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Abstract. Several (and successfull) Information Extraction

systems have recently replaced the core parsing components

with shallow but more e�cient recognizers. In this paper we

argue that the absence of an underlying grammatical recog-

nizer, given the complex nature of several (non-english) lan-

guages, is a strong limitation for text processing functionali-

ties, like those an IE system needs. We propose a robust and

e�cient syntactic recognizer mainly aimed to capture gram-

matical information crucial for several linguistic and non lin-

guistic inferences. The proposed system is based on a novel ar-

chitecture exploiting two major principles: lexicalization and

strati�cation of the parsing process. As several linguistic theo-

ries (e.g. HPSG) and parsing frameworks (e.g. LTAG,SLTAG,

lexicalized probabilistic parsing) suggest, lexicon-driven sys-

tems ensure the suitable forms of grammatical control for

many complex phenomena. In our system an analysis guided

by information on typical verb projections (e.g. verb subcat-

egorization structures) is coupled with extended locality con-

straints (i.e. recognition of clause boundaries). Furthermore,

strati�cation is also employed. A cascade of processing steps

starts from chunk recognition and proceeds through clause

analysis to dependency detection. Recognition of chunks al-

lows to minimize the input ambiguity to the remaining phases.

The resulting system is thus robust against ungrammatical

phenomena (e.g. complex clause embedding, misspellings, un-

known words). E�ciency is also retained, although ambiguous

phenomena (multiple PP attachments) are recognized.

1 Introduction

Several (and successful) IE systems have recently replaced

the core parsing components with shallow but more e�cient

recognizers [1, 8]. However, the absence of a grammatical rec-

ognizer, given the complex nature of several (non-english) lan-

guages, is a strong limitation for text processing functionali-

ties, like those an IE system needs. Let us provide a sentence,

extracted and translated from a �nancial corpus in Italian:

1

Assuming to have at disposal a certain budget level for an

environmental recovery action, ACE s.p.a. intends to prepare

the necessary plan to coordinate the following work activities,

which will end in the completion of the operational implemen-

tation project.

that exhibits a complex but very common structure in Ital-

ian texts. Typical information to be extracted from the above

sentence is the named organization (i.e., Ace), the type of in-

tended activity (i.e., environmental recovery) and a variety of

1

see the Appendix for the Italian version.

speci�cations and participants to the core event. For example,

understanding of the intended action of the Ace implies the

recognition of the causative/agent role of the Ace itself in the

subordinate clause

. . . will end in the completion of the operational implementa-

tion project.

None of the proposed �nite state (or regular) automata, widely

employed in IE [1], would be easily adapted to tasks related

to such complex phenomena. Main problems posed by the

complex structures of the example are strict requirements for

e�ective IE systems:

� Several grammatical dependencies between content words

are to be precisely determined and annotated;

� Dependencies among clauses are relevant to discover signi�-

cant relationships between participants to the target event;

� Resolution of complex anaphoric references depends often

on selectional constraints requiring many dependencies among

sentence fragments to be available; in the example sentence,

the Ace as proposer of the implementation project requires

more subtle inferences on a semantic basis.

Several research works suggest that e�cient and robust

syntactic processing is viable through processes of decomposi-

tion of the grammatical knowledge and lexicalization [4, 7, 13].

We propose a robust and e�cient syntactic recognizer, mainly

aimed to capture grammatical information crucial for several

linguistic and non linguistic inferences required by an applica-

tion system. The approach is based on a novel architecture ex-

ploiting two major principles: lexicalization andstrati�cation

of the parsing process. In particular, the strati�cation is re-

alized by a cascade of processing steps, and will be described

in section 2.1. The adopted verb driven analysis employs a

strong notion of lexicalization, mainly based on verb subcat-

egorization information (Section 2.2). The system has been

fully implemented in Prolog and tested over di�erent corpora

of texts.

