the Microsoft Internet Explorer Web 
Browser. Magpie allowed for semantic browsing, and perceived it as a parallel 
navigational style to complement the "exposed" web content (i.e. free text) by an 
associated, dynamic semantic layer (which was derived from one or more ontologies 
semantically describing typical content in a particular domain). Magpie also allows 
for collaborative semantic web browsing, in that different persons may gather 
information from the same web resource and exchange it on the basis of a common 
ontology. Subsequent work on Magpie (Dzbor, Motta, & Domingue, 2004) extended 
the platform more and more towards the vision of the Semantic Web as "an open web 
of interoperable applications" (Berners-Lee, Hendler, & Lassila, 2001), by allowing 
bi-directional exchange of information among users and services, which can be 
opportunistically located and composed, both manually (web services) or 
automatically (semantic web services). 
From (part of) the same authors of Haystack, comes Piggy-Bank (Huynh, Mazzocchi, 
& Karger, 2005), an extension for the Firefox web browser that lets Web users extract 
individual information items from within web pages and save them in RDF, replete 
with metadata. Piggy Bank then lets users make use of these items right inside the 
same web browser. These items, collected from different sites, can then be browsed, 
searched, sorted, and organized, regardless of their origins and types. Piggy-Bank 
users may also rely on Semantic Bank, a web server application that lets them share 
the Semantic Web information they have collected, enabling, as for Magpie, 
collaborative efforts to build sophisticated Semantic Web information repositories 
from daily navigation through their enhanced web browser. 

                                                           
2 http://www.eclipse.org/ 



4      Armando Stellato1, Heiko Stoermer2, Stefano Bortoli2, Noemi Scarpato1, 

Andrea Turbati1, Paolo Bouquet2, Maria Teresa Pazienza1 

2.2. Identity and Reference 

When attempting to give an identity to ``things'' in a way that makes them describable 
in the Semantic Web (i.e. choosing or creating a URI as a placeholder for them), we 
can encounter three different approaches: 

Local Identification 
This is unfortunately -- as mentioned in the introduction -- the common practice at the 
moment: new URIs for entities are created on the fly, because they are regarded as a 
mere technical necessity to be able to make RDF statements. Such identifiers do not 
consider a scope that goes beyond the local knowledge base, and even the Semantic 
Web community itself has been following this practice, e.g. in the case of authors of 
Semantic Web conferences as we have shown in (Bouquet, Stoermer, & Bazzanella, 
2008). 

Vertical Identification 
Vertical approaches usually refer to a certain domain of interest, for which an 
organization is issueing identifiers for entities. Examples include publications (DOI3), 
geographical locations (Geonames4 or Yahoo! Internet Locations5), life science 

                                                           
3 http://www.doi.org 
4 http://www.geonames.org 
5 http://developer.yahoo.com/geo/ 

 

 
 

Fig. 1. Entities in different information sources and formats, annotated with unique identifiers 

issued by the okkam ENS 

 



MASKKOT 

A Tool for Annotating Entities through OKKAM Service      5 

entities(LSID6), and many more. The issue with these vertical approaches is the 
findability of the identifiers: if we are creating RDF statements about entities from 
many different domains, how do we find out which is the source of an identifier for an 
entity, and how do we make sure that we chose ``the right'' (i.e. authoritative) one? 

Global Identification 
Global identification in our sense is a horizontal approach as an attempt to overcome 
the issues of both the local and the vertical approach. Currently, there are two main 
streams of activity in the Semantic Web which can be considered relevant in this 
respect. The first one is the Linking Open Data initiative7, which pursues an ex-post 
approach trying basically to discover identity relations between entities that have been 
given different identifiers in different knowledge bases, but are actually (believed to 
be) ``the same''. As we have discussed in (Bouquet, Stoermer, Cordioli, & 
Tummarello, 2008), this approach is viable due to the simple fact that such un-aligned 
data sources exist, but it has the obvious downside that it does not provide a solution 
for avoiding such a proliferation of identifiers. An orthogonal approach to address all 
these issues are the efforts around the okkam Entity Name System (ENS), which is 
described in further detail in section 3.1. 

