
VocBench 3: a Collaborative Semantic Web

Editor for Ontologies, Thesauri and Lexicons
Editor: Aidan Hogan, Universidad de Chile, Chile

Solicited reviews: John McCrae, National University of Ireland Galway, Ireland; Fred Freitas, Federal University of Pernambuco, Brazil; Vic-

toria Uren, Aston University, United Kingdom.

Armando Stellatoa, Manuel Fiorellia, Andrea Turbatia, Tiziano Lorenzettia, Willem van Gemertb,

Denis Dechandonb, Christine Laaboudi-Spoidenb, Anikó Gerencsérb, Anne Waniartb, Eugeniu

Costetchib, Johannes Keizerc

a University of Rome, Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
b Publications Office of the European Union, Information Management Directorate, Standardisation Unit,

Metadata Sector, 2985 Luxembourg, LUXEMBOURG
c GODAN secretariat, c/o CABI Head Office, Nosworthy Way, Wallingford, Oxfordshire, OX10 8DE, UK

Abstract. VocBench is an open source web platform for the collaborative development of datasets complying with Semantic

Web standards. Since its public release – five years ago – as an open source platform, VocBench has attracted a growing user

community consisting of public organizations, companies and independent users looking for open source solutions for maintain-

ing their thesauri, code lists and authority resources. The focus on collaboration, the differentiation of user roles and the workflow

management for content validation and publication have been the strengths of the platform, especially for those organizations

requiring a distributed, yet centrally controlled, publication environment. In 2017, a new, completely reengineered, version of

the system has been released, broadening the scope of the platform: funded by the ISA2 programme of the European Commission,

VocBench 3 offers a general-purpose collaborative environment for development of any kind of RDF dataset (with dedicated

facilities for ontologies, thesauri and lexicons), improving the editing capabilities of its predecessor, while still maintaining the

peculiar aspects that determined its success. In this article, we review the requirements and the new objectives set for version 3,

and then introduce the new characteristics that were implemented for this new incarnation of the platform

Keywords: Collaborative Editing, Ontologies, Thesauri, Lexicons, OWL, SKOS, OntoLex

1. Introduction

In 2008 the group for Agriculture Information Man-

agement Standards (AIMS) of the Food and Agricul-

ture Organization of the United Nations1 (FAO) devel-

oped a collaborative platform for collaboratively man-

aging their Agrovoc thesaurus [1]. The so-called

“Agrovoc Workbench” soon met the interest of other

FAO departments and several other organizations in-

terested in open source solutions for collaborative the-

saurus development.

Rebranded as VocBench (VB), to suggest a more

general environment for thesaurus management, the

platform was later strongly reengineered in the context

1 http://www.fao.org/

of a collaboration between FAO and the ART2 group

of the University of Rome Tor Vergata. The result of

this collaboration, VocBench 2 (VB2) [2], released in

2013, was rethought as a fully-fledged collaborative

platform for thesaurus management, freely available

and open-sourced, offering native RDF support for

SKOS [3] and SKOS-XL [4] knowledge organization

systems [5], while retaining from its original version

the focus on multilingualism, collaboration, and a

structured content validation and publication work-

flow. Under the hood, the original VB1 backend for

RDF was replaced with the RDF Management frame-

work Semantic Turkey (ST) [6,7], already developed

by the ART Group.

2 http://art.uniroma2.it

http://www.fao.org/
http://art.uniroma2.it/

The strengths of the platform included the possibil-

ity for project administrators to define roles with very

specific capabilities and to assign them to different us-

ers according to their proficiencies and authorizations,

together with the publication workflow where dedi-

cated users could supervise the work of others and ac-

cept their modifications. They were appreciated espe-

cially by those organizations requiring a collaborative

yet centrally controlled publication environment. Un-

fortunately, this controlled approach was realized on a

rigid model comprising a few first-class resources (e.g.

concepts, concept schemes, etc.) and predefined oper-

ations on them. Consequently, some other users felt

more freedom on data modeling was missing from the

system, desiring unrestricted capabilities for editing

data at its very core, as in triple-oriented RDF editing

environments. The increased freedom would also re-

flect in the possibility to customize the models, going

beyond plain SKOS/SKOS-XL modeling, which is

sometimes a must for users dealing with complex, yet

still KOS-like, resources.

VocBench 3 (or, simply, VB3) was planned to over-

come the above limitations, while broadening the orig-

inal scope of the platform to a general-purpose collab-

orative environment for development of SKOS the-

sauri, OWL ontologies and RDF datasets in general.

The VocBench 3 project is funded by Action 1.1 of the

ISA2 Programme of the European Commission for

“Interoperability solutions for public administrations,

businesses and citizens”3. The action is managed by

the Publications Office of the European Union4. VB3

has been developed in close collaboration with the

ART group of the University of Rome Tor Vergata,

the same group that contributed to the development of

the second version of the platform.

VocBench 3 was released to the public on Septem-

ber 2017, under a BSD 3-clause license5. Since then, a

second development iteration was carried on and ter-

minated on July 2018 with VB3 v.4.06 (while v.2.0

and v.3.0 were released in the course of the iteration).

The VocBench site7 contains documentation, down-

load links and other references. A third development

iteration is being carried on, started after the fourth re-

lease of VB3 and terminating on June 2019.

In this article, we review the original requirements

that drove the development of the platform and intro-

duce the new objectives set for VB3. We then describe

3 https://ec.europa.eu/isa2/
4 https://publications.europa.eu/
5 https://opensource.org/licenses/BSD-3-Clause
6 VB3 adopts Semantic Versioning (http://semver.org). In

that context the major release number has specific semantics. We

and discuss the new features and architectural im-

provements that have been implemented to meet the

goals for this next iteration of the platform. Our aim is

thus to highlight the improvements over VB2, while

we refer the reader to [2] for a general introduction to

the system and for a comparative analysis of VB with

related works. This article is a revised and expanded

version of a previous work [8], in which we previewed

VB3 just before the completion of its first develop-

ment iteration. Improvements over that work include:

• discussion of related systems,

• discussion of additional features (e.g. extended in-

put/output, integration of collaboration platforms),

• a more thoroughly analysis of the (meanwhile im-

proved) support for OntoLex-Lemon,

• an example about XKOS showing the ability to sup-

port extensions to the core SKOS model,

• description of the system architecture,

• impact assessment.

2. Requirements

We list here the requirements that drove the devel-

opment of VB3, including those originally put together

for the development of the original VocBench plat-

form and of its successor VocBench 2 (R1-R7 in the

list below). The original requirements have been reas-

sessed and reformulated, accounting for the widened

scope of the platform and its improved editing capa-

bilities, while new ones (R8-R15) have been added to

complete the target objectives for the platform. The set

of revisions and new requirements has been collected

following proposals by the VocBench developing

team and requests performed by stakeholders through

several means: dedicated stakeholder meetings held at

the Publications Office, ISA2 programme, pro-active

feedback on the support mailing lists of the platform.

The input from these different sources all contributed

to lay down the program for the development of

VocBench 3, revised by the Publications Office and

finally validated and approved by the ISA2 committee.

R1. Multilingualism. Properly characterizing

knowledge resources in different (natural) languages

is fundamental. This especially holds for thesauri, due

to their use in information retrieval, though the overall

thus opted for considering the “3” (as in VB3) as part of the name

(VB3 is indeed a different project from VB2), so that the first release

has been marked as version 1.0 of VB3.
7 http://vocbench.uniroma2.it/

https://ec.europa.eu/isa2/
https://publications.europa.eu/
https://opensource.org/licenses/BSD-3-Clause
http://semver.org/
http://vocbench.uniroma2.it/

importance of elaborated lexicalizations is progres-

sively gaining momentum, thanks to data publication

initiatives such as the Linguistic Linked Open Data8

(LLOD) and to models for Ontology-Lexicon inter-

faces, such as lemon (lexicon model for ontologies) [9]

and its most recent specification OntoLex-Lemon [10],

realized by the eponymous W3C community group9.

R2. Controlled Collaboration. One of the keystones

of the system is to enable collaboration on a large

scale: several, distributed users have to be able to col-

laborate remotely on a same project. Opening up to

communities is important, though the development of

authoritative resources demands for the presence of

some control to be exerted over the resource lifecycle:

for this reason, users must be granted different access

levels, and some of them should be allowed to validate

other users’ work before it is committed to the dataset.

R3. Data Interoperability and Integrity. Interopera-

bility critically depends on data integrity and conform-

ance to representation standards. However, flexible

models such as SKOS translate to underspecified pos-

sibilities on the one hand, and formal constraints be-

yond the expressiveness of OWL on the other one. Ad-

ditionally, the increase in the offer of – often overlap-

ping – standards in the family of RDF languages re-

sulted in the necessity for systems to be flexible

enough to properly read and manage all of them. It is

thus important that VocBench enforces a consistent

use of these models, by preventing the editors from

generating invalid data, and by providing “fixing facil-

ities” for spurious data acquired from external sources.

Finally, support for alignment to other datasets is also

an interoperability must for the Linked Data World.

R4. Software Interoperability/Extensibility. The

system should be able to interact with (possibly inter-

changeable) standard technologies in the RDF/Linked

Data world, with the possibility to surf linked open

data on the Web, accessing SPARQL endpoints, re-

solving RDF descriptions through HTTP URIs, etc. as

well to import/export data through standard Graph

Store APIs and the like. The system should support ex-

tensions (sometimes called plugins), which can pro-

vide additional capabilities, often bound to predefined

extension points: for example, enable to export data to

a new type of destination (e.g. an SFTP server), or in-

troduce a further serialization format (e.g. Zthes10).

R5. Data Scalability. The system must deal with (rel-

atively) large amount of data, while still offering a

friendly environment. This holds for some thesauri as

8 http://linguistic-lod.org/
9 https://www.w3.org/community/ontolex/

well as for most lexicons. The user interface should

appropriately subdivide data loading into subsequent

requests and implement solutions for large results.

R6. Under-the-hood data access/modification.

While a friendly user interface for content manag-

ers/domain experts is important, knowledge engineers

need to access raw data beyond the usual front ends,

as well as to benefit from mass editing/refactoring.

R7. Adaptive Context and Ease-of-use. Expanding a

requirement on its predecessor, VB3 should provide an

even smoother experience, with very low installation

requirements and an as-short-as-possible time-to-use.

Whether (and proportionally if) the user is an admin-

istrator configuring the system, a project manager con-

figuring a project, a user requesting registration and

connection to a given project, or a new user willing to

test the system as a desktop tool without settings and

configuration hassle, VB3 should adapt to their needs.

R8. RDF Languages Support. In contrast to its pre-

decessors, dealing with thesauri only, VB3 has to sup-

port SKOS (/SKOS-XL) thesauri, OWL ontologies,

and RDF datasets in general. Support for OntoLex-

Lemon lexicons and for ontology-lexicon interfaces

was introduced later as a further requirement [11,12].

R9. Maintainability (Architecture and Code Scala-

bility). In particular, the ability to meet new require-

ments, cope with changed environments and make fu-

ture maintenance easier. A weak spot of VB2, VB3

aims to achieve high levels of architecture/code scala-

bility. In VB3 it is mandatory to be able to add new

services, functionalities, plugins, etc. without the fab-

ric of the system being altered or too much effort being

required to align these new elements with all the char-

acteristics of the system, such as validation, history

management, roles and capabilities.

R10. Full Editing Capability (RDF Observability

and Reachability). Any complex RDF construct

should always be inspectable and modifiable by users

(providing they have the proper authorization) even in

its finer details. While the platform can provide high-

level operations for conveniently creating/modifying

complex descriptions of resources according to prede-

fined modeling design patterns, the user should never

be prevented from inspecting/altering these elements.

R11. Provenance. Actions in VB3 should be handled

as first-class citizens themselves, being identified and

qualified by proper metadata, logged in a history with

information about which user performed an action,

10 http://zthes.z3950.org/

http://linguistic-lod.org/
https://www.w3.org/community/ontolex/
http://zthes.z3950.org/

when they did it, which parameters have influenced its

performance, etc. Metadata answering to the five “Ws”

(with the possible exception of the “why”) should pro-

vide all information for tracking the origin of an action.

R12. Versioning Support. Besides history and vali-

dation, providing triple-grained information about ac-

tions enriched with provenance metadata, it should be

possible to take static, periodic, snapshots of datasets.

R13. Dataset-level Metadata Descriptions. For the

Semantic Web to fully achieve its vision, linked open

data has to speak about itself [13]. This means not only

having data modeled according to well-known shared

vocabularies, but to be able to grasp meaningful infor-

mation about a dataset without having to dig into its

content. Edited datasets should be coupled with resum-

ing information about their characteristics, that can be

published together with them.