Within an IE framework, portability and robustness of the

parser are extremely important features [8]. Portability is en-

sured by minimizing requirements at the level of grammatical

competence: no monolithic notion of grammar is adopted and

tests carried out on di�erent sublanguages did not required

any speci�c tuning of the grammar rules. Furthermore, tech-

niques to adapt subcategorization lexicons used by the system

have been designed. Analysis of results obtained by domain

speci�c and automatically acquired patterns of subcategoriza-

tion demonstrated similar (when not improved) results when

contrasted with those relying on general and manually coded

lexicons (Section 3).
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2 CHAOS: a Chunk-Oriented Syntactic

Analyzer

The proposed method starts from the basic assumption that

it is possible to de�ne an interesting intermediate level be-

tween words and sentences. Usually a sentence is thought as

a sequence of words, even if, in its written version, it is a se-

quence of characters. This because subsequences of characters

are considered unambiguously as units, even when showing

di�erent behaviors in di�erent sentences. Using the knowl-

edge collected in a dictionary, recognizing words in stream of

characters (tokenization) is usually carried out without any

complete syntactical analysis of the sentence. The computa-

tional cost of gathering characters in words is linear. The idea

is to build up a machinery, computationally simple as a tok-

enizer, able to group words of a sentence in functionally jus-

ti�ed larger entities. For example, given the fragment in the

early sentence

. . . intends to prepare the necessary plan to coordinate ,

any potential syntactic interpretation will detect the follow-

ing groups of words:

[intends] [to prepare] [the necessary plan]

[to coordinate]

The grouping of words has been introduced as a level of

sentence interpretation in [13], where the groups are called

chunks.

F igu r e 1. Interpretation levels of a simple derivation tree

The chunk level of interpretation is thus the intermediate

level between words and sentences, as shown in the simpler

example of �g. 1. Note that the strati�cation of the parsing

tree induces a strati�cation of the underlying grammar.

The idea of chunking is successfully applied to Italian in

Chaos, a Chunk-Oriented Analysis System for the syntactic

analysis of Italian, described in [5]. A similar approach has

been adopted In [14].

For the detection of inter-chunk dependencies (icds), a fur-

ther strati�cation of grammar rules is proposed in Chaos. This

is mainly inspired by the crucial role played by verbs in the

recognition of clauses as well as syntactic relations established

between content words in a sentence. The verb is widely con-

ceived as the grammatical head of the sentence [2]. Ambiguity

is controlled via grammatical rules related to the verb func-

tional class and speci�c to each verb [2, 3, 15]. Main grammat-

ical rules for verbs used in Chaos are the verbal subcatego-

rization frames. The constraints they impose are integrated

in the recognizer of clauses and guide the determination of

clause maximal and minimal boundaries (see section 2.2).

Finally, the syntactic representation of the analyzed text

(a graph whose node are chunks and whose links are icds)

F igu r e 2. CHAOS: the functional architecture

is completed by recognition of another set of dependencies

between chunks (e.g. post nominal prepositional phrases) by

a technique already proposed in the SSA parser [11, 9]: in

this phase dependencies between chunks within the discovered

clauses (i.e. infra-clausal dependencies) are extracted from the

source text.

In Fig. 2 the overall architecture of the system Chaos is de-

picted. am sentences are tokenized and morphologically an-

notated sentences, given as input to the Chunker. Chunks

are used as input to the Clause Boundary Recognition (CBR)

aiming to recognize clauses and structure them in a hierar-

chy (see H is Fig. 2). The recognition of clauses is integrated

with a special purpose parser (Verb Shallow Recognizer, VSG)

aiming to detect relations between a verb and members of its

subcategorization pattern (i.e. its arguments). The interaction

between the CBR and VSG provides a combined recognition

of the clause hierarchy and the set of argumental dependen-

cies of verbs. The Shallow recognizer (SG) is �nally triggered

by Chunks, the hierarchy H and the already extracted argu-

mental relations (V -icd).

2.1 The Chunker

As Fig. 2 outlines, the �rst processing step is the recogni-

tion in the input word stream of bigger functional units, i.e.

chunks. The corresponding module, called chunker, should

be not computationally more expensive than a �nite state

automaton and aims to disburden later phases of bottom-up

parsing.