3. Towards an Entity-centric Semantic Annotation Platform 

3.1. The Entity Name System (ENS) 

The key idea behind the proposal of an ENS is that the Semantic Web can become an 
open and scalable space for publishing knowledge (in the form of RDF data) only if 
there will be a reliable (and trustworthy) support for the reuse of URIs. Therefore, at a 
very general level, the core functionality of the ENS can be characterized as follows: 
given any representation of an entity (e.g. a bag of keywords, a paragraph of text, a 
collection of key-value pairs, a graphical depiction, and so on), decide if a URI for 
this entity is already available in an entity repository (using some method(s) for entity 
matching); if it is, then the ENS will return its URI (or at least a ranked list of 
candidates), otherwise it will issue a new URI which will be stored in the ENS 
repository. 
As we have argued in (Bouquet, Stoermer, & Bazzanella, 2008), issues of entity 
identification are optimally solved a-priori, across data sources and formats. Instead 
of creating RDF repositories in which the same real-world entity is denoted by two or 
more different URIs, and then trying to reconcile these URIs, we should aim at 
enabling any application which produces RDF content to reuse a globally unique URI 
for that resource from the outset, possibly even beyond the Semantic Web data space, 
as illustrated in fig. 1. 

                                                           
6 http://lsids.sourceforge.net/ 
7http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData 



6      Armando Stellato1, Heiko Stoermer2, Stefano Bortoli2, Noemi Scarpato1, 

Andrea Turbati1, Paolo Bouquet2, Maria Teresa Pazienza1 

The positive effects are evident. Instead of using one of the many possible names for 
an entity8 a uniform electronic surrogate is used. The local effect within a single 
system is that ambiguities of references to entities in metadata can be eliminated to 
the largest part already at creation time. The global effect is that: 

i. information integration is largely reduced to schema level integration, as entity 
identifiers provide large parts of data-level integration for free (besides dealing 
with conflicting and redundant data in different collections), and 

ii. completely new hyper-structures are possible that link between different entities 
and between artifacts and entities via the shared entity identifiers. 

Optimally, such a global identifier for every entity referenced in a data source is used 
throughout all records/terms/statements that refer to this entity, in every data source 
referring to this entity, and in (external) content such as websites or other documents 
(fig. 1). This leads to the possibility to relate and integrate -- without additional efforts 
-- textual and multimedial content referring to a specific entity. This becomes more 
and more relevant taking into consideration the fast pace of development in 
multimedia libraries, as can be seen in current services such as YouTube9 or Flickr10. 
Okkam is an implementation of an Entity Name System (ENS), which is currently 
under development in a large-scale European project. The aim of this system is to 
provide a more complete set of distributed ENS functionalities, an adaptive matching 
layer, and vastly improved storage. 
The standard use-case -- further illustrated in fig. 2 – consists in assigning an okkam 
identifier to an entity that is being annotated in any kind of content (such as an 
OWL/RDF ontology, an XML file, or a database), to make the entity globally 

                                                           
8 The interested reader is referred to the seminal philosophical discourse about naming by Saul 

Kripke 
9 http://www.youtube.com 
10 http://www.flickr.com 

 

Fig. 2. Entity-centric Annotation Activity Diagram 

 



MASKKOT 

A Tool for Annotating Entities through OKKAM Service      7 

identifiable: this amounts to querying okkam for the existance of the entity at hand, 
and re-using the global identifier for this entity. This is usually achieved through 
functionalities provided by a client application -- e.g. the one presented in this paper, 
or others like Foaf-O-Matic (Bortoli, Stoermer, & Bouquet, 2007) or okkam4p 
(Bouquet, Stoermer, & Xin, 2007). Such a client application accesses the okkam API, 
and presents (if available) a list of top candidates which match the description for the 
entity provided within the client application. If the entity is among these candidates, 
the client agent (human or software) uses the associated okkam identifier in the 
respective information object(s) instead of a local identifier. If the entity cannot be 
found, the client application can create a new entry for this entity in okkam and thus 
cause an identifier for the entity to be issued and used as described before. The okkam 
ENS implements a variety of methods for entity matching, typically achieving very 
good recall and precision values (Stoermer, Rassadko, & Vaidya, 2010; Ioannou, et 
al., 2009).  