R14. Customizable User Interface. User interfaces

merely based on ontology description are limited to the

analysis of the axiomatic description of the resources

they show and of their types, ignoring possible desid-

erata of the user. VB3 should allow users to represent

the information that they want to specify at resource

creation, per resource type, so that it will be prompted

to the user. Connected technical aspects, such as

proper transformation of the user input into serializa-

ble RDF content, should also be covered.

R15. Everything’s RDF. VB2 used a relational data-

base to store user and project management information

as well as history and validation information. Con-

versely, VB3 should follow a more uniform approach,

adopting RDF for virtually any storage need.

3. Architecture

VB3 is based on a classical three-tier architecture

(Figure 1), structured through a presentation layer, a

service layer and a data layer. The web application (de-

veloped using Angular11) is a front end for Semantic

Turkey, which, with respect to its former version

adopted in VB2, has then evolved into a fully-fledged

collaborative environment for RDF management.

3.1. A Lesson Learned: Standards Compliancy Does

Not Guarantee Interchangeability

VB3 does not feature the RDF abstraction layer – a

middleware allowing for different RDF technologies

11 https://angular.io/
12 http://rdf4j.org/

to be interchanged in the lower tier – that characterized

its earlier incarnations. This neat drift in the architec-

ture is due to the acknowledgement that, at least with

the current technologies and specifications, it is utopic

to expect two API implementations to be practically

swapped under the same functional layers. While the

first VocBench largely adopted triple-oriented API to

access the data and the second introduced SPARQL

queries, VB3 is completely based on SPARQL, which

is the weak point where technology interchangeability

fails. By first, standards compliancy is not to be taken

for granted when non-common characteristics of the

language (e.g. bindings) are being used, as different

triple stores might miss to implement (or partially im-

plement) them. Second, and most important, the

SPARQL specifications do not constrain the order in

which the various clauses of a query should be re-

solved: the strategies of SPARQL query resolvers and

optimizers may vary dramatically across diverse triple

stores, making it difficult to express a certain infor-

mation need as a SPARQL query that will behave as

expected under all conditions. Additionally, there are

critical differences in the way stores organize content

(e.g. where the inferred triples are stored and how they

can be retrieved). Fighting these idiosyncrasies is not

an easy war, especially in an editor that must guarantee

flexibility and that cannot perform any content-ori-

ented optimization (as the datasets it manages are not

know a priori).

With the advent of RDF4J12 under the stewardship

of the Eclipse Foundation, we decided time was ma-

ture for taking a stance and adopt that RDF framework

as the official API for ST. Notably, we embraced the

RDF4J’s sail-mechanism (Storage and Inference

Layer) for developing storage-side components (rep-

resented under the local and remote triple stores in the

architecture view) for intercepting effectively-modi-

fied triples (see section 3.2 and section 4.3).

3.2. Extendible Architecture

The adoption of OSGi (formerly Open Service

Gateway initiative)13 allows for dynamic plugging of

extensions (see requirements R4 and R9). We have

thus developed a very rich mechanism for describing

extensions: there is a general concept of component,

an object that can be identified in the system, config-

ured, and scoped (to four domains, i.e. the whole SYS-

TEM, a USER, a PROJECT or spaces defined by

13 https://www.osgi.org/

https://angular.io/
http://rdf4j.org/
https://www.osgi.org/

<USER,PROJECT> pairs). Extension points are com-

ponents defining extensible functionalities, such as

data loading/deployment, rendering of RDF resources

on the UI, connection to and interaction with collabo-

ration platforms, etc. Developers willing to extend

VB3 with respect to a functionality can supply an im-

plementation of its associated extension point.

While there is currently no native extension mecha-

nism for web interfaces built through Angular, the user

interface of VB is informed by the extension point

mechanism and supports extensions with automati-

cally built forms for configuration of settings, selectors

for choosing the implementation to choose, etc.

Currently, numerous extension points have been in-

cluded in the system, in order to make extensible the

VOCBENCH 3.x Architecture, powered by Semantic Turkey RDF Framework

Web Application Server

KARAF OSGi Container

Application Extension

HTTP Service Publication

Spring/OSGi Engine

Middle Layer

 HTTP Requests

RDF4J

Local Store

RDF4J RDF API

Semantic Turkey

Data Manager

Extension

Presentation Layer

New functionalities may be registered

to dedicated «topics» and thus

automatically published by the main UI

component

Completely new interfaces can be

defined as well, to support totally new

applications based on the same UI/

BusinessLogic architecture

This is not foreseen for V.1 and Angular

extensibility is being investigated

Extension:

OSGi extension bundle

VOCBENCH Service

Extensions for

Semantic Turkey

External Triple Store

Specific

Triple Store
File

System

RDF

Repository

VOCBENCH 3 UI

V
O

C
B

E
N

C
H

 3
 U

I

VOCBENCH User Interface

Semantic Turkey

Service Registry

S
e

m
a

n
ti

c
 T

u
rk

e
y

 S
e

rv
ic

e
 a

n
d

 D
a

ta
 L

a
y
e

rs

Semantic Turkey Sail

Extension

Angular

In-

memory

RDF

Services

URI

Generation

Project

Mgmt

Services

User

Mgmt

Services
OSGi-based Extension Point

RDF Resource

Rendering

Data Layer

CODA

Custom Forms
P

u
b

lis
h

/S
u

b
s
c
ri
b
e
 m

e
c
h
a
n
is

m
 /

 T
a

b
 E

x
te

n
s
io

n
s

Extension Point Implementations

Extension Point

Implementation (e.g.

RDF Rendering, URI Generation)

Extension:

OSGi extension bundle
O

S
G

i
S

T
S

e
rv

ic
e
s
 E

x
te

n
s
io

n
 P

o
in

t

Metadata

Generation

RDF4J Connection

Semantic Turkey Sail

Extension

Figure 1. VocBench 3 Architecture

user-visible features of VB3 (see Section 4). Hereafter,

we will describe three extension points that are not

covered elsewhere in paper, because they are related

to lower level aspects of the system.

• RepositoryImplConfigurer: this consists in config-

uration templates for different triple stores. Cur-

rently, there are implementations for the storage so-

lutions of RDF4J and for Ontotext GraphDB14 (for-

merly OWLIM [14]). As anticipated before, these

extensions support configuration dialogs (see Fig-

ure 2) including options that are specific to the

chosen storage solution. Figure 2 shows the options

for the RDF4J Native Store: whether to force the

syncronization of the filesystem to the non-volatile

storage device (a performance vs durability

tradeoff), which indexes to use (depending on the

query patterns), and which types of reasoning

perform (which are not costless).

• SearchStrategy: a search component that can use

non-standard, triple store specific text-search capa-

bilities. Indeed, SPARQL only supports FILTER

with some string matching functions. However, as

FILTERs are often applied to discard solutions ra-

ther than find them, their use as a search mechanism

is quite inefficient if the number of candidates is

very high (e.g. tens of thousands). In contrast, a

dedicated SearchStrategy can take advantage of the

efficient fulltext capabilities provided by GraphDB.

• URIGenerator: a pluggable component for the au-

tomatic generation of URIs. Indeed, there are many

strategies to mint URIs, based on technical and po-

litical arguments. Ontologies often use human-

friendly but language-specific identifiers based on

a label (e.g. http://schema.org/Person),

to make data more easily consumable (without spe-

cific tool support). Conversely, thesauri and other

multilingual datasets frequently adopt alphanu-

meric, language independent, identifiers (e.g.
http://aims.fao.org/aos/agrovoc/c_

2993). It is possible to develop new generators for

custom patterns that are unsupported by the (highly

configurable) URIGenerator packed with VB.

3.3. Project and User Management

As anticipated in the description of the architecture,

project and user management have been completely

14 http://graphdb.ontotext.com/
15 http://art.uniroma2.it/coda/

rewritten as part of the Semantic Turkey framework.

The system offers an abstract representation of the

core entities managed: users, projects, system proper-

ties, etc. and API for storing/retrieving them, so that

different implementations can be provided.

The default implementation represents another as-

pect which is streamlined with respect to VB3’s pre-

decessors: it is completely file-based. Consequently,

the relational DB previously used for system admin-

istration (and for metadata representation, which is

now completely represented in RDF, see section 4.3)

is no more necessary. The use of the filesystem is not

just a choice to get rid of the relational DB. An accu-

rate organization in the distribution of the descriptors

for users, projects, configurations, settings, plugins

(these last three can in turn be also scoped differently)

and their relationships enables an easy porting of data

across different distributions: it is thus possible to eas-

ily transfer all data to another installation of Semantic

Turkey, or to separately move users, projects, deciding

whether to copy or not their settings etc.

3.4. CODA

CODA15 [15] is a is an architecture and an associ-

ated Java framework for the triplification of results

from analysis of unstructured content. The facilities

provided by CODA include a powerful language –

PEARL16 [16] – for projection and transformation of

annotated content into RDF. While its most natural

and implied use – acquisition of knowledge from text

– has not yet been exploited inside VB3, CODA has

already found diverse applications, including custom

16 http://art.uniroma2.it/coda/documentation/pearl.jsf

Figure 2. Dynamic dialog for the configuration of a repository

based on some store solution (in this case, the RDF4J Native Store)

http://graphdb.ontotext.com/
http://art.uniroma2.it/coda/
http://art.uniroma2.it/coda/documentation/pearl.jsf

forms (see section 4.1.5) and Sheet2RDF17 [17], a plat-

form (being integrated into VB3) for the acquisition

and transformation of spreadsheets into RDF.

4. VocBench 3 New and Improved Features

In this section we list features, functionalities and

visual changes that are more evident to the user than

the description provided in the architecture. Conform-

ance to and satisfaction of the requirements expressed

in section 2 is reported case by case.

4.1. User Interface (UI).

The overall data view (Figure 3) preserved its over-

all organization, with data browsing views on the left

and the description of the selected resource on the right.

However, there are notable changes on both sides.

4.1.1. Browsing Data Structures

VB only provided a concept tree to browse the con-

tent of the dataset, supposed to be a SKOS(-XL) the-

saurus. In line with its wider scope, VB3 now offers

17 http://art.uniroma2.it/sheet2rdf/

different data structures in different tabs, depending on

the modeling vocabulary. OWL offers three tabs with

a class tree and instance list, a property tree and a

datatype list respectively, while SKOS adds to them a

concept tree, a list of schemes and a collection tree

(showing the containment between collections). Onto-

Lex-Lemon adds tabs for lexicons and lexical entries.

4.1.2. The resource-view

The several tabs of VB2 (which inherited and ex-

tended the tab-based model of VocBench 1) that pop-

ulated the “concept details” panel have been replaced

with a single component, called resource-view.

In contrast to both VB1 and VB2, there are no first-

class citizen resources, such as SKOS concepts and

SKOS-XL labels; in fact, all resources now can be

viewed and edited through the resource-view. This ca-

pability supports generic RDF development (require-

ment R8) and marks a profound departure from previ-

ous versions of the system, which had dedicated panels

for certain types of resources that occur in thesauri (e.g.

concepts and reified labels). The general applicability

of the resource-view and the possibility to edit any of

their details also contribute to satisfy requirement R10.

Figure 3. VocBench UI showing EuroVoc (http://eurovoc.europa.eu/)

http://eurovoc.europa.eu/

The resource-view adapts to the inspected resource:

a few sections are shared among all resources, such as

types, listing the rdf:types for the resource, lexicaliza-

tions, listing the available lexicalizations and proper-

ties, listing properties not addressed by other sections,

while others are specific to the inspected resource.

While the mapping of these sections to properties of

the core modeling vocabularies is trivial (e.g. types to

rdf:type), the sections are however presented with a

predicate-object style in order to qualify the predicate,

as they might include user-defined or domain-specific

subproperties of the above ones. For example, see Fig-

ure 4, instead of saying generically that “car” is

“broader” than “steering wheel”, we can we can use

XKOS [18] to state that the latter is a meronym of the

former. Indeed, a subproperty of skos:broader can be

indicated (optionally) both in the dialog for the crea-

tion of a new concept (when creating it as narrower of

an existing concept, thus refining the relation among

them) and in the dialog for the addition of a broader

concept. The previous example shows the ability of the

user interface to handle extensions (e.g. XKOS) of the

core modeling vocabularies (e.g. SKOS), contributing

to fulfill requirement R8.

4.1.3. Dataset Model and Lexicalization Model

The lexicalizations section abstracts different prop-

erties and modeling patterns for lexicalizations, as it

offers specific resolution of their shape, always show-

ing the form of the lexicalization, i.e. merely the label

for rdfs:label and for SKOS terminological labels, the

skosxl:literalForm for SKOS-XL labels and the onto-
lex:writtenRep of the canonical form associated with

the lexical entry lexicalizing the resource in OntoLex-

Lemon. In VB3, the concept of lexical model has been

introduced (and separated from the knowledge model,

e.g. OWL or SKOS) so that, for instance, it is possible

to select SKOS-XL as a lexical model for both OWL

ontologies and SKOS thesauri. In OntoLex-Lemon,

the indirection is perhaps the most evident as one pos-

sible path from the lexicalized resource to the shown

lexicalization is:

ontolex:isReferenceOf → <ontolex:Sense> → onto-
lex:isSenseOf → <ontolex:LexicalEntry> → onto-
lex:canonicalForm → <ontolex:Form> → onto-
lex:writtenRep → <shown lexicalization>

Many other paths are considered, due to shortcuts on

property chains and inverse properties. So, the written

representation is shown, but the user can click on it and

inspect the full series of linked RDF terms.