Given a grammar and a bottom-up parsing strategy, the

chunker is based on the notion of island of non ambiguity

for the grammar. It fully characterizes the nature of those

unambiguous fragments of sentences that can in fact appear

in a chunk. Searching island of non ambiguity in a sentence

can be better explained throughout an example. Consider the

fragment prepare the necessary plan to coordinate that is

ambiguous and generates the two interpretation trees for the

sentence:

(to prepare (the (necessary plan) (to coordinate)))

(to prepare (the (necessary plan)) (to coordinate))

Three equivalent subgraphs are:

(to prepare)

(the (necessary plan))

(to coordinate)

These subgraphs are those islands of non ambiguity claimed

to be the focus of chunk analysis. In order to �nd out equiva-

lent subgraphs, a strategy less expensive than building up all
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the interpretation trees has to be devised. Words belonging to

equivalent subgraphs are characterized by speci�c sequences

of morphological classes. The de�nition of a chunk prototype

for each speci�c sequence characterizes all and only those frag-

ments to be collapsed, as unambiguous. A sequence of words

can thus be considered a chunk if and only if it is an instance

of a chunk prototype. Note that the unambiguous islands can

be entirely de�ned once a general grammar for the underlying

language is available. The formal derivation of chunk proto-

types from a grammar is proposed in [13] and developped

in [5]. As subtrees are given a precise grammatical function,

each chunk prototype preserves the indication of that func-

tion. This indication is called chunk class. Furthermore, not

all the words of a chunk has the same importance. In general,

there is a word that yields the meaning: it is the potential

governor. A word is the handle by which the chunk relates to

other chunks: it will be referred as chunk handle.

So the chunks of the example are represented by the fol-

lowing notation:

([the necessary plan / Nom / 2], plan, plan)

([to coordinate / VerInf /3 ], to, coordinate)

where the type (e.g. Nom, VerInf) are chunk annotations,

while the handle (e.g preposition to in second position) and

the head (e.g. coordinate, in third position) can be di�erent.

2.2 Clause Boundary recognition via

verb-driven analysis

In order to complete the information on sentences given by

the chunking phase, inter-chunk dependencies (icd) must be

detected by the later processing steps. Since verbs play a cru-

cial role in determining syntactic relations betweenwords, and

thus chunks, our strategy is to look �rst for verbal icds (i.e.

those including at least a verbal chunk). A critical choice is

thus to select �rst the more signi�cant among these verbal

icds. We propose here to use verb subcategorization frames.

As sentences have more than one verb and verbs de�ne the

di�erent sentence clauses, the recognition of argumental icd

in
uences also the identi�cation of clause boundaries. Thus,

problems such as coordination and subordination between

clauses are solved on the basis of verb arguments recognition.

This lexicalized approach strictly depends on the availabil-

ity of accurate information on verb subcategorization frames.

Two sources have been used for this information:

� a computational lexicon, LIFUV [12], manually compiled

for the 5,000 most frequent Italian verbs

� a lexicon of subcategorization patterns automatically ac-

quired from the target corpora, via a learning method based

on Galois lattice theory [10].

Both these approaches have been tested and the correspond-

ing performance is discussed in Section 3.

The recognition of the complete hierarchy of the sentence

clauses is re�ned incrementally along with the discovery of

verb argumental icds for the di�erent verbs.

Given (i) a sentence representation S = (C;L) where C

is the sequence of its chunks and a set L of dependencies

(i.e. icds) between chunks of S and (ii) a verb v of S, then

the clause C(v) of v is determined. It is a sentence fragment

included between a lower bound Inf(C(v);L) and an upper

bound Sup(C(v); L), i.e.:

Inf(C(v); L) � C(v) � Sup(C(v); L).

The approximations, obtained by using the planarity con-

strain, are de�ned as:

� Inf(C(v);L) is the longest subsequence of the sentence of

which verb v is actually the head, given the set L of de-

pendencies;

� Sup(C(v); L) is the longest subsequence of the sentence of

which verb v can be the head.