3.2. Semantic Turkey 

Semantic Turkey (ST), in its original version (Griesi, Pazienza, & Stellato, 2007), is a 
"Semantic Bookmarking" platform:  an hybrid between a Web Browser, an 
Annotation tool and an Ontology Editor. The expression Semantic Bookmarking was 
coined to indicate the process of annotating information from (web) documents, to 
acquire new knowledge and represent it through representation models.  Its basic 
functionalities allow for: 

1. capturing information from web pages - both by considering the page as a whole, 
as well as by selecting portions of its text - and annotating them with respect to 
adopted referenced ontologies 

2. editing the above ontologies for classifying the annotated information and for 
better characterizing their relevance to the interests of the user 

3. navigating the structured information as an underlying semantic net which, 
populated with the many relationships which bind the annotated objects between 
them, eases the process of retrieving the knowledge (and associated web pages) 
which was buried by the past of time, by means of associative search (e.g. i 
remember there were a guy - who? - who worked in that project - which? - which 
were led by that university - again, which? - where that other person - yes, i have 
that name! - has a position) rather than traditional target-focused search&retrieval 
solutions 

Its architectural and functional design make Semantic Turkey differentiate from 
similar, existing semantic browsers and annotation tools, as it offers a lightweight 
structure, which completely exploits the infrastructure of the hosting web browser 
(with respect to, for example, the complex completely-web based interface of Piggy-
Bank (Huynh, Mazzocchi, & Karger, 2005) and which grants the user a good control 
over its personal domain representation (while traditional semantic 
annotation/browsing tools like Magpie (Dzbor, Domingue, & Motta, 2003) and Melita 
(Ciravegna, Dingli, Petrelli, & Wilks, 2002), are only able to import and adopt 
ontologies without any editing capability).  



8      Armando Stellato1, Heiko Stoermer2, Stefano Bortoli2, Noemi Scarpato1, 

Andrea Turbati1, Paolo Bouquet2, Maria Teresa Pazienza1 

3.3. Maskkot: Entity-centric Annotation 

This section aims at introducing the concept of entity-centric annotation and 
describing its realization by means of the integration of ENS services in the Semantic 
Turkey Firefox extension, named maskkot. As described in previous section, 
Semantic Turkey allows for ontology-based annotation of web pages. In simple 
words, users annotate web pages linking web documents to an instance of a concept in 
a domain ontology, creating some kind of ``surfing experience'' knowledge base. 
Successively, users of Semantic Turkey can make use of the semantic structure of the 
defined ontology to discover further annotations related with other instances, 
improving the capability of reusing the already performed surfing/annotation 
experience. 
The current Semantic Turkey annotation process consists in highlighting one or more 
keywords, thus giving a hint about the definition of an instance of a concept in the 
selected domain ontology. The highlighted keywords are used as a name for the 
annotated instance, and a web-link to the web document is added. 
The keyword-based instance identification, combined with an analysis of the related 
semantic structure defined in the ontology, generally allows human users to recognize 
the entity described by the annotated keywords. Unfortunately, this kind of instance 
naming leads to a proliferation of the identifiers used for the annotation of the same 
entity in different knowledge bases created by means of Semantic Turkey. As a result, 
this fact prevents a precise and easy information integration of such knowledge bases. 
In order to solve this integration problem we decided to apply an apriori approach, 
evolving the concept of local keyword-based annotation to a more global entity-
centric annotation approach. The goal of this approach is that, in the act of annotating, 
a user is enabled to discern to which real world entity the annotation refers, allowing 
the reuse of the globally unique related entity identifier. In this way the annotation 
explicitly refers to a globally recognizable entity, creating a knowledge base which is, 
in principle, integrable with others knowledge bases created using the same approach. 