This revised model greatly improves requirement

R1 by covering not only diverse natural languages, but

the different formal languages (and thus, R8 as well)

in which the lexical information can be encoded.

Figure 4. Visualization of specialized hierarchical relationships between SKOS concepts

4.1.4. Support for Lexicons and Ontology-Lexicon

Interfaces

The support for lexicons required, even more than

with thesauri, a data-scalable user interface (see Figure

5). Modern thesauri are (usually) organized around a

hierarchy of concepts that can be easily browsed by

progressively expanding the explored branches of the

tree. Conversely, lexicons have huge flat lists of en-

tries that are difficult to represent. Additionally, the

OntoLex-Lemon model introduces the notion of onto-
lex:LexicalConcept, corresponding to the notion of

synset in lexical databases following the model of

WordNet18 [19]. In wordnets, the set of synsets is ar-

ranged in a structured tree for what concerns synsets

related to nouns, but offers a shallow hierarchy

(mostly, a horizontal list of elements) for other parts-

of-speech, especially for what concerns verbs. We

have thus offered different browsing modalities, based

on the exploration of the full content, organized ac-

cording to different data structures (e.g. trees for con-

cepts, classes and properties, lists for schemes and lex-

icons or single/double-character indexed lists for lexi-

cal entries) or a search-based exploration, that uses the

18 https://wordnet.princeton.edu/
19 A qualified name (qname) is formed by a prefix, followed by

a colon, and then a local name (e.g. schema:Person). If the pre-

fix occurring in a qname is associated with a namespace URI (e.g.

search functionality to selectively show matching en-

tries in their associated panel, thus guaranteeing scal-

able solutions (req. R5) depending on the nature and

specific size of each loaded dataset.

VB1 and 2 showed concepts through their labels in

all the selected languages for visualization. In VB3, an

option allows for toggling between the URIs/qnames19

(qualified name) of the resources and the string com-

posed by an implementation of the extension point

rendering engine (see Section 3.2). The default ren-

derer behaves like VB1 and VB2, showing labels in all

the selected languages for visualization (again, R1),

being configurable in the languages to show.

4.1.5. Custom Forms

An important new aspect of the user interface is of-

fered by custom forms, a flexible data-driven form def-

inition mechanism that we devised for VB, allowing

users to perform a declarative specification of the key

elements that concur to the creation of a complex RDF

resource (satisfying req. R14).

Custom forms have been described more in details

in [20], which analyzed and evaluated their expressive

power by applying them to the use case of representing

http://schema.org/), then the qname can be understood as

an abbreviation for the URI obtained concatenating the namespace
URI and the local name (e.g. http://schema.org/Person)

Figure 5. Visualization of WordNet’s Lexical Entries in OntoLex views. In fact, the system is managing the whole collection of 34 wordnets

collected by Open Multilingual Wordnet [61]

https://wordnet.princeton.edu/

lexical entries using the OntoLex-Lemon vocabulary.

In that work, a subset of the lemon Design Pattern Li-

brary [21] was implemented as custom forms: VB ex-

ploits them to generate a form-based interface for the

creation as well as the visualization of diverse lexical

entries. Figure 6 reports a form filled with information

regarding the entry “director”, which is said to denote

the property dbo:director in the DBpedia ontology.

Furthermore, the syntax-semantics interface is defined

by establishing the correspondence between the atom

x dbo:director y and the stereotypical verbalization y

is the director of x.

4.2. Controlled Collaborative Editing through Role-

based Access Control (RBAC)

A single installation of VB can handle multiple pro-

jects, which can also be interlinked for mutual data ac-

cess (e.g. for purpose of alignment). VB promotes the

separation of responsibilities through a role-based ac-

cess control mechanism, checking user privileges for

requested functionalities through the role they assume

(req. R2). While VB2 had hard-wired and scarcely

configurable roles, which do not easily scale-up to

possible extensions of the system (req. R9), in VB3 we

have created a dedicated language for specifying capa-

bilities in terms of area, subjects and scopes. E.g. the

expression:

20 http://apice.unibo.it/xwiki/bin/view/Tuprolog/We

bHome

auth(rdf(datatypeProperty, taxonomy), ‘R’)

corresponds to the requested authorization for being

able to read taxonomical information about datatype

properties. The ‘R’ stands for READ (or, equivalently,

RETRIEVE), as in the CRUD paradigm, rdf is the area

of the requested capability while datatypeProperty

and taxonomy define the subject and scope respec-

tively of the capability. We recall that “CRUD is [...]

the most common acronym for the four basic functions

of persistent storage: create, retrieve, update and delete”

[22]. Our language supports all these functions, which

are identified by their initial letter. Actually, we ex-

tended CRUD with a fifth letter ‘V’ standing for VAL-
IDATE: this permission grants the right to validate other

users’ work (see Section 4.4).

The authorization policy is implemented as a series

of facts in Prolog [23], whose resolution mechanism

provides a principled mechanism for authorization de-

cisions. Indeed, the same set of expressions is manip-

ulated and validated on both the server and the client,

by using different technologies, respectively,

tuProlog20 [24] and jsprolog21. While the ultimate au-

thorization is performed by the server, the client does

a similar evaluation to show/activate UI elements de-

pending on the permissions of the logged user. This

way, it is possible to have very dynamic UIs automat-

21 https://github.com/Sleepyowl/jsprolog/

Figure 6. Custom Form for a relational noun in the OntoLex-Lemon model

https://github.com/Sleepyowl/jsprolog/

ically modeled on users' capabilities, which are ulti-

mately defined in the services, with no redundancy in

the code.

New roles can be easily created, and existing ones

can be modified, through a dedicated rbac editing wiz-

ard (Figure 7). The default policy recognizes typical

roles and their acknowledged responsibilities:

• Administrator: the sole inter-project role (i.e. the

role exists a-priori from projects). The administra-

tor has, by definition, full access to the system.

• Project Managers: project-local administrators

who can do everything within the boundaries of the

project(s) they have been assigned to with that role.

• Specific project-local roles: ontology editors (al-

lowed to make changes at the axiomatic level), the-

saurus editors (allowed to work on thesauri without

OWL editing actions), terminologists/lexicogra-

phers (allowed to edit lexicalizations, can be lim-

ited to certain languages), mappers (allowed to per-

form alignments only), validators (allowed to vali-

date others’ actions, see Section 4.4) and finally

lurkers, that can read everything in a project but

have no editing authorization

4.3. Advanced History and Change Tracking

mechanism

In VB2, the change tracking mechanism that pow-

ered history and validation was based on a predefined

set of recognized operations, severely limiting main-

tainability (req. R9) and the possibility to perform (req.

R6) under-the-hood changes (e.g. through SPARQL)

while keeping a complete history of the dataset. In

VB3, we implemented a completely new track-change

mechanism working at triple-level. For any action, tri-

ple additions and removals are intercepted and stored

into a separate RDF repository (the support reposi-

tory) (req. R15) together with metadata about the ac-

tion (req. R11). This design was guided by an analysis

[25,26] in which we discussed the nature and the rep-

resentation of change, reviewed relevant version con-

trol systems for RDF, and delved into the challenges

posed by validation.

4.4. More Powerful yet Streamlined Workflow

Management

VB2 had a 5-step publication workflow, clocked by

the property “status” (with values: proposed, vali-
dated, published, deprecated and proposed_depre-
cated) and, redundantly, with information stored in the

DB about the status of operations to be validated. Also,

in VB2, the concepts of resource and action were

mixed up in the validation procedure, with the status

of a resource being affected by the validation (e.g.

moving from “proposed” to “validated”), while single

changed triples had no trace of their validation status.

This follows from the fact that it is not possible to

attach a status to a triple in RDF, if not by reifying the

triple. An in-depth discussion of different reification

mechanisms can be found in [27]. Some mechanisms

deeply affect how data is represented (e.g. singleton

properties [28], or even standard reification), while

named graphs [29] would be sufficiently lightweight,

Figure 7. Editing a capability for a role in VocBench

if VB did not already use them to differentiate between

local and imported triples. Nonetheless, as discussed

below, VB3 eventually adopted named graphs for the

representation of proposed triples.

Benefiting from the new change tracking system,

we have made things clearer and easier: there is no

“status” property anymore, as the workflow is implic-

itly expressed by the validation mechanism coded into

graphs. The added/removed triples are stored in the

support repository as described in the previous section,

while non-reified “previews” of them are available in

separate graphs (staging-add-graph and staging-de-

lete-graph) in the main repository, while the system

presents them appropriately to the user. In this way,

the main graph (i.e. the graph where managed infor-

mation is stored) represents stable information, which

does not need to be tagged as “validated”. The distinc-

tion between “validated” and “published” has been re-

moved as it has never been put in place in any known

user workflow. Finally, the status of deprecation has

been represented through the official owl:deprecated

property. The status of “proposed deprecated” is also

intuitively represented by the need to validate the ac-

tion for setting the owl:deprecated property to “true”.

In Figure 8, we show the concept “Canyon” that was

created in a project with validation.

Figure 8. Proposed concept “Canyon” shown in the concept tree, as well as in the resource-view

Figure 9. Accepting the creation of a concept to move it from “proposed” to “validated”

The triples describing this concept are asserted in

the staging-add-graph (instead of the project main

graph): the resource-view shows them with a combi-

nation of green color and italic font, while triples in the

main graph (none in this example) are displayed in

black with a normal font. Since the assertion of the

characterizing type (skos:Concept) is also staged for

addition, the concept itself is considered proposed, and

thus displayed in the concept tree differently from

other (already validated) concepts. Figure 9 shows the

creation of the concept in the list of operations pending

for validation: a user with suitable rights (see Section

4.2) can decide to either accept or reject these opera-

tions. Accepting an operation makes its effects perma-

nent (i.e. updating the main graph), while rejecting an

operation undoes its effects (i.e. remove the previewed

triples in the staging graphs). In the latter case, no trace

of the operation remains, nor is the operation logged

in the history: rejecting an operation should be like the

operation was never performed. Future directions for

the system foresee the possibility to store (in a logi-

cally-separated space) rejected actions so that, should

they be re-proposed in the future, the user can be in-

formed and discouraged from submitting them for val-

idation again.

4.5. Improved and More Complete Support for SKOS

VB2 had already an advanced support for multiple

SKOS schemes. We have improved the management

by allowing users to select more schemes for browsing

the concept tree and by adopting a combination of con-

ventions and editing capabilities for quickly associat-

ing the proper schemes to newly created concepts and

collections. Support for SKOS collections and ordered

collections has been introduced in the system with

dedicated UI views and editing facilities.

4.6. OWL Support

VB already allowed for importing ontology vocab-

ularies for modeling thesauri. Now VB also supports

ontology development (requirement R8) with an al-

most complete coverage of OWL2 and using the Man-

chester syntax for both editing and visualization of

class expressions (see Figure 10). VocBench delegates

reasoning to the triple store that manages the ontology

and its data (see Section 3). Nonetheless, VB differen-

tiates between explicit and inferred statements: they

are rendered differently in the user interface, and users

may toggle their inclusion in the resource-view (see

Figure 10). Currently, VB does not present justifica-

tions of the inferences, because RDF4J (see Section

3.1) lacks any mechanism to obtain them.

Triple stores usually do rule-based reasoning with a

total materialization strategy: the entailment closure of

the ontology is computed in advance by the iterative

application of the rules defining the semantics of the

ontology modeling language. In the rest of the section,

we provide more details about the triple stores com-

monly used with VB highlighting differences in flexi-

bility, expressiveness and suitability to workloads.

RDF4J used to ship a reasoner with hard-coded

rules for RDFS. Moreover, when knowledge is re-

tracted from the ontology, this reasoner computes the

entailment closure from scratch, since it cannot deter-

mine which entailments are no longer supported. This

Figure 10. Resource-view of the class AmphibiousVehicle, showing the use of the Manchester syntax to visualize class descriptions and

the different rendering of inferred statements (lighter color). The button with the eye icon controls the inclusion of inferred statements

approach is clearly inefficient when the workload in-

cludes many deletions that affect the entailment clo-

sure slightly, e.g. the deletion of a fact assertion is usu-

ally less impactful than a deletion at the schema level.

An alternative “schema caching” reasoner is not rule-

based, since it gathers schema-level assertions and cre-

ates a data structure to quickly determine inferred

statements. This reasoner better handles deletions that

do not affect the schema, while being more performant

(up to 80x faster) and more complete (but still bound

to RDFS). For these reasons, the forward-chaining rea-

soner was superseded by this new one in RDF4J 2.5.