Note that while L changes (i.e. new idcs are captured as ar-

guments of verb v), Inf(C(v);L) widens. Moreover, icd 2

L captured for verbs other than v constraint C(v), so that

Sup(C(v); L) may be reduced accordingly.

Since the clause boundary approximation depends on the

set L, without any other information, at the beginning (L = ;)

and for each v in S the only trivial information is Inf(C(v);L)

=v and Sup(C(v); L) = S. On the other hand, (in Italian sen-

tences) �nite verbs are introduced by a speci�c set of func-

tion words (e.g. relative pronouns, coordinations). These lat-

ter are recognized as starters of clauses and a not trivial

�rst approximation is the main clause, a speci�c starter of

the sentence is required (a null word in position 0). So the

�rst approximation of the lower boundary of each clause is

Inf(C(v); L) = (s; ::::; v), where s is the starter.

A resulting hierarchy of clauses is derived from the embed-

ding of the approximations:

Inf(C(v);L) � Inf(C(v

0

); L)) C(v) � C(v

0

).

(The viceversa is not valid).

The derived hierarchy,H(L), is then used to determine the

upper bound of each clause Sup(C(v); L), i.e. the maximal

extension of the embedded parenthesis that does not violate

the planarity.

Note that there is always a direct link from the starter to

the �nite verb. This implies that planarity constraints re
ects

on the derived approximations. Therefore, assigning open brack-

ets to starters of the clauses and closed brackets to the �nite

verbs, Inf(C(v); L) for all the verbs v in S is determined via

bracket balancing. Unbalanced approximations are refused.

For example, given the fragment of the Italian sentence:

che permetteranno, in�ne, di elaborare un progetto

and using curly braces to express minimal clause boundaries

(Inf) the structure determined at the beginning of the clause

recognition phase is depicted in Fig. 3 (1).

The algorithm to collect the link established by verbs of a

sentence S according to their subcategorization frames is:

L := ;

Guess initial H(L).

While there are verbs not analyzed in S:

Let v be the depth and right-most verb not analyzed;

Let Sons =

S

v

0

2Subclauses(v)

Inf(C(v

0

); L)

Let Sib =

S

v

0

2Siblings(v)

Inf(C(v

0

); L)

Let L

0

be the set of new argumental icds of v in the segment

Sup(C(v); L) � Sons � Sib

L := L [ L

0

For example, the above algorithm will analyze �rst the verb

elaborare (define) that will produce the argumental icd (i.e.

direct object) elaborare un progetto and enlarge the elaborare-

minimal-clause-approximation (Fig. 3 (2)).

The analysis of the verb chunk permetteranno (will allow)

will consume the expected in�nitival clause (i.e. (allow to de-

�ne)), resulting in the new structure (Fig. 3 (3)).

In appendix, the full clause hierarchy for the early example

sentence is reported, as well as the set of verb argumental icd

.
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F igu r e 3. Clause boundary approximation example

2.3 Recognition of Inter chunks

dependencies

Although a clause hierarchy is recognized by the previous

phase further grammatical information is to be extracted from

the sentence. For example information concerning non argu-

mental verb modi�ers (e.g temporal and spatial expressions)

or typical noun modi�ers (e.g. prepositional phrases or adjec-

tival speci�ers) has not been extracted in the previous phase.

A special purpose parser is here adopted, following the ap-

proach in [11, 9]. A discontinuous grammar is applied here to

the fragments belonging to the di�erent recognized clauses.

Such an infra-clausal analysis allows speci�c rules being de-

�ned to capture binary relations between chunks (e.g. a nom-

inal chunk, type Nom, and a prepositional chunk, type: Prep).

These relations are somewhere else called elementary syntac-

tic links [9] and correspond here to possibly ambiguous icd.

Ambiguity is controlled via a plausibility score [9] that is

inversely proportional to the number of con
icting syntactic

interpretations. Unambiguous links are thus characterized by

a score equal to 1. Note that the infra-clausal analysis of the

shallow grammar is consistent with the planarity constraint

[4], so that the level of ambiguity is kept limited. The results

of the derivation of this extended set of icd is reported in

Appendix 1.