 

Fig. 3. Maskkot inaction 

 



MASKKOT 

A Tool for Annotating Entities through OKKAM Service      9 

In order to realize the entity-centric annotation process we need to modify the 
standard Semantic Turkey annotation work-flow, integrating in the process the 
functionalities provided by the okkam ENS. 
Without diving into technical details, the current Semantic Turkey annotation system 
can be described as this sequence of steps: 

1. the user highlights a set of keywords 

2. the keywords are dragged and dropped on a class in the ontology panel triggering 
the creation of a new instance in the ontology 

3. a link to the web document annotated is added to the instance description; 

The entity-centric annotation process based on okkam is described in the activity 
diagram depicted in fig. 2. The steps of the entity-centric annotation process 
implemented in maskkot and described in the activity diagram are: 

1. the user highlights a set of keywords 

2. the keywords are dragged and dropped on a class in the ontology panel triggering 
the creation of a new instance in the ontology 

3. the keywords are used to create an annotated query and inquire okkam 

4. okkam solves the query and returns a list of candidate entities matching the 
provided description, if any 

5. the user selects one among the returned entities or triggers the publication of a 
new entity when none of the returned entities represent the annotation 

6. the identifier of the selected/created entity is integrated in the knowledge base as 
URI of the annotated ontology instance 

7. a link to the web document annotated is added to the instance description; 

The screenshot in fig. 3 shows the retrieval of potential matching entities for the 
annotated text ``Armando Stellato'' from the okkam service 

4. Maskkot Architecture 

4.1. Semantic Turkey Architecture 

Semantic Turkey integrates different technologies which are in part dictated by its 
hosting web browser (Mozilla Firefox) and in part expressly chosen (Java) due to the 
large availability of libraries for managing Semantic Web data. 
Though the implemented system can easily be deployed as a single XPI (Cross 
Platform Installer) and installed as a Firefox extension application, with no further 
configuration requirement, the architecture of Semantic Turkey consists of a rather 
complex framework, designed as a web application, using a three layered approach. 
The first layer, the Presentation layer, is the real extension for the Firefox web 
browser. This layer has been developed through a combined use of the XML User 
Interface Language XUL11, the eXtensible Binding Language XBL12 and a version of 

                                                           
11 http://www.mozilla.org/projects/xul/ 
12 http://www.mozilla.org/projects/xbl/xbl.html 



10      Armando Stellato1, Heiko Stoermer2, Stefano Bortoli2, Noemi Scarpato1, 

Andrea Turbati1, Paolo Bouquet2, Maria Teresa Pazienza1 

the Javascript language comprising the standard ECMA-262 ECMAScript and 
dedicated extensions for interacting with the Mozilla technology. Everything related 
to user interaction is directly managed by this layer: user operations trigger client 
requests which are forwarded according to the AJAX paradigm as http requests to the 
service layer; the returned XML-formatted data is then parsed to dynamically 
modify/populate the XUL user interface. 
The second layer, the Service layer, is realized through a collection of Java Web 
Services, published through the Web Server "Jetty"13. This java web server is 
embedded in a java application which is activated during initialization of the 
Semantic Turkey extension, through an XPCOM (Cross Platform Component Object 
Model) bridge14 implemented in javascript. Once the server is started, any further 
interaction between the first and second layer is handled via client-server AJAX 
communication. This solution also allows for a flexible deployment of the tool, since 
it can both be adopted as a completely autonomous web browser extension, as well as 
a personal access point for collaborative web exploration and annotation: in the latter 
case, a centralized solution should be adopted, in which distributed Firefox clients 
communicate with the same centralized server, requiring extra-effort due to the 
technologies and policies to adopt for managing the collaborative environment, but no 
substantial modifications to the architecture as a whole. 
Finally, the Data layer provides access to a RDF/OWL semantic repository of data. 
RDF triples are made accessible through the ART Ontology API, an abstract set of 
API developed at the University of Tor Vergata, which actually serve as an interface 
for the several available semantic technologies. 