Ontotext GraphDB implements reasoning using a

rule-engine that can execute arbitrary rules written in

a proprietary rule-language. GraphDB provides opti-

mized rulesets for RDFS, OWL2-RL and OWL2-QL

semantics. When statements are retracted, GraphDB

first determines (by forward-chaining) their logical

consequences, and then removes only those inferred

statements for which it is not possible to determine (by

backward-chaining) any derivation not including the

knowledge being retracted. GraphDB can also perform

consistency checking and prevent modifications that

would produce inconsistent knowledge. GraphDB fea-

tures a non-rule implementation of owl:sameAs that

eliminates the need to store N2 identity links and to re-

write statements for each equivalence class.

4.7. Input/Output

VB3 features completely redesigned data load and

export capabilities. Since they are somehow specular,

we will focus hereafter on the export procedure, using

the example in Figure 11 dealing with export of a

SKOS-XL thesaurus.

In the example, we accepted the default option to

export the main graph (the data edited by the users).

In some circumstances, the triples in the chosen

graphs can’t be exported as they are. VB2 partially sat-

isfied this need with the ability to export a cut of a the-

saurus. VB3 clearly required a more general solution:

the extension point rdf transformer (see Section 3.2)

has been added, and data being exported can be pro-

cessed by a chain of rdf transformers, each performing

a destructive transformation (on a temporary copy of

the data. In our example, we turned SKOS-XL reified

labels into plain SKOS labels.

The RDF data being exported, optionally processed

by a chain of transformers can be placed to a file, a

triple store or a custom destination (the last two op-

tions associated with the extension point Deployer, see

Section 3.2). The first two options require an RDF

reformatting exporter, the extension point (see Section

Figure 11. Export data

3.2) for supplying serializers of the data into a byte se-

quence. In the example, we chose to deploy an

RDF/XML serialization of the transformed data to an

SFTP server.

It is worthy of note that these complex export chains

can be saved and reused (even across projects). Fur-

thermore, the configurations of each of the individual

components (transformers, reformatters and deploy-

ers) can be saved and reused in different export chains.

4.8. SPARQL Querying and Update

A new SPARQL UI, based on YASGUI [30], has

been included in VB3, featuring the same feeding-

from-live-data mechanism present in VB2.

VB3 also introduced the possibility to store queries

(at different scopes described in section 3.2) and share

them with other users, even across projects. This capa-

bility is useful in different cases: i) a complex query

can be reused, ii) a user writes a query for other users

less proficient (or no proficient at all) with SPARQL,

iii) periodic execution of a query (e.g. for analytics).

VB3 offers several options for downloading the re-

sults of a query, including various tabular formats for

tuple queries, and RDF serializations for graph queries.

Following the observation that the latter case is not

much different from a data export, we supported a cus-

tomizable chain of transformers as we did in the ex-

port. For instance, a general SPARQL query could ex-

tract all alignments available in a dataset, while a

chained RDF transformer could filter only those align-

ments referring to DBpedia [31]. The alignment export

query can thus be reused across different cases.

4.9. Versioned datasets and metadata

In VB3, users can create snapshots of a repository

(req. R12) and tag them with a version identifier (and

other metadata, such as the time of creation of the

snapshot). Users can travel across the different points

in time identified by these versions, and thus analyze

the evolution of browsed resources. The time travel

can be performed both globally, by switching version

so that everything in the UI refers to the selected ver-

sion, and locally, by inspecting different versions of a

resource in the resource-view (Figure 12) or different

versions of a tree (of classes, concepts, etc.)

4.10. Alignment

VB3 provides the same inter-project alignment sup-

port of VB2, allowing users to browse other projects

and supporting semi-automatic label-based searches

over them to provide candidate resources for align-

ments. In addition to this on-the-fly generation of map-

pings, VB3 introduces a tool for loading and validating

alignments following the model of the INRIA Align-

ment API [32]. Validated alignments can then be pro-

jected over standard RDFS/OWL or SKOS mapping

properties, depending on the validated relation and the

Figure 12. Time-traveling across different versions of a resource

involved entities. E.g. two classes mapped through an

inria:EquivRelation will be mapped through the prop-

erty owl:equivalentClass while two SKOS concepts

will be proposed to be aligned with a skos:exactMatch

or a skos:closeMatch.

4.11. Collaboration Environments

The extension point collaboration backend (see

Section 3.2) has been added to the platform to enable

the use of diverse collaboration environments with a

predefined implementation for JIRA 22 , the popular

project management platform by Atlassian. Collabora-

tion environments provide, in the context of defined

projects, means to create and share tasks/issues/sto-

ries/discussions that can be assigned to users for their

resolution. This enhances coverage of requirement R2

for a controlled collaboration. Figure 13 shows how

the resource-view of a resource tells whether there are

pending collaboration items for the resource and let us-

ers create new ones. VB3 also features a view over all

pending items for a project. In several places, VB3

provides links to the page on the underlying collabo-

ration platform for the details of a collaboration item.

4.12. Metadata Export

The “metrics” section of VB2 has been replaced

with a page for editing and exporting metadata (R13)

22 https://www.atlassian.com/software/jira

modeled after several existing metadata vocabularies:

the Data Catalog Vocabulary (DCAT) [33], the Asset

Description Metadata Schema (ADMS) [34], The Vo-

cabulary of Interlinked Datasets (VoID) [35] and the

Linguistic Metadata vocabulary (LIME) [36] (a lexical

extension to VoID). While DCAT and ADMS mostly

deal with static metadata, VoID and LIME offer statis-

tical information about the dataset and its lexical infor-

mation. The information of VoID and LIME is being

computed through the LIME API [37]. This metadata

build and export functionality is implemented as an ex-

tension point of the platform, so that new vocabularies

can be dynamically added to the platform through the

extension point Dataset Metadata Exporter (see Sec-

tion 3.2). For instance, an application profile for

DCAT thought for European public sector data portals

(DCAT-AP23) has later been added to the list of ex-

porters, as of the ISA2 context specifically supporting

public administration. In the spirit of [38,39,40,41], a

planned upgrade of the system will exploit conceptual

and lexical metadata in order to automate the setup of

alignment processes, identifying the key features of

datasets that can be used by the matching systems and

external resources that can be leveraged on support.

4.13. Integrity Constraint Validation

A section dedicated to Integrity Constraint Valida-

tion (ICV) allows the user to inspect possible anoma-

lies. These include violations of formal constraints (e.g.

23 https://joinup.ec.europa.eu/node/145996

Figure 13. Listing issues in JIRA associated to concepts in a thesaurus, opening one of these concepts and checking other collaboration options

https://www.atlassian.com/software/jira
https://joinup.ec.europa.eu/node/145996

thesauri constraints on existence and uniqueness of

preferred labels, disjointness between taxonomy and

relatedness, etc.) or problematic (though not neces-

sarily illegal) patterns (e.g. a skos:Concept having a

broader concept and being the top concept of a same

scheme). Interactive fixes are provided (req. R3) for

each discovered integrity break.

4.14. Desktop Tool and Collaborative Web Platform

As of requirement R7, the system offers a very

lightweight installation (i.e. unzip and click-to-run)

which, followed by default configuration options for

both system and project creation, makes VB3 a good

choice for users looking for a simple and easy-to-use

desktop tool. Other more complex settings are still

possible, satisfying different needs for distributed in-

stallation (separation of data servers, UI servers), bet-

ter performance, etc.

4.15. Declarative Service Implementation

The VB framework provides Java annotations for

specifying diverse characteristics of a service: the need

for read/write access to the data, the capabilities the

user must have, the prerequisites on the input parame-

ters (e.g. an RDF resource must be declared in the da-

taset), etc. Service development becomes easier, less

prone to errors and the produced code is more readable,

as developers can focus on what the service does.

5. Impact

A heterogeneous user community24 has grown in

these years around VB, including large organizations,

companies needing VB as users and companies featur-

ing it as their platform of choice in their range of of-

fered RDF services, consultants needing a modeling

environment, etc.

Some of these long-lasting users still adopt VB2,

but there are compelling reasons for which they will

migrate to VB3: i) VB2 is no longer supported in terms

of updates ii) the feature set of VB3 subsumes the one

24

http://vocbench.uniroma2.it/support/community.jsf
25 The list expressed in the following paragraph has been gath-

ered through a mix of direct interaction with known partners/users

and data harvested from a questionnaire advertised on the VB mail-

ing list. In both cases, explicit consent has been given to the authors
for disclosing the information they have reported. This list is obvi-

ously limited to our most close interactions and, among those, only

those with provable facts or a clear migration plan/expressed inten-

of VB2, iii) some features of VB2 have been substan-

tially improved when migrated to VB3 (e.g. search,

history/validation, etc.). Additionally, we should men-

tion that VB3 has already relevant users25. The Publi-

cations Office of the EU (which is managing the de-

velopment of VB3) has already adopted VB3 in pro-

duction for their EuroVoc thesaurus and for collabora-

tively managing the Common Metadata Model [42]

ontology, thus exploiting the widened support of VB3

for OWL ontologies. The Publications Office is also,

since this October 2018, providing hosting and support

to Directorate Generals (DGs) of the European Com-

mission for managing their datasets. At the time of

writing (only 4 months after the decision to provide

this support) the production installation of VocBench

3 at the Publications Office is hosting 47 projects for

10 DGs, with each DG and the Office itself having

more than one team working on different projects. The

number of adopters exploiting this supported hosting

within the European Commission and related institu-

tions is rapidly growing.

FAO, which was the steward of VB2, migrated to

VB3 for the maintenance of their thesaurus Agrovoc

in August 2018 and has recently started adopting it for

classification systems used in statistics. INRA, the

French “Institut national de la recherche

agronomique” 26 and CIRAD, “la recherche

agronomique pour le développement”27 showed their

intention to move to VB3 (from VB2 and as a first

adoption in respectively) for the management of their

thesauri. Still in the field of agriculture, the US Na-

tional Agricultural Library (NAL) 28 , together with

FAO and CABI (“Centre for Agriculture and Biosci-

ence International”)29 agreed to use the VB3 platform

in the context of the GACS30 project, a global agricul-

ture thesaurus born from the integration of the three

respective thesauri (NALT, Agrovoc and the CAB the-

saurus) of these major players in the area.

The Senate of the Italian Republic is also migrating

management of its thesaurus Teseo from VB2 to VB3.

There are also newcomers who are already adopting

the platform and started directly with version 3, such

as GelbeSeiten31, the German Yellow Pages, which are

tion. It does not include other relevant organizations which are eval-
uating the system and the many occasional users whom we are not

in contact with
26 http://www.inra.fr/
27 https://www.cirad.fr/
28 https://www.nal.usda.gov/
29 https://www.cabi.org/
30 http://agrisemantics.org/gacs/
31 https://www.gelbeseiten.de/

http://vocbench.uniroma2.it/support/community.jsf
http://www.inra.fr/
https://www.cirad.fr/
https://www.nal.usda.gov/
https://www.cabi.org/
http://agrisemantics.org/gacs/
https://www.gelbeseiten.de/

using VB3 to maintain their homonymous thesaurus,

and the Solidaridad Network32.

Furthermore, VB3 acquired much more visibility

and potential for adoption with respect to its predeces-

sors, since it became the reference platform of the

EU33, recommended by the European Commission to

the member states for the collaborative management

of thesauri, ontologies and (now) lexicons.

To improve our understanding of the uptake of

VocBench, we collected some statistics from the

download pages of VB2 34 and VB3 35 as of 8th of

February 2019. Figure 14 draws how many times each

release of VB2 (on the left), respectively, of VB3 (on

the right) was downloaded.

The most downaloded version of VB2 is the 2.3

with 395 downloads. The lower statistics associated

with subsequent releases can be explained by the fact

they were released one after the other with only a few

months in between. These more frequent releases

allowed us to deliver new features and (important)

fixes to users; however, not every user had the same

incentives to keep update with this faster release

candence. The last release of VB2 2.4.4 (available

since 8 March 2017) registered 295 downloads.

On the download page of VB2, there are also the

documentations of VB 2.3 and VB 2.1 in PDF format,

which have in total 959 downloads. A related

obseravation is that the two versions of a simple

thesaurus used in the getting started documentation

were downloaded 491 times. Perhaps more important

is the fact that a patch for a problem with the validation

in VB 2.3 was downloaded 149 times: this figures tells

us about users who considered the information they

32 https://www.solidaridadnetwork.org/
33 https://ec.europa.eu/isa2/solutions/vocbench3_en
34 https://bitbucket.org/art-uniroma2/vocbench2/dow

nloads/

were validating valuable enough to warrant the

application of the patch.