3 Performance Evaluation

The evaluation of parsing results is usually a critical task as

most systems are crucially tied to constraints and features di-

rectly related with the underlying linguistic theories. In this

speci�c perspective, the focus is on the bene�cial e�ects that

e�cient parsing has on NLP applications, like IE [8]. In or-

der to measure the performance of the CHAOS system some

speci�c problems have been identi�ed:

� Extensive controlled data set are not available for samples

of Italian language.

� The variety of information extracted by CHAOS is hard to

be compared on the basis of any existing bracket oriented

metrics [6]: in fact, no exact notion of constituent (similar

to those adopted in tree banks) is derived.

� Our speci�c interest is on specialized sublanguages, so that

portability and robustness over di�erent knowledge domains

are crucial features. The suitability of the reference samples

is a critical problem, even more than dimension of test sets.

� System requirements in terms of complexity of the source

information (i.e. lexicons and grammars) are also relevant

to evaluate portability and robustness

For these reasons we tested our system on di�erent sam-

ples, extracted from corpora related to di�erent domains, with

di�erences in style and grammar. A contrastive analysis with

SSA [11] has thus been applied. A speci�c test has been car-

ried out to estimate di�erences in using hand-coded (i.e. LI-

FUV) and automatically derived lexicons (the induced sub-

categorization lexicon, [10]).

Speci�c evaluation metrics have been adopted. In fact, no

grammatically-annotated treebank was available for the tar-

get sublanguages. For these reasons, traditional recall and

precision have been estimated not over any constituent based

structure, but over the set of icds extracted by the system.

Manually compiled test sets of icd have been extracted from

sample sentences of the di�erent corpora, and used as refer-

ence set (i.e. correct icd). The comparison with automatically

derived icds resulted in the following �gures:

precision =

#correct derived icd

#derived icd

recall =

#correct derived icd

#correct icd

We applied the test over three corpora. A collection of �nan-

cial news (referred hereafter as Sole24Ore), a collection of

technical and scienti�c papers on the environment (ENEA)

and excerpts of legal documents on V.A.T. laws (Legal) whose

features and processing times are described in Table 1.

2

T a b le 1. Features �gures of the three corpus

ENEA Sole24Ore Legal

#words
1,149 494 1460

#sentences
56 22 80

average #verbs per sentence
2.14 3.1 2.2

average chunk length
1.53 1.44 1.54

Results obtained over the ENEA and Sole24Ore corpus

are reported in Table 2. Data suggest that chunk analysis

provides an e�ective grouping of words: at least two words

over three appear in a non singleton chunk. The argumen-

tal icd are recognized with high precision although recall is

low. However, this speci�c �gure does not distinguish between

argumental and other non-argumental verbal icds. A lower re-

call is related to the higher frequency of non-argumental vs.

argumental verb modi�ers. Some of the latter are recognized

by the SG module, as reported in Appendix. The system pre-

cision and recall are satisfactory (> 70%) over the di�erent

icds types, and, as the argumental icd catching phase is more

productive, the precision of the system improves compared

to pure SSA [11]. Processing speeds, measured in terms of

number of words per second for the overall parsing process, is

not considerably distant from a pure SSA system performance

developped and run on the same platform [11].

T a b le 2. Performance �gures on the ENEA and

Sole24Ore corpus

ENEA Sole24Ore

icd
Recall Precision Recall Precision

Argumental
30.2 % 96.7 % 43.6 % 97.2 %

Unambiguous
58.9 % 88.6 % 63.6 % 88 %

All
75.2 % 72.1 % 69.9 % 72.5 %

Pure SSA
49.9 % 78.8 % 32 % 69.2 %

Processing Speed

Chaos
99.48 w/s 184 w/s

Pure SSA
105.32 w/s 170 w/s

The results obtained over the Legal corpus are reported in

Table 3. Recall and precision over this corpus have been mea-

sured against two sources lexical information. The data set

2

Legal, ENEA and Sole24Ore have a size of about 320,000,

350,000 and 1,300,000 words, respectively. This is relevant for

the corresponding quality and coverage of the subcategorization

frame acquisition.
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from the Legal corpus have been processed in two di�erent

experiments. In the �rst run (see Prec1 and Rec1 in Table 3),

the VSG module has been fed with subcategorization infor-

mation derived from the (hand-coded) LIFUV lexicon. Prec2

and Rec2 are obtained from a run where patterns of subcat-

egorization automatically derived from the corpus (see [10])

have been used.