4.2. Semantic Turkey Extension Framework 

Though Semantic Turkey has been developed as a Firefox extension, it can in turn be 
extended by dedicated components, to add new functionalities, extend existing ones, 
or to host entire new applications which may sit on top of ST and benefit of its 
working environment and facilities. Being the result of two different technologies - 
those associated to the Mozilla framework on the client side, and Java regarding the 
service and data layers, Semantic Turkey required proper integration of two different 
extension frameworks to produce guidelines and a coordinated environment for the 
production of dedicated extensions. 
Each ST plug-in can be developed by extending either one of or both the presentation 
and service layers. Another feature allows to create specific extensions for the data 
layer, implementing different technologies for RDF management. The presentation 
layer extension mechanism completely inherits the Mozilla extension framework: 
each ST plug-in extending the presentation layer must be declared as a new Firefox 
extension which has a "dependency" over Semantic Turkey. Mozilla extension 
mechanism has an highly unrestricting policy regarding interference with pre-existing 
extensions or with the hosting application (the Firefox web browser, in our case): it is 
possible to remove/overwrite existing content of the user interface and/or its 
associated events and functionalities, so that an extension could even drastically 
change the aspect/behavior of the hosting application or of an another extension. 

                                                           
13 http://jetty.mortbay.org/jetty/ 
14 http://www.mozilla.org/projects/xpcom/ 



MASKKOT 

A Tool for Annotating Entities through OKKAM Service      11 

Though this may reveal of potential interest for high customization of the tool, it is 
not recommendable to do that for plug-ins which aim to coexist - and thus be 
compatible - with other ones in an open scenario. While this freedom of development 
cannot be restricted in any way, it would be important to support the ST extension 
developer with facilities like firing and catching of events associated to responses 
from the server, data changes etc… apart from a few triggers and handlers, we are still 
investigating on how to realize the whole framework for supporting extension 
development in this sense. 
The services and data layers (realized in Java) required instead the development of a 
dedicated extension mechanism. We decided to adopt OSGi technology for java 
modularization15 for fulfilling this objective. OSGi technology originally targeted 
embedded devices and home services gateways, but it is ideally suited for any project 
that is interested in principles of modularity, component-oriented, and/or service-
orientation, as it is the case of Semantic Turkey. From OSGi strong impact on the 
open-source community, originated the Apache Felix project, a community effort to 
implement the OSGi R4 Service Platform, which includes the OSGi framework and 
standard services, as well as providing and supporting other interesting OSGi-related 
technologies, such as the OASIS standard Service Component Architecture SCA16. 
Semantic Turkey features the Felix component, allowing developers to extend the 
middle and lower layer of ST through dynamically loaded components. The extension 
policy is driven by the concept of "Extension Points": extension points are interfaces 
which specify "entry points" for external components, so that the application knows in 
advance where extensions will be connected to its architecture and will be able to 
interact with them without being previously "aware" of their existence.  
Currently, two main extension points, which can be seen in fig 4, allow the 
development of new services to be dynamically added to the collection of servlets in 
the middle layer, and to the adoption of wrappers for different RDF management 
technologies in place of the default one, which exploits the Sesame RDF API 
(Broekstra, Kampman, & van Harmelen, 2002) and the OWLim Semantic Repository 
(Kiryakov, Ognyanov, & Manov, 2005). Currently, any kind of extension, be it a 
complete plugin (client+service extension), a purely java service extension (e.g. a 
monitor reacting to events fired in the middle layer) or a RDF technology 
replacement, can be packed as a Firefox XPI package, thus easing installation 
procedures for the user. Once started, Semantic Turkey always re-scans the Firefox 
extension directory looking for declared ST extension bundles. When one is detected, 
its content is dynamically added to the core system. 