On the right side of Figure 14, we report analogous

statistics for VB3. The first stable release (version 1.0)

has 138 downloads, while the subsequent version 2.0

was downloaded 498 times (more than the most down-

loaded version of VB2). Version 3.0.1 (released five

days after 3.0.0) has 438 downloads, while version

4.0.2 (released three days after 4.0.0) has 637 down-

loads being the most downloaded so far. These high

figures are associated with relatively frequent releases

(every few months), and thus support two (non-mutu-

ally exclusive) hypotheses: existing users are willing

to test/use new versions as they bring substantial new

features, or there is a sufficiently large supply of new

users. The typical slowness of large organizations

(which are typical adopters of VocBench) in reacting

to changes (confirmed by the feedback we have gath-

ered, where most of them declared to have “intention

to move” or “being in the process of migrating” though

still with an unclear schedule) suggests that the second

hypothesis covers at least a non-trivial part of the phe-

nomenon.

The user community’s main point of interaction and

support is the VocBench discussion group 36 . The

group (as of 8th February 2019) counts 154 members.

In order to roughly quantify the impact of the group,

we compared its size with the analogous community

forum of RDF4J37. The user group of RDF4J counts

390 members, so the sizes of the two groups are in the

same order of magnitude. We must also consider that

RDF4J is one of the two most popular Java RDF

35 https://bitbucket.org/art-uniroma2/vocbench3/dow
nloads/

36 http://groups.google.com/group/vocbench-user
37 http://groups.google.com/group/rdf4j-users

Figure 14. Download statistics for VocBench 2 (on the left) and VocBench 3 (on the right) as of 8 February 2019

131
215

112 160

395

13
86 97

166
45

183
295

63
138

498

35

438

33 57

637

0
100
200
300
400
500
600
700

VocBench 2 VocBench 3

frameworks (the other is Jena38), thus relying on a less

scattered user distribution than RDF editors may have.

User questionnaires are occasionally sent to the

mailing list of VocBench in order to gather feedback

from users about satisfaction and ideas for new direc-

tions for the system. A recent investigation held in

March, 2018, based on a questionnaire diffused on the

mailing list revealed that roughly 50% of the respond-

ents already adopted VocBench 3 in production, 22%

were in the process of adopting it, 17% were already

using VocBench 2 in production and were considering

moving to VocBench 3 while 11% was shared by users

adopting VB2 and still not sure whether to move to the

new platform and newcomers evaluating the VB3 plat-

form. Adoption of VocBench 3 is still mainly focused

on thesaurus development: among those adopting VB3

in production, 89% of the respondents are using it for

developing thesauri while 33% is adopting it for OWL

ontology development. We do not have figures for On-

toLex development as at the time of the investigation

the OntoLex editor in VB had not yet been released.

6. Related Work

VB3 has dedicated facilities for a variety of core

RDF knowledge models, and it can be used both as a

desktop tool and as a web-based collaborative environ-

ment. The number of systems it could be compared

against is consequently very large. Instead of attempt-

ing an exhaustive survey of these systems, we focused

on selected systems, which are currently and widely

recognized as references in their area of specialization.

6.1. Protégé

Protégé39 [43] is an open source, very popular on-

tology editor. Our use of the term Protégé avoids am-

biguity with the web-based version WebProtégé [44].

Originally based on a frame language (with a later

extension for OWL), Protégé 4 switched to OWL-DL

through the OWL API [45]. Protégé can thus benefit

from DL reasoners, such as HermiT [46] which com-

bines completeness, feature-richness and scalability.

DL semantics precluded most meta-modelling,

which is supported by RDF systems (such as VB3),

based on OWL Full semantics and rule-based reason-

ing. OWL2 closed this gap with the introduction of

38 http://jena.apache.org/
39 http://protege.stanford.edu/
40 https://protegewiki.stanford.edu/wiki/Protege_Pl

ugin_Library

punning. Regarding the relative strengths of each ap-

proach, tableau-based (DL) reasoners are usually less

scalable and efficient than lightweight rule-based rea-

soners, which, however, are less expressive [47].

One of the strengths of Protégé lies in its extensibil-

ity through plugins. At the time of writing, its plugin

library40 contains 120 items. One of them is SKOSed

[48], consisting in “a suite of views and tools for work-

ing specifically with SKOS”. SKOSed adds conven-

ience (e.g. the hierarchical representation of concepts)

on top of the foundation laid down by Protégé, which

guarantees the possibility to intermix SKOS and OWL

(e.g. to extend SKOS with additional classes or prop-

erties), and to leverage already existing features (e.g.

reasoners). Under this viewpoint, SKOSed is very

close to how VB3 achieves its multi-model support,

even though SKOSed offers a notably smaller set of

functionalities with respect to VocBench and is limited

to the desktop version of Protégé. Moreover, SKOSed

is no longer maintained, and the last version is de-

clared compatible with Protégé 4.1+: a quick test re-

vealed that SKOSed is incompatible with Protégé 5.2.

Beyond single-user usage, Protégé supports a cli-

ent-server mode (or multiuser model). Different in-

stances of Protégé (clients) connect to a shared in-

stance (server), enabling users to co-work on the same

ontology (or SKOS dataset, in case of SKOSed). Cli-

ent-server communication is based on Java RMI, while

VB3 uses HTTP and JSON (popular in Web APIs).

The client-server mode greatly differs between Pro-

tégé 3 and Protégé 4: in Protégé 3 individual changes

are sent to the server as they are made by clients, while

in Protégé 4 changes are grouped together and only

sent when the user commits them41. In Protégé 3, the

clients cannot work without a connection to the shared

server. This scenario is conceptually similar to a web

application (in particular a single-page application,

such as VB3), although clients are locally installed ra-

ther than downloaded on the fly from the web. Con-

versely, in Protégé 4, the clients can work offline, as

the connection to the server is only required by server-

related operations, such as commit or update. In fact,

the ontology can even be modified outside of Protégé:

upon commit, Protégé will compute the difference be-

tween the current version and the one originally

fetched from the server. The client-server mode of

Protégé 4 is thus conceptually close to a centralized

version control system specialized for ontologies.

41 https://protegewiki.stanford.edu/wiki/Protege4Cl
ientServer

http://jena.apache.org/
http://protege.stanford.edu/
https://protegewiki.stanford.edu/wiki/Protege_Plugin_Library
https://protegewiki.stanford.edu/wiki/Protege_Plugin_Library
https://protegewiki.stanford.edu/wiki/Protege4ClientServer
https://protegewiki.stanford.edu/wiki/Protege4ClientServer

Collaborative Protégé [49] is an extension for Pro-

tégé 3 that introduces several collaboration-oriented

features beyond the multiuser model (client-server

mode). Noteworthy features include the annotation of

ontology components and changes, the management of

a change history, inline discussions and a chat. In VB3,

history is managed internally, while other capabilities

are delegated to external (already appreciated) services

(e.g. JIRA for issue management), through extensible

connectors, while offering a smooth integration (e.g.

showing issues for a resource inside its resource-view).

6.2. VoCol

Version control systems for software development

(e.g. GIT) are often considered inadequate for version-

ing of ontologies and RDF datasets: operating on a se-

rialization of an ontology, they can be confused by se-

mantically irrelevant operations (e.g. statement reor-

dering, change of blank node identifiers).

Nonetheless, VoCol [50,51] demonstrated the via-

bility of GIT42 for distributed development of vocabu-

laries, by proposing a methodology and a suite of inte-

grated tools. VoCol orchestrates the execution of dif-

ferent tasks (e.g. validation, documentation generation,

etc.) in response to notifications sent from a GIT re-

pository, often in response to events such as pushing

of new commits. VoCol is not an ontology editor on

its own. Actually, the wiki of VoCol suggests editing

the files versioned with GIT using a text editor, since

some ontology/RDF editors tend to completely change

the serialization of the data (e.g. the order of the tri-

ples) upon saving the updated version43.

6.3. WebProtégé

WebProtégé was initially thought as a lightweight

(open source) ontology editor, but it has grown over

time reducing the functional gap with Protégé. Indeed,

it supports class expressions in the Manchester syntax

(as VB3) and editing of SWRL rules (absent in VB3).

WebProtégé reused and extended the functionalities

of Collaborative Protégé for change tracking, notes,

discussions and access control. In WebProtégé, users

can also monitor (“watch”) individual resources or en-

tire branches of the class tree: changes to these re-

sources are listed in the user interface or sent via email

42 https://git-scm.com/
43 https://github.com/vocol/vocol/wiki/Developing-V

ocabularies-with-VoCol-Environment
44 https://mailman.stanford.edu/pipermail/protege-

user/2018-March/008741.html

notifications. This feature – not yet supported by VB3

– may speed up interactions between editors co-work-

ing on the same area of the ontology.

In addition to the change history of the ontology,

WebProtégé enables to download the ontology in each

state of its evolution. This is a rather unique feature,

since other systems (VB3 included) only supports dis-

crete snapshots of the edited data. A similar behavior

may be found in VoCol, since in GIT it is possible to

download any (previous) state of a repository.

WebProtégé supports the acquisition of instance

data by means of customizable forms that effectively

shield domain experts from the complexity of the un-

derlying ontological modelling. This mechanism was

borrowed from Protégé 3, and it is somewhat related

to VB3 custom forms. Actually, VB3 custom forms

are meant to enhance instance construction or property

setting, without the aim to replace the editing panel (i.e.

the resource-view) as a whole.

Currently, WebProtégé does not support plugins

like its desktop counterpart44; however, its modular ar-

chitecture makes it easy to modify the code of the sys-

tem and introduce additional components (e.g. custom

tabs or custom form widgets). Conversely, VB3 al-

ready supports plugins at the service level, with the dy-

namic generation of configuration dialogs in the user

interface. Nonetheless, provisioning of arbitrary ex-

tensions for the user interface (as available in Protégé

desktop) is still missing in VB3, due to limitations of

the Angular technology.

In line with its use in the life science domain, Web-

Protégé provides a dedicated facility for linking terms

from BioPortal45 [52] ontologies. Starting from ver-

sion 5.0, VB3 is going support data catalogs in general,

and provide interesting features based on them (e.g.

importing an ontology from a catalog).

Currently, WebProtégé lacks dedicated facilities for

SKOS, nor can third-party plugins like SKOSed fill

this gap. Fortunately, there are numerous alternative

SKOS editors, most of which – especially the most re-

cent ones – are web-based collaborative editors. Mo-

chón et al. surveyed [53] existing thesaurus manage-

ments tools from the perspective of LOD. They found

that PoolParty46 outperforms other systems with re-

spect to every indicator, while TemaTres47 [54] ranked

second. In the following paragraphs, we will discuss

these two systems, as well a few others (also included

45 https://bioportal.bioontology.org/
46 https://www.poolparty.biz/
47 https://www.vocabularyserver.com/

https://git-scm.com/
https://github.com/vocol/vocol/wiki/Developing-Vocabularies-with-VoCol-Environment
https://github.com/vocol/vocol/wiki/Developing-Vocabularies-with-VoCol-Environment
https://mailman.stanford.edu/pipermail/protege-user/2018-March/008741.html
https://mailman.stanford.edu/pipermail/protege-user/2018-March/008741.html
https://bioportal.bioontology.org/
https://www.poolparty.biz/
https://www.vocabularyserver.com/

in the survey), which we considered noteworthy either

for impact or for diversity of approach.

6.4. PoolParty

PoolParty is a highly regarded suite of semantic

technologies for different needs, including i) thesaurus

management, ii) term and phrase extraction, entity

linking and disambiguation, and iii) semantic search

and data mining. Different combinations of these pro-

prietary technologies are available in different combi-

nations as a one-time purchase or as a renewable sub-

scription. We evaluated a demo instance of PoolParty

Enterprise Server, which combines thesaurus manage-

ment and term extraction, linking and disambiguation.

The costlier PoolParty Semantic Integrator also in-

cludes semantic search & data mining capabilities and

a wider spectrum of triple store backends. The latter is

supported by VB3 by a dedicated extension point.

In PoolParty, the analogous of the resource-view for

a concept consists of several tabs corresponding to var-

ious functionalities, such as detailed editing, notes,

history, quality management, etc. The editing tab itself

is subdivided into tabs, corresponding to different co-

hesive groups of properties. By default, it is possible

to use the SKOS tab to edit the core description of a

concept. However, additional tabs can be activated, by

choosing an ontology or a custom scheme (a view on

a subset of one or more ontologies developed for some

purpose). Indeed, PoolParty treats ontologies as sec-

ond-class citizens: while it has long been possible to

edit them inside PoolParty, until version 7, editing of

ontologies used a completely different, very con-

strained user interface. Indeed, only PoolParty 7 re-

cently introduced a class tree for the class taxonomy.