T a b le 3. Performance on the Legal corpus using two

lexicons

Icd
Rec1 Prec1 Rec2 Prec2

(LIFUV) (LIFUV) (Galois) (Galois)

Argumental
28.7 % 88.5 % 29.9 % 89.1 %

Unambiguous
53.6 % 85.8 % 54.4 % 86.3 %

All
67.4 % 71.6 % 68.1 % 72.1 %

The similar results show that using automatically acquired

lexical information does not a�ect the system performances.

E�ciency is still very high and does not show relevant changes

over the three samples.

4 Conclusions

A new system, CHAOS, based on strati�cation and lexical-

ization of the parsing process has been described. The results

of the proposed syntactic analysis are: (i) a set of unambigu-

ous word chunks; (ii) the hierarchy of clauses recognized in

the source sentence; (iii) a set of inter-chunk dependencies

(icd) describing major grammatical relations between the rec-

ognized structures. Experimental results demonstrate signif-

icant improvements with respect to a simpler parsing tech-

nique (SSA [9]) over portions of real corpora in Italian. Recall

and precision metrics against extensive test data improve in

general, while the resulting information is richer (e.g. clause

hierarchy is also built). The processing speed shows that the

system can e�ectively be integrated in a complex NLP system.

Another positive aspect is the system portability. Speci�c lex-

ical information (i.e. the verb subcategorization lexicon) is a

core component. Measures against di�erent sources suggest

that the automatically acquired lexicons even improve the

overall system performance.

REFERENCES

[1] `Proceedings of the sixth message understanding conference

(muc-6)', in Columbia, MD. Morgan Kaufmann, (1995).

[2] C.Pollard, I.A.Sag , Information Based Syntax and Seman-

tics, Vol. 1, Chicago CSLI, Stanford, 1987.

[3] C.Pollard, I.A.Sag,Head-driven Phrase Structured Grammar,

Chicago CSLI, Stanford, 1994.

[4] D.Grinberg, J.La�erty,D.Sleator, `A robust parsing algorithm

for link grammar', in 4th International workshop on parsing

tecnologies, Prague, (1996).

[5] F.M.Zanzotto,Una Metodologia Strati�cata per la Analisi del

Linguaggio Naturale: il sistema CHAOS, Thesis dissertation,

Engineering Fac., Univ. of Rome "Tor Vergata", 1997.

[6] J.Goodman, `Parsing algorithmsand metrics', in 34th Annual

Meeting of ACL, Santa Cruz, CA, (1996).

[7] Ted Briscoe John Carrol, `Robust parsing - a brief overview',

in Workshop on robust parsing ESSLLI, Prague, (1996).

[8] M.T.Pazienza, Information Extraction. A Multidisciplinary

Approach to an Emerging Information Technology, number

1299 in LNAI, Springer-Verlag, Heidelberg, Germany, 1997.

[9] R.Basili, A.Marziali, M.T.Pazienza, `Modelling syntactic un-

certainty in lexical acquisition from texts', Journal of Quan-

titative Linguistics, 1 , (1994).

[10] R.Basili, M.T. Pazienza, M.Vindigni, `Corpus-driven unsu-

pervised learning of verb subcategorization frames', number

1321 in LNAI, Heidelberg, Germany, (1997). Springer-Verlag.

[11] R.Basili, M.T.Pazienza, P.Velardi, `A shallow syntactic anal-

yser to extract word association from corpora', Literary and

linguistic computing, 7 , 114{124, (1992).
[12] R.Delmonte, Linguistic and Referential Processes in Text

Analaysis by computers, UNIPRESS, Venezia, 1992.