                                                           
15 http://www.osgi.org 
16 http://www.oasis-opencsa.org/sca 



12      Armando Stellato1, Heiko Stoermer2, Stefano Bortoli2, Noemi Scarpato1, 

Andrea Turbati1, Paolo Bouquet2, Maria Teresa Pazienza1 

4.3. Extending Semantic Turkey to host maskkot 

The maskkot platform has been developed as a Semantic Turkey plug-in which 
extends already available annotation and instance creation functionalities with a 
lookup operation on the okkam service, exploiting its results to reuse existing 
individuals from the okkam repository or, conversely, contributing to the repository 
with new annotated entities. 
The kind of interaction required with the okkam service, described in fig. 2, is rather 
intrusive with respect to the ordinary operations of instance creation and semantic 
annotation which can be performed through Semantic Turkey. An optimal approach 
would have required a non trivial extension mechanism in the client which should 
have foreseen in advance possible interruptions in the editing operations and partial 
rerouting of the standard workflow of operations, which unfortunately is not available 
at the moment in the client layer of ST. On the other hand, the open architecture of the 
client and the strong modularization of the servlets, which tend to separate as possible 
the preparation of the XML response from the internal query/update operations, still 

 
 

Fig 4. Architectural view of the maskkot extension and its interfacing with Semantic Turkey 

and okkam 



MASKKOT 

A Tool for Annotating Entities through OKKAM Service      13 

permitted the development of a dedicated extension, without any modification on the 
core ST system, nor rather unclean pratiques of copying&pasteing existing code from 
the core system to the developed extension. 
When maskkot extension is loaded inside Firefox, it informs Semantic Turkey that its 
instance creation and semantic annotation operations are redirected on different 
services (i.e., the http GET request to the service layer changes using different 
parameters). These new services - provided by a new component dynamically loaded 
through Felix (maskkot business logic in fig 4) - largely reuse the same methods 
(exposed by the core Semantic Turkey API) adopted by the original services, but 
include the added interaction with the okkam service to get/contribute with identifiers 
from/to the okkam entity repository. The new services produce - at each interaction - 
an enriched versions of the XML responses traditionally associated to the modified 
operations, which includes the additional information obtained from the okkam 
service. When the client receives the XML, it is passed to the new handlers which 
have been added through the client extension. 

5. Conclusion  

Semantic Web technologies are becoming ever and ever a concrete reality which is 

no more limited to academical scope. However, while existing frameworks and 

products offer now solutions for Knowledge Management and Information Exchange 

which may reveal to be of interest inside confined settings, the original dream of a 

distributed and pervasive Semanticized Web has still a few steps to do before its 

realization. With maskkot we propose an application which is ready to introduce 

Semantic Web into everyday life of the average web user: the web browser-embedded 

bookmarking system can be utilized during usual web navigation for personal needs, 

as well as being adopted in collaborative environments involving social tagging of 

data with respect to reference ontologies, and be customized according to different 

scopes and users. At the same time, constant reference to the okkam ENS, which is 

almost transparently injected inside the annotation&build process, can avoid the 

proliferation of concurrent references to same entities, thus enabling content reuse and 

proliferation of information across distributed and independent actors. 

References 

Berners-Lee, T., Hendler, J. A., & Lassila, O. (2001). The Semantic Web: A new form of Web 

content that is meaningful to computers will unleash a revolution of new possibilities. Scientific 

American , 279 (5), 34-43. 

Bortoli, S., Stoermer, H., & Bouquet, P. (2007). Foaf-O-Matic Solving the Identity Problem in 

the FOAF Network. In Proceedings of the Fourth Italian Semantic Web Workshop 

(SWAP2007). Bari, Italy. 

Bouquet, P., Stoermer, H., & Bazzanella, B. (2008). An Entity Naming System for the 

Semantic Web. In Proceedings of the 5th European Semantic Web Conference (ESWC 2008). 