PoolParty supports change tracking, while history

can be browsed both globally and per resource. The

approval workflow allows to exert some control on

proposed changes: concepts transition to the draft state

upon any change, and an explicit action is required to

transition them again to the approved state. Upon un-

approved changes, the concept can be assigned to a

user for remedy. If the thesaurus is seriously compro-

mised, it is possible to revert to a previously snapshot-

ted state. VB3 also supports snapshots and quickly

switching to a snapshot for visualization. However, re-

verting to a snapshotted state is – at the time of writing

– not supported. PoolParty supports quality manage-

ment through the integration of qSKOS48 [55], which

48 https://github.com/cmader/qSKOS/
49 EVN has become part of TopBraid Enterprise Data Govern-

ance (EDG) as the package for Vocabulary Management (VM):

can evaluate several quality criteria (which inspired

our constraint validation subsystem). These criteria

can be enforced interactively (i.e. forbid a request vio-

lating a constraint) or only included in quality reports.

PoolParty can leverage existing Linked Datasets,

e.g. to populate a thesaurus or create mappings (e.g. to

DBpedia). Similarly, VB3 supports browsing (via the

resource-view) remote resources (accessed via HTTP

or SPARQL) and creating mappings to remote datasets.

PoolParty supports (as VB3 does) the association of

JIRA for task management.

Beyond thesaurus management in strict sense, inter-

esting features of PoolParty (in some offerings) are the

acquisition of concepts/terms from a corpus and the

semantic annotation/classification of documents. Cur-

rently, VB3 lacks these capabilities. One may argue

that they should be provided by external services that

(right now) can interact with VB3 through its API or

via a shared triple store. Indeed, there have already

been some attempts to integrate knowledge acquisition

from text in our platform [56,57] through CODA.

6.5. TopBraid EVN

TopBraid EVN49 (Enterprise Vocabulary Net) is a

proprietary web-based editor for thesauri, ontologies,

corpora, content tag sets and crosswalks. Differently

from PoolParty, TopBraid EVN supports ontologies to

the same extent as thesauri. Moreover, the manage-

ment of these diverse assets is in fact very uniform, at

least for what concerns metadata management, access

policy definition, import/export, etc. The main differ-

ences arise in the editing section, where unsurprisingly

ontologies and thesauri use a different interface than,

for example, crosswalks. Unless stated otherwise, we

will refer to thesaurus/ontology editing.

TopBraid EVN implements change governance

through working copies. Alike branches in GIT, work-

ing copies can be edited autonomously, and then

merged to the production version of the asset, if the

proposed changes are approved. The approval process

is supported by a comparison report showing the dif-

ference between the copy and the production version

in terms of property value changes of resources. The

same type of report is available to editors, to under-

stand how a resource has evolved, and in case undo a

change. In addition to this resource-centric view, Top-

Braid EVN supports browsing and searching the his-

tory in terms of coarse-grained changes consisting of

https://www.topquadrant.com/products/topbraid-edg-

vocabulary-management/

https://github.com/cmader/qSKOS/
https://www.topquadrant.com/products/topbraid-edg-vocabulary-management/
https://www.topquadrant.com/products/topbraid-edg-vocabulary-management/

multiples triple additions/removals. Again, it is possi-

ble to revert individual changes. However, reverting a

change in the middle of the history may create orphan

resources. Validation in VB3 has the same problem.

The behavior of TopBraid EVN differs from the vali-

dation in VB3 with respect to their interaction with the

history. Reverting a change appends to the history an-

other change that undoes the effects of the former. In

VB3, a change pending for validation is – on purpose

– not logged in the history, and if it is rejected, it is like

the change had never happened. In TopBraid EVN,

working copies enable a similar result. Archiving a

working copy is alike snapshots in PoolParty and VB3.

TopBraid EVN implements integrity checks via

SPIN50 (SPARQL Inference Notation) and, more re-

cently, via SHACL (Shapes Constraint Language) [58].

These constraints can be evaluated interactively or in-

cluded in a report (like PoolParty). The use of a stand-

ard, declarative language eases adding constraints. In

VB3, constraints are hardcoded with some duplication

between the checks within services and the integrity

constraint validation subsystem: this approach enables

dedicated visualizations and different, contextualized

quick fixes to ease debugging and repair of anomalies.

Like WebProtégé, TopBraid EVN allows to cus-

tomize the form associated with a class. Internally rep-

resented in SWP51 (SPARQL Web Pages), these forms

can be edited (to an extent) with a graphical editor.

TopBraid EVN supports the assignment of tasks to

users at different levels (e.g. asset or individual re-

sources). Additionally, TopBraid EVN supports com-

ments on resources. Transitioning between a few sta-

tuses, comments also provide a simple task system.

In addition to these integrated facilities for collabo-

ration, TopBraid EVN supports linking projects to

JIRA: e.g. the editing view focused on a resource ena-

bles to see or create related issues on JIRA. As already

stated, PoolParty and VB3 also offer this capability.

Actually, VB3 defines an extension point that can be

implemented for different collaboration platforms.

Like PoolParty, TopBraid EVN can manage docu-

ment corpora, and supports both manual and automatic

(document-level) semantic tagging of documents.

6.6. TemaTres

TemaTres is an open source web application for the

management of thesauri, glossaries, controlled vocab-

50 http://spinrdf.org/
51 http://uispin.org/

ularies, etc. TemaTres uses a term-based model in con-

trast to the concept-based model underpinning SKOS.

Indeed, SKOS is only available as an import/export

format, while data is stored in a relational DB using a

dedicated schema. This schema is enough flexible to

support custom relations; however, it doesn’t support

the import of custom ontologies, and these customiza-

tions do not make it into the SKOS export anyway.

TemaTres supports multilingualism via interlinked

monolingual vocabularies, either on the same Te-

maTres instance or accessed via a terminological web

service, enabling the federation of TemaTres instances.

Federation also benefits vocabulary mapping, allow-

ing for term-lookup over remote vocabularies. VB3

achieves a similar goal through “assisted search”, en-

abling term lookup over the SPARQL endpoints of

open online datasets. TemaTres supports bulk genera-

tion of mappings, by fetching and then reversing map-

pings contained in a federated vocabulary.

TemaTres has a workflow model like the one of

VB3: concepts are created in a candidate state, and

once accepted, they do not reenter the “modified” state

after each modification. While TemaTres implements

the state as an explicit metadata of the term (as in VB2),

in VB3 the state is represented implicitly through the

state of the triple asserting the characterizing class of

the resource (when validation is enabled).

TemaTres has a very limited support for change his-

tory in the form of recent changes to a vocabulary (also

available as an RSS feed).

TemaTres can be configured to enforce some integ-

rity constraints (e.g. disallow polyhierarchy), while of-

fering some quality assurance tools (e.g. terms without

hierarchical relationships). The TemaTres Keyword

Distiller uses terms extracted from text52 to obtain key-

words from a controlled vocabulary.

6.7. iQvoc

iQvoc53 is a vocabulary management system based

on SKOS originated from a research on the challenges

and opportunities of Linked Data publication via web

frameworks. iQvoc uses the framework Ruby on Rails.

Despite an initial binding to a specific vocabulary,

subsequent development focused on separating the

core logic from vocabulary-specific customizations.

When iQvoc 3.0 was open sourced, even the support

52 https://vocabularyserver.com/wiki/index.php?titl
e=Tematres_keywords_distiller

53 http://iqvoc.net/

http://spinrdf.org/
http://uispin.org/
https://vocabularyserver.com/wiki/index.php?title=Tematres_keywords_distiller
https://vocabularyserver.com/wiki/index.php?title=Tematres_keywords_distiller
http://iqvoc.net/

for SKOS-XL was moved to a separate module 54 .

iQvoc is like TemaTres under several viewpoints, such

as resources being displayed as directly addressable

content-pages, federation, bulk-generation of map-

pings, etc. However, iQvoc differs profoundly from

TemaTres in being natively based on SKOS. iQvoc

does not work at the level of RDF statements, but

SKOS is implemented as a domain model persisted to

a relational DB via the ORM (Object-Relational Map-

ping) found in Ruby on Rails. Extensions to the do-

main model must be realized as new code modules.

Governance of change in iQvoc is based on the idea

of differentiating the published version of a concept

and its (unique) draft version created upon a change to

that concept. Furthermore, locking the draft version

prevents conflicts. Users with suitable rights can pub-

lish the draft version of a concept, making the changes

persistent and visible. Before publishing, these users

can request the evaluation of some integrity con-

straints, in order to avoid the corruption of the data be-

ing edited. In iQvoc, the granularity of validation co-

incides with individual concepts being edited, while

VB3 records individual operations for validation. The

approach of iQvoc enables to group together individ-

ual changes that are best vetted together. However, it

is impossible to validate cross-concept changes.

iQvoc lacks a global history of changes; however,

changes to individual resources can be described by

attaching SKOS change notes to the affected resource

(creator and date time are set automatically).

6.8. Lemon Editors

To our knowledge, VB3 is the first multi-model ed-

itor concerned with OntoLex-Lemon. In literature we

could only find purpose-built systems that are tailored

to a specific application of lemon (in broad sense, thus

including the legacy Monnet lemon [9]). McCrae et al

argued [59] that generic data-driven editors are diffi-

cult to use with the lemon model: some model con-

structs are not properly displayed, and, moreover,

there are constructs made of a few triples that logically

should be manipulated as a single entity. McCrae et al

addressed these issues through the development of

Lemon Source. Lemon Source also addresses collabo-

ration, which was identified as a key requirement for

lexicon development. The system thus incorporates

change tracking, role-based access control, validation

54 https://github.com/innoq/iqvoc_skosxl
55 http://lemonadetools.linkeddata.es/lemonAssistan

t/
56 http://ditmao-dev.ilc.cnr.it:8082/saussure

workflow, etc. Most of these items are generally useful

features, already found in general-purpose collabora-

tive editors such as VB3. Both Lemon Source and VB3

hide (most of) the complexity of the model, by prompt-

ing the user for essential information about a given

construct (say the lemma of a lexical entry), which

drives the generation of its complex RDF serialization.

Lemon Source automates the construction of ontology

lexicons a bit further: by means of a configurable NLP

(Natural Language Processing) pipeline, it creates lex-

ical entries from (RDFS) labels commonly found in

ontologies, computing their tokenization, syntactic

tree, and using (whenever possible) entries in already

existing lexicons (e.g. Princeton WordNet). Unfortu-

nately, Lemon Source is no longer publicly available.

Lemon Assistant [60] is another web-based editor

for lemon, which is based on the design patterns for

ontology lexicons [21]. Its motivation lies in the ob-

servation that the use of lemon is complex and error

prone. In VB3, we implemented all the patterns sup-

ported by Lemon Assistant, but we complemented

them with more general operations on lemon models,

so that we are not constrained to ontology lexicons. In-

deed, despite what the extended name (“lexicon model

for ontologies”) of the model would suggest, lemon is

largely used beyond its original scope, for example for

the representation of language resources as Linked

Data. However, VB3 does not support – at the moment

– the generation of usages examples of lexical entries

and some integrity (cross-language) checks. Lemon

Assistant is currently available only as an online ser-

vice55, no longer integrated with the integrity checks.

LexO [61,62] is the most recent lemon editor, grown

in the area of Digital Humanities to support philolo-

gists, historical linguists and lexicographers. There are

different versions of LexO that were developed in dif-

ferent projects to support different linguistic phenom-

ena through a combination of extensions of the lemon

model and customizations of the user interface: the no-

tion of root for Arabic, transliteration and tone for Chi-

nese, multiple alphabets, multi word expressions com-

bining words in different languages and ancients forms

without a canonical form (because were never at-

tested) for Old-Occitan. Conversely, the demo56 linked

by the project page57 shows only a very basic support

for ontologies (just the class tree, without the possibil-

ity to edit the details of the classes).

57 http://licolab.ilc.cnr.it/index.php/it/software-
e-demo/#lexo

In Monnet lemon, the representation of a wordnet

was achieved as if it were a lexicalization of an ontol-

ogy: synsets were usually represented as instances of

an arbitrary class, while words were represented as

lexical entries. Previous editors supported the editing

of language resources with this mechanism. However,

OntoLex-Lemon eventually differentiated between an

ontology lexicon and a wordnet-like resource: the

class lexical concept models synsets, while the attach-

ment of lexical entries is achieved with a dedicated set

of properties. Obviously, editors developed long be-

fore OntoLex-Lemon may not support all of this. Con-

versely, VB3 features an extensive support for lexical

concepts, and it was tested with very large resources:

for example, in Section 4.1.4 we cited the possibility

to manage the collection of 34 wordnets collected in

Open Multilingual Wordnet. Another recent innova-

tion of the model not supported by previous editors is

the LIME metadata module. VB3 supports the compu-

tation and the export of this kind of metadata. In the

future, VB3 will benefit from this metadata to better

orchestrate the alignment of different datasets: e.g. de-

termine the overlap in the supported natural languages,

or the identification of useful language resources.