[13] S.Abney, `Part-of-speech tagging and partial parsing',

in Corpus-based methods in language and speech, ed.,

G.Bloothooft K.Church, S.Young, Kluwer academic publish-

ers, Dordrecht, (1996).

[14] S.Federici, S.Montemagni, V.Pirrelli, `Shallow parsing and

text parsing: a view in underspeci�cation in syntax', inWork-

shop on robust parsing ESSLLI, Prague, (1996).

[15] Y.Schabes, `Stocastic lexicalized tree adjoining grammars', in

COLING 92', Nantes, (1996).

5 Appendix 1 : Parsing Results for a

Complex Sentence

Sentence:

Supponendo di avere a disposizione un certo budget eco-

nomico relativo ad un intervento di risanamento ambientale,

ACE s.p.a intende programmare e coordinare le fasi successive

di lavoro che permetteranno, in�ne, di elaborare un progetto

esecutivo d'intervento.

Chunks:

[ s upponendo / Ver Ger / 1] [ di aver e / Ver I nf / 2] [ a di s pos i zi one / Pr ep/ 3] [ uncer t o budget / Nom/ 4]
[ economi co / Agg/ 5] [ r el at i vo / Agg/ 6] [ ad un i nt er vent o/ Pr ep/ 7] [ di r i s anament o / Pr ep/ 8]
[ ambi ent al e / Agg/ 9] [ , / CongCo/ 10] [ ACE s . p. a. Nom/ 11] [ i nt ende / Ver Fi n/ 12]
[ pr ogr ammar e / Ver I nf / 13] [ e / CongCo/ 14] [ coor di nar e / Ver I nf / 15] [ l e f as i / Nom/ 16]
[ s ucces s i ve / Agg/ 17] [ di l avor o / Pr ep/ 18] [ che / NomRel / 19] [ per met t er anno / Ver Fi n/ 20]
[ , / CongCo/ 21] [ i nf i ne / Avv/ 22] [ , / CongCo/ 23] [ di el abor ar e / Ver I nf / 24] [ un pr oget t o / Nom/ 25]
[ es ecut i vo / Agg/ 26] [ d’ i nt er vent o / Pr ep/ 27] [ . / CongCo/ 28]

Clause hierarchy:

Verbal ICDs:

l i nk( 0, 12, Mai nCl aus e) .
l i nk( 2, 4, G_V_Ogg) .
l i nk( 12, 11, G_V_Sogg) .
l i nk( 12, 13, G_V_Fr as ) .
l i nk( 15, 16, G_V_Ogg) .
l i nk( 19, 20, Cl aus ol e) .
l i nk( 20, 24, G_V_Fr as ) .
l i nk( 24, 25, G_V_Ogg) .

Unambiguous ICDs:

l i nk( 4, 5, G_Nom_Agg, pl aus ( ’ 1. 000’ ) ) .
l i nk( 4, 6, G_Nom_Agg, pl aus ( ’ 1. 000’ ) ) .
l i nk( 16, 17, G_Nom_Agg, pl aus ( ’ 1. 000’ ) ) .
l i nk( 25, 26, G_Nom_Agg, pl aus ( ’ 1. 000’ ) ) .

Ambiguous ICDs:

l i nk( 6, 7, G_Agg_Pr ep, pl aus ( ’ 0. 500’ ) ) .
l i nk( 4, 7, G_Nom_Pr ep, pl aus ( ’ 0. 500’ ) ) .
l i nk( 17, 18, G_Agg_Pr ep, pl aus ( ’ 0. 500’ ) ) .
l i nk( 16, 18, G_Nom_Pr ep, pl aus ( ’ 0. 500’ ) ) .
l i nk( 20, 22, G_Ver _Avv, pl aus ( ’ 0. 500’ ) ) .
l i nk( 24, 22, G_Ver _Avv, pl aus ( ’ 0. 500’ ) ) .
l i nk( 25, 27, G_Nom_Pr ep, pl aus ( ’ 0. 500’ ) ) .
l i nk( 26, 27, G_Agg_Pr ep, pl aus ( ’ 0. 500’ ) ) .
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