Springer Verlag. 



14      Armando Stellato1, Heiko Stoermer2, Stefano Bortoli2, Noemi Scarpato1, 

Andrea Turbati1, Paolo Bouquet2, Maria Teresa Pazienza1 

Bouquet, P., Stoermer, H., & Xin, L. (2007). Okkam4P - A Protégé Plugin for Supporting the 

Re-use of Globally Unique Identifiers for Individuals in OWL/RDF Knowledge Bases. In 

Proceedings of the Fourth Italian Semantic Web Workshop (SWAP2007). Bari, Italy. 

Bouquet, P., Stoermer, H., Cordioli, D., & Tummarello, G. (2008). An Entity Name System for 

Linking Semantic Web Data. In Proceedings of LDOW2008.  

Broekstra, J., Kampman, A., & van Harmelen, F. (2002). Sesame: A Generic Architecture for 

Storing and Querying RDF and RDF Schema. The Semantic Web - ISWC 2002: First 

International Semantic Web Conference (p. 54-68). Sardinia, Italy: Springer Berlin / 

Heidelberg. 

Ciravegna, F., Dingli, A., Petrelli, D., & Wilks, Y. (2002). User-system cooperation in 

document annotation based on information extraction. 13th International Conference on 

Knowledge Engineering and Knowledge Management, EKAW02. Springer Verlag. 

Dzbor, M., Domingue, J., & Motta, E. (2003). Magpie: Towards a Semantic Web Browser. 2nd 

International Semantic Web Conference (ISWC03). Florida, USA. 

Dzbor, M., Motta, E., & Domingue, J. B. (2004). Opening Up Magpie via Semantic Services. 

3rd Intl. Semantic Web Conference (ISWC04). Hiroshima, Japan: November. 

Griesi, D., Pazienza, M., & Stellato, A. (2007). Semantic Turkey - a Semantic Bookmarking 

tool (System Description). In E. Franconi, M. Kifer, & W. May (A cura di), The Semantic Web: 

Research and Applications, 4th European Semantic Web Conference, ESWC 2007, Innsbruck, 

Austria, June 3-7, 2007, Proceedings. Lecture Notes in Computer Science. 4519, p. 779-788. 

Springer. 

Huynh, D., Mazzocchi, S., & Karger, D. (2005). Piggy Bank: Experience the Semantic Web 

Inside Your Web Browser. Fourth International Semantic Web Conference (ISWC05), (p. 413-

430). Galway, Ireland. 

Ioannou, E., Sathe, S., Bonvin, N., Jain, A., Bondalapati, S., Skobeltsyn, G., et al. (2009). 

Entity Search with NECESSITY. 12th International Workshop on the Web and Databases. 

Rhode Island. 

Kiryakov, A., Ognyanov, D., & Manov, D. (2005). OWLIM – a Pragmatic Semantic 

Repository for OWL. Int. Workshop on Scalable Semantic Web Knowledge Base Systems 

(SSWS 2005), WISE 2005. New York City, USA. 

Quan, D., & Karger, D. (May, 2004). How to Make a Semantic Web Browser. Thirteenth 

International World Wide Web Conference (WWW2004). New York City, USA. 

Stoermer, H., Rassadko, N., & Vaidya, N. (2010). Feature-based Entity Matching : The FBEM 

Model, Implementation, Evaluation. CAISE’10, the 22nd International Conference on 

Advanced Information Systems Engineering. Springer. 

 


	Introduction
	Related Work
	Semantic Browsing and Semantic/Social Bookmarking/Annotation
	Identity and Reference

	Towards an Entity-centric Semantic Annotation Platform
	The Entity Name System (ENS)
	Semantic Turkey
	Maskkot: Entity-centric Annotation

	Maskkot Architecture
	Semantic Turkey Architecture
	Semantic Turkey Extension Framework
	Extending Semantic Turkey to host maskkot

	Conclusion
	References