7. Conclusion and Future Work

In the last years, VocBench has addressed the needs

of large organizations, companies and independent us-

ers needing an open source collaborative environment

for editing thesauri, supporting a formalized editorial

workflow. Continuous user feedback allowed us to

spot bugs and to improve the usability of VocBench.

It is thanks to this community feedback, to the sup-

port of the ISA2 program and to our desire to reach new

quality levels that we started this endeavor, by rethink-

ing most of VocBench from scratch, still benefiting

from the experiences we had with VB2.

The most important achievement of the new plat-

form lies at its core: a fully-fledged RDF core frame-

work, developed by further improving the Semantic

Turkey framework with functionalities for user man-

agement, role-based access control, change tracking

and collaboration and by providing it with a new user

interface. With respect to VB2, we could say VB3 is a

user interface (delivered as a web application) for the

improved Semantic Turkey platform. A second major

achievement is the broadened support for all major

standards of the RDF family, going beyond SKOS the-

sauri and embracing OWL ontologies and OntoLex

(both as a core model for developing lexicons and as a

lexicalization model for all kind of RDF datasets)

which makes of VB a unique, comprehensive offer in

the scenario of RDF development platforms.

We hope that this evolution of the system will lay a

solid foundation for the realization of a new range of

services spacing from knowledge acquisition, evolu-

tion and management in Europe and worldwide.

Acknowledgments

This work has been funded by the European Com-

mission ISA² programme; the development of

VocBench 3 (VB3) is managed by the Publications Of-

fice of the EU under contract 10632 (Infeurope S.A.)

References

[1] C. Caracciolo, A. Stellato, A. Morshed, G. Johannsen, S.

Rajbhandari, Y. Jaques, and J. Keizer, "The AGROVOC

Linked Dataset," Semantic Web Journal, vol. 4, no. 3, pp.
341–348, 2013, doi: 10.3233/SW-130106 .

[2] A. Stellato, S. Rajbhandari, A. Turbati, M. Fiorelli, C.

Caracciolo, T. Lorenzetti, J. Keizer, and M.T. Pazienza,
"VocBench: a Web Application for Collaborative

Development of Multilingual Thesauri," in The Semantic

Web. Latest Advances and New Domains (Lecture Notes in
Computer Science).: Springer International Publishing,

2015, vol. 9088, pp. 38-53, doi: 10.1007/978-3-319-18818-

8_3 .

[3] World Wide Web Consortium (W3C). (2009, August)

World Wide Web Consortium (W3C). [Online]. Available:

http://www.w3.org/TR/skos-reference/

[4] World Wide Web Consortium (W3C). (2009, August)

World Wide Web Consortium (W3C). [Online]. Available:

http://www.w3.org/TR/skos-reference/skos-xl.html

[5] G. Hodge, Systems of Knowledge Organization for Digital

Libraries: Beyond Traditional Authority Files. Washington,

DC: Council on Library and Information Resources, April
2000. [Online]. Available:

https://www.clir.org/pubs/reports/pub91/

[6] M. T. Pazienza, N. Scarpato, A. Stellato, and A. Turbati,
"Semantic Turkey: A Browser-Integrated Environment for

Knowledge Acquisition and Management," Semantic Web

Journal, vol. 3, no. 3, pp. 279-292, 2012, doi: 10.3233/SW-

2011-0033 .

[7] D. Griesi, M. T. Pazienza, and A. Stellato, "Semantic

Turkey - a Semantic Bookmarking tool (System
Description)," in 4th European Semantic Web Conference

(ESWC 2007), Innsbruck, Austria, 2007, doi: 10.1007/978-

3-540-72667-8_56 , June 3-7.

[8] A. Stellato, A. Turbati, M. Fiorelli, T. Lorenzetti, E.

Costetchi, C. Laaboudi, W. Van Gemert, and J. Keizer,

"Towards VocBench 3: Pushing Collaborative
Development of Thesauri and Ontologies Further Beyond,"

in 17th European Networked Knowledge Organization

Systems (NKOS) Workshop. Thessaloniki, Greece,

https://doi.org/10.3233/SW-130106
https://doi.org/10.1007/978-3-319-18818-8_3
https://doi.org/10.1007/978-3-319-18818-8_3
http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/skos-xl.html
https://www.clir.org/pubs/reports/pub91/
https://doi.org/10.3233/SW-2011-0033
https://doi.org/10.3233/SW-2011-0033
https://doi.org/10.1007/978-3-540-72667-8_56
https://doi.org/10.1007/978-3-540-72667-8_56

September 21st, 2017, 2017, pp. 39-52. [Online]. Available:

http://ceur-ws.org/Vol-1937/paper4.pdf

[9] J. McCrae, D. Spohr, and P. Cimiano, "Linking Lexical
Resources and Ontologies on the Semantic Web with

Lemon," in The Semantic Web: Research and Applications

(Lecture Notes in Computer Science).: Springer Berlin
Heidelberg, 2011, vol. 6643, pp. 245-259, doi: 10.1007/978-

3-642-21034-1_17 .

[10] J. P. McCrae, J. Bosque-Gil, J. Gracia, P. Buitelaar, and P.
Cimiano, "The OntoLex-Lemon Model: Development and

Applications," in Electronic lexicography in the 21st

century. Proceedings of eLex 2017 conference., 2017, pp.
587-597. [Online]. Available:

https://elex.link/elex2017/wp-

content/uploads/2017/09/paper36.pdf

[11] M. Fiorelli, A. Stellato, T. Lorenzetti, A. Turbati, P.

Schmitz, E. Francesconi, N. Hajlaoui, and B. Batouche,

"Towards OntoLex-Lemon editing in VocBench 3,"
AIDAinformazioni, vol. 36, no. special issue, pp. 81-102,

2018, doi: 10.4399/97888255216345 .

[12] M. Fiorelli, A. Stellato, T. Lorenzetti, A. Turbati, P.
Schmitz, E. Francesconi, N. Hajlaoui, and B. Batouche,

"Editing OntoLex-Lemon in VocBench 3," in Proceedings

of the Twelfth International Conference on Language
Resources and Evaluation (LREC 2020), 2020, (in press).

[13] P. Jain, P. Hitzler, P. Z. Yeh, K. Verma, and A. P. Sheth,

"Linked Data Is Merely More Data," in Linked Data Meets
Artificial. Menlo Park: AAAI Press, 2010, pp. 82–86.

[Online]. Available:

https://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view
/1130/1454

[14] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev,

and R. Velkov, "OWLIM: A family of scalable semantic
repositories," Semantic Web, vol. 2, no. 1, pp. 33-42, 2011,

doi: 10.3233/SW-2011-0026 .

[15] M. Fiorelli, M. T. Pazienza, A. Stellato, and A. Turbati,
"CODA: Computer-aided ontology development

architecture," IBM Journal of Research and Development,

vol. 58, no. 2/3, pp. 14:1 - 14:12, March-May 2014, doi:
10.1147/JRD.2014.2307518 .

[16] M.T. Pazienza, A. Stellato, and A. Turbati, "PEARL:

ProjEction of Annotations Rule Language, a Language for
Projecting (UIMA) Annotations over RDF Knowledge

Bases," in Proceedings of the Eighth International

Conference on Language Resources and Evaluation
(LREC'12), Istanbul, Turkey, 2012. [Online]. Available:

http://www.lrec-

conf.org/proceedings/lrec2012/pdf/424_Paper.pdf

[17] M. Fiorelli, T. Lorenzetti, M. T. Pazienza, A. Stellato, and

A. Turbati, "Sheet2RDF: a Flexible and Dynamic

Spreadsheet Import&Lifting Framework for RDF," in
Current Approaches in Applied Artificial Intelligence, M.

Ali et al., Eds.: Springer International Publishing, 2015, vol.
9101, pp. 131-140, doi: 10.1007/978-3-319-19066-2_13 .

[18] F. Cotton, R. Cyganiak, R.T.A.M. Grim, D. W. Gillman, Y.

Jaques, and W. Thomas, "XKOS: An SKOS Extension for
Statistical Classifications," in Proceedings 59th ISI World

Statistics Congress, 25-30 August 2013, Hong Kong

(Session CPS203), 2013, pp. 5492-5497. [Online].
Available: http://2013.isiproceedings.org/Files/CPS203-

P32-S.pdf

[19] C. Fellbaum, WordNet: An Electronic Lexical Database.

Cambridge, MA: WordNet Pointers, MIT Press, 1998.

[Online]. Available: https://mitpress.mit.edu/books/wordnet

[20] M. Fiorelli, T. Lorenzetti, M. T. Pazienza, and A. Stellato,

"Assessing VocBench Custom Forms in Supporting Editing

of Lemon Datasets," in Language, Data, and Knowledge
(Lecture Notes in Artificial Intelligence).: Springer, Cham,

2017, vol. 10318, pp. 237-252, doi: 10.1007/978-3-319-

59888-8_21 .

[21] J. P. McCrae and C. Unger, "Design Patterns for

Engineering the Ontology-Lexicon Interface," in Towards

the Multilingual Semantic Web, P. Buitelaar and P. Cimiano,
Eds.: Springer Berlin Heidelberg, 2014, pp. 15-30, doi:

10.1007/978-3-662-43585-4_2 .

[22] M. Heller. (2007, January) InfoWorld. [Online]. Available:
https://www.infoworld.com/article/2640739/application-

development/rest-and-crud--the-impedance-mismatch.html

[23] I. Bratko, Prolog Programming for Artificial Intelligence.:
Addison Wesley, 2001. [Online]. Available:

https://books.google.it/books?id=-15su78YRj8C

[24] E. Denti, A. Omicini, and A. Ricci, "tuProlog: A Light-
Weight Prolog for Internet Applications and

Infrastructures," in Practical Aspects of Declarative

Languages (Lecture Notes in Computer Science).: Springer,
Berlin, Heidelberg, 2001, vol. 1990, pp. 184-198, doi:

10.1007/3-540-45241-9_13 .

[25] M. Fiorelli, M. T. Pazienza, A. Stellato, and A. Turbati,
"Version Control and Change Validation for RDF Datasets,"

in Metadata and Semantic Research (Communications in

Computer and Information Science), E. Garoufallou et al.,
Eds.: Springer, Cham, 2017, vol. 755, pp. 3-14, doi:

10.1007/978-3-319-70863-8_1 .

[26] M. Fiorelli, M. T. Pazienza, and A. Stellato, "Change
management and validation for collaborative editing of RDF

datasets," International Journal of Metadata, Semantics and

Ontologies, vol. 12, no. 2-3, 2017, doi:
10.1504/IJMSO.2017.090783 .

[27] D. Hernández, A. Hogan, and M. Krötzsch, "Reifying RDF:

What Works Well With Wikidata?," in Proceedings of the
11th International Workshop on Scalable Semantic Web

Knowledge Base Systems, Bethlehem, PA, USA, October 11,

2015, 2015, pp. 32-47. [Online]. Available: http://ceur-
ws.org/Vol-1457/SSWS2015_paper3.pdf

[28] V. Nguyen, O. Bodenreider, and A. Sheth, "Don't Like RDF

Reification?: Making Statements About Statements Using
Singleton Property," in Proceedings of the 23rd

International Conference on World Wide Web, April 7-11,

2014, Seoul, South Korea, 2014, pp. 759-770, doi:
10.1145/2566486.2567973 .

[29] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler, "Named

Graphs, Provenance and Trust," in WWW '05: Proceedings
of the 14th international conference on World Wide Web,

New York, NY, USA, 2005, pp. 613-622, doi:
10.1145/1060745.1060835 .

[30] R. Laurens and H. Rinkea, "The YASGUI family of

SPARQL clients," Semantic Web, vol. 8, no. 3, pp. 373-383,
2017, doi: 10.3233/SW-150197 .

[31] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R.

Cyganiak, and S. Hellmann, "DBpedia - A crystallization
point for the Web of Data," Web Semantics: Science,

Services and Agents on the World Wide Web, vol. 7, no. 3,

http://ceur-ws.org/Vol-1937/paper4.pdf
https://doi.org/10.1007/978-3-642-21034-1_17
https://doi.org/10.1007/978-3-642-21034-1_17
https://elex.link/elex2017/wp-content/uploads/2017/09/paper36.pdf
https://elex.link/elex2017/wp-content/uploads/2017/09/paper36.pdf
https://doi.org/10.4399/97888255216345
https://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1130/1454
https://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1130/1454
https://doi.org/10.3233/SW-2011-0026
https://doi.org/10.1147/JRD.2014.2307518
http://www.lrec-conf.org/proceedings/lrec2012/pdf/424_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/424_Paper.pdf
https://doi.org/10.1007/978-3-319-19066-2_13
http://2013.isiproceedings.org/Files/CPS203-P32-S.pdf
http://2013.isiproceedings.org/Files/CPS203-P32-S.pdf
https://mitpress.mit.edu/books/wordnet
https://doi.org/10.1007/978-3-319-59888-8_21
https://doi.org/10.1007/978-3-319-59888-8_21
https://doi.org/10.1007/978-3-662-43585-4_2
https://www.infoworld.com/article/2640739/application-development/rest-and-crud--the-impedance-mismatch.html
https://www.infoworld.com/article/2640739/application-development/rest-and-crud--the-impedance-mismatch.html
https://books.google.it/books?id=-15su78YRj8C
https://doi.org/10.1007/3-540-45241-9_13
https://doi.org/10.1007/978-3-319-70863-8_1
https://doi.org/10.1504/IJMSO.2017.090783
http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
https://doi.org/10.1145/2566486.2567973
https://doi.org/10.1145/1060745.1060835
https://doi.org/10.3233/SW-150197

pp. 154–165, September 2009, doi:

10.1016/j.websem.2009.07.002 .

[32] J. David, J. Euzenat, F. Scharffe, and C. Trojahn dos Santos,
"The Alignment API 4.0," Semantic Web Journal, vol. 2, no.

1, pp. 3-10, 2011, doi: 10.3233/SW-2011-0028 .

[33] World Wide Web Consortium (W3C). (2014, January)
World Wide Web Consortium (W3C). [Online]. Available:

http://www.w3.org/TR/vocab-dcat/

[34] M. Dekkers. (2013, August) World Wide Web Consortium
(W3C). [Online]. Available: http://www.w3.org/TR/vocab-

adms/

[35] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao.
(2011, March) World Wide Web Consortium (W3C).

[Online]. Available: http://www.w3.org/TR/void/

[36] M. Fiorelli, A. Stellato, J. P. Mccrae, P. Cimiano, and M. T.
Pazienza, "LIME: the Metadata Module for OntoLex," in

The Semantic Web. Latest Advances and New Domains

(Lecture Notes in Computer Science).: Springer
International Publishing, 2015, vol. 9088, pp. 321-336, doi:

10.1007/978-3-319-18818-8_20 .

[37] M. Fiorelli, M. T. Pazienza, and A. Stellato, "An API for
OntoLex LIME datasets," in OntoLex-2017 1st Workshop

on the OntoLex Model (co-located with LDK-2017),

Galway, 2017. [Online]. Available: http://ceur-ws.org/Vol-
1899/OntoLex_2017_paper_8.pdf

[38] M.T. Pazienza, S. Sguera, and A. Stellato, "Let's talk about

our “being”: A linguistic-based ontology framework for
coordinating agents," Applied Ontology, special issue on

Formal Ontologies for Communicating Agents, vol. 2, no. 3-

4, pp. 305-332, December 2007. [Online]. Available:
https://content.iospress.com/articles/applied-

ontology/ao035

[39] M.T. Pazienza and A. Stellato, "An Environment for Semi-
automatic Annotation of Ontological Knowledge with

Linguistic Content," in The Semantic Web: Research and

Applications (Lecture Notes in Computer Science).:
Springer, 2006, vol. 4011, pp. 442-456, doi:

10.1007/11762256_33 .

[40] M. Fiorelli, M. T. Pazienza, and A. Stellato, "A Meta-data
Driven Platform for Semi-automatic Configuration of

Ontology Mediators," in Proceedings of the Ninth

International Conference on Language Resources and
Evaluation (LREC'14), Reykjavik, Iceland, May 2014.

[Online]. Available: http://www.lrec-

conf.org/proceedings/lrec2014/pdf/1059_Paper.pdf

[41] M. Fiorelli, A. Stellato, T. Lorenzetti, P. Schmitz, E.

Francesconi, N. Hajlaoui, and B. Batouche, "Metadata-

driven Semantic Coordination," in Metadata and Semantic
Research (Communications in Computer and Information

Science), E. Garoufallou, F. Fallucchi, and E. William De

Luca, Eds.: Springer, Cham, 2019, vol. 1057, doi:
10.1007/978-3-030-36599-8_2 .

[42] E. Francesconi, M.W. Küster, P. Gratz, and S. Thelen, "The
Ontology-based Approach of the Publications Office of the

EU for Document Accessibility and Open Data Services," in

International Conference on Electronic Government and the
Information Systems Perspective (EGOVIS 2015), Valencia,

Spain, 2015, doi: 10.1007/978-3-319-22389-6_3 .

[43] M. A. Musen, "The Protégé Project: A Look Back and a
Look Forward," AI Matters, vol. 1, no. 4, pp. 4-12, 2015,

doi: 10.1145/2757001.2757003 .

[44] T. Tudorache, C. Nyulas, N. F. Noy, and M. A. Musen,

"WebProtégé: A Collaborative Ontology Editor and

Knowledge Acquisition Tool for the Web," Semantic Web,
vol. 4, no. 1, pp. 89-99, 2013, doi: 10.3233/SW-2012-0057 .

[45] M. Horridge and S. Bechhofer, "The OWL API: A Java API

for OWL ontologies," Semantic Web, vol. 2, no. 1, pp. 11-
21, 2011, doi: 10.3233/SW-2011-0025 .

[46] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang,

"HermiT: An OWL 2 Reasoner," Journal of Automated
Reasoning, vol. 53, no. 3, pp. 245-269, 2014, doi:

10.1007/s10817-014-9305-1 .

[47] A. Hogan, J. Z. Pan, A. Polleres, and Y. Ren, "Scalable
OWL 2 Reasoning for Linked Data," in Reasoning Web.

Semantic Technologies for the Web of Data. Reasoning Web

2011 (Lecture Notes in Computer Science).: Springer,
Berlin, Heidelberg, 2011, vol. 6848, pp. 250-325, doi:

10.1007/978-3-642-23032-5_5 .

[48] S. Jupp, S. Bechhofer, and R. Stevens, "A Flexible API and
Editor for SKOS," in The Semantic Web: Research and

Applications (Lecture Notes in Computer Science), L. Aroyo

et al., Eds.: Springer, Berlin, Heidelberg, 2009, vol. 5554,
pp. 506-520, doi: 10.1007/978-3-642-02121-3_38 .

[49] T. Tudorache, N. F. Noy, S. Tu, and M. A. Musen,

"Supporting Collaborative Ontology Development in
Protégé," in The Semantic Web - ISWC 2008 (Lecture Notes

in Computer Science), A. Sheth et al., Eds.: Springer, Berlin,

Heidelberg, 2008, vol. 5318, pp. 17-32, doi: 10.1007/978-3-
540-88564-1_2 .

[50] L. Halilaj, I. Grangel-González, G. Coskun, S. Lohmann,

and S. Auer, "Git4Voc: Collaborative Vocabulary
Development Based on Git," International Journal of

Semantic Computing, vol. 10, no. 2, pp. 167-191, June 2016,

doi: 10.1142/S1793351X16400067 .

[51] VoCol - An Integrated Environment for Colloborative

Vocabulary Development. [Online]. Available:

http://vocol.iais.fraunhofer.de/

[52] M. Salvadores, P. R. Alexander, M. A. Musen, and N. F.

Noy, "BioPortal as a dataset of linked biomedical ontologies

and terminologies in RDF," Semantic Web, vol. 4, no. 3, pp.
277-284, 2013, doi: 10.3233/SW-2012-0086 .

[53] G. Mochón, E. M. Méndez, and G. Bueno de la Fuente, "27

pawns ready for action: A multi-indicator methodology and
evaluation of thesaurus management tools from a LOD

perspective," Library Hi Tech, vol. 35, no. 1, pp. 99-119,

2017, doi: 10.1108/LHT-11-2016-0123 .

[54] A. Gonzales-Aguilar, M. Ramírez-Posada, and D. Ferreyra,

"TemaTres: software para gestionar tesauros," El

profesional de la información, vol. 21, no. 3, pp. 319-325,
2012, doi: 10.3145/epi.2012.may.14 .

[55] C. Mader, B. Haslhofer, and A. Isaac, "Finding Quality

Issues in SKOS Vocabularies," in Theory and Practice of
Digital Libraries (Lecture Notes in Computer Science).:

Springer, Berlin, Heidelberg, 2012, vol. 7489, pp. 222-233,
doi: 10.1007/978-3-642-33290-6_25 .

[56] M. Fiorelli, M. T. Pazienza, S. Petruzza, A. Stellato, and A.

Turbati, "Computer-aided Ontology Development: an
integrated environment," in New Challenges for NLP

Frameworks 2010 (held jointly with LREC2010), La

Valletta, Malta, 2010, 22 May, 2010. [Online]. Available:
http://www.lrec-

conf.org/proceedings/lrec2010/workshops/W10.pdf#page=

33

https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.3233/SW-2011-0028
http://www.w3.org/TR/vocab-dcat/
http://www.w3.org/TR/vocab-adms/
http://www.w3.org/TR/vocab-adms/
http://www.w3.org/TR/void/
https://doi.org/10.1007/978-3-319-18818-8_20
http://ceur-ws.org/Vol-1899/OntoLex_2017_paper_8.pdf
http://ceur-ws.org/Vol-1899/OntoLex_2017_paper_8.pdf
https://content.iospress.com/articles/applied-ontology/ao035
https://content.iospress.com/articles/applied-ontology/ao035
https://doi.org/10.1007/11762256_33
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1059_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1059_Paper.pdf
https://doi.org/10.1007/978-3-030-36599-8_2
https://doi.org/10.1007/978-3-319-22389-6_3
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.3233/SW-2012-0057
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/978-3-642-23032-5_5
https://doi.org/10.1007/978-3-642-02121-3_38
https://doi.org/10.1007/978-3-540-88564-1_2
https://doi.org/10.1007/978-3-540-88564-1_2
https://doi.org/10.1142/S1793351X16400067
http://vocol.iais.fraunhofer.de/
https://doi.org/10.3233/SW-2012-0086
https://doi.org/10.1108/LHT-11-2016-0123
https://doi.org/10.3145/epi.2012.may.14
https://doi.org/10.1007/978-3-642-33290-6_25
http://www.lrec-conf.org/proceedings/lrec2010/workshops/W10.pdf#page=33
http://www.lrec-conf.org/proceedings/lrec2010/workshops/W10.pdf#page=33
http://www.lrec-conf.org/proceedings/lrec2010/workshops/W10.pdf#page=33

[57] M. Fiorelli, R. Gambella, M. T. Pazienza, A. Stellato, and

A. Turbati, "Semi-automatic Knowledge Acquisition

through CODA," in Modern Advances in Applied
Intelligence - 27th International Conference on Industrial

Engineering and Other Applications of Applied Intelligent

System, IEA/AIE 2014, vol. Part II, Kaohsiung, Taiwan,
2014, pp. 78--87, doi: 10.1007/978-3-319-07467-2_9 , June

3-6.

[58] World Wide Web Consortium (W3C). (2017, July) World
Wide Web Consortium (W3C). [Online]. Available:

https://www.w3.org/TR/shacl/

[59] J. McCrae, E. Montiel-Ponsoda, and P. Cimiano,
"Collaborative semantic editing of linked data lexica," in

Proceedings of the Eight International Conference on

Language Resources and Evaluation (LREC'12). Istanbul
Lüfti Kirdar Convention & Exhibition Centre, Turkey, 21-

27 May 2012, 2012, pp. 2619-2625. [Online]. Available:

http://www.lrec-
conf.org/proceedings/lrec2012/pdf/544_Paper.pdf

[60] M. Rico and C. Unger, "Lemonade: A Web Assistant for

Creating and Debugging Ontology Lexica," in Natural
Language Processing and Information Systems (Lecture

Notes in Computer Science).: Springer, Cham, 2015, vol.

9103, pp. 448-452, doi: 10.1007/978-3-319-19581-0_45 .

[61] A. Bellandi, E. Giovannetti, S. Piccini, and A. Weingart,

"Developing LexO: A Collaborative Editor of Multilingual

Lexica and Termino-ontological Resources in the
Humanities," in Proceedings of Language, Ontology,

Terminology and Knowledge Structures Workshop (LOTKS

2017),co-located with the 12th International Conference on
Computational Semantics (IWCS), 19 September 2017

Montpellier, 2017. [Online]. Available:

http://www.aclweb.org/anthology/W17-7010

[62] A. Bellandi, E. Giovannetti, and A. Weingart, "Multilingual

and Multiword Phenomena in a lemon Old Occitan Medico-

Botanical Lexicon," Information, vol. 9, no. 3, 2018, doi:
10.3390/info9030052 .

[63] F. Bond and K. Paik, "A survey of wordnets and their

licenses," in Proceedings of the 6th Global WordNet
Conference (GWC 2012). Matsue, Japan, January, 9-13,

2012 , pp. 64-71.

https://doi.org/10.1007/978-3-319-07467-2_9
https://www.w3.org/TR/shacl/
http://www.lrec-conf.org/proceedings/lrec2012/pdf/544_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/544_Paper.pdf
https://doi.org/10.1007/978-3-319-19581-0_45
http://www.aclweb.org/anthology/W17-7010
https://doi.org/10.3390/info9030052

