
Customizable Modular Lexicalized ParsingR. Basili, M.T. Pazienza, F.M. ZanzottoDipartimento di Informatica, Sistemi e Produzione,Universita' di Roma Tor Vergata (ITALY)fbasili,pazienza,zanzottog@info.uniroma2.itAbstractDi�erent NLP applications have di�erent eÆciency constraints (i.e. quality of the results and through-put) that reect on each core linguistic component. Syntactic processors are basic modules in some NLPapplication. A customization that permits the performance control of these components enables theirreuse in di�erent application scenarios. Throughput has been commonly improved using partial syntacticprocessors. On the other hand, specialized lexicons are generally employed to improve the quality ofthe syntactic material produced by speci�c parsing (sub)process (e.g. verb argument detection or PP-attachment disambiguation). Building upon the idea of grammar strati�cation, in this paper a methodto push modularity and lexical sensitivity, in parsing, in view of customizable syntactic analysers ispresented. A framework for modular parser design is proposed and its main properties are discussed.Parsers (i.e. di�erent parsing module chains) are then presented and their performances are analyzed inan application-driven scenarios.1 IntroductionNLP applications require eÆcient NLP core components both in terms of linguistic quality andthroughput. Di�erent NLP applications have di�erent eÆciency constraints and this reects on eachcomponent. Several text processing applications include syntactic parsers as core components. Cus-tomizing parsing processors enable the reuse of these components in di�erent application scenarios.Let us consider as an example a real time application like a front-end question-answering for on-lineservices. Here fast are preferred to accurate parsing processors. Target sentences are rather simpleand structures are recurrent. For example, booking train tickets is often expressed by sentences like:At what time is the next train from Rome to Paris?. A parsing processor able to produce partialstructures like At what time and from Rome to Paris is suÆcient to support a deductive machinerythat answers the question. Complex analysis, e.g. clause boundary recognition, is not relevant as veryshort sentences (with high expectation about the discourse domain) are always used.On the other hand, an event recognition (ER) task in an Information Extraction (IE) [20, 21]scenario asks for accurate syntactic material over complex sentences. As an example, let us considerthe Penn Tree-bank [19] sentence #1692(9):(wsj 1692(9)) As part of the agreement, Mr. Gaubert contributed real estate valued at $ 25 million to theassets of Independent American.The focus here is on the extraction of the event mainly suggested by syntactic relations establishedby the verb to contribute. Clause embedding, i.e. valued at $ 25 million, plays here an important role.As a consequence, deeper parsing, relying on a more expressive grammar, is mandatory.

It is also worth noticing that applications may di�er in the type of necessary syntactic relations. Inorder to limit the time complexity, underlying grammars should thus be designed to eÆciently coverspeci�c phenomena of interest. All and only the information necessary to cover the speci�c targetphenomena with the suitable quality should be used.A key issue is that limited coverage (i.e. low time complexity) and high con�dence are conictingrequirements for the kind of grammatical competence available to the parser. Application developerssearch for technologies for the largest coverage and con�dence of speci�c phenomena. Shallow parsing[1, 2, 9, 4], introduced in the perspective of improving time performances, is, alone, inherently weakand often lexical sensitivity has been suggested as successful approach. In order to increase accuracy,syntactic parsing processors usually exploit lexical information; lexicalized grammar formalisms havebeen widely proposed (e.g. HPSG [22], LTAG [16], LFG [12]) at this scope, although in frameworks(i.e. linguistic theories) targeted to full syntactic analysis [13]. On the contrary, applications requiree�ective methods for speci�c phenomena. Flexibility is thus the crucial factor for the success ofparsing technologies in applications. It is our opinion that the integration of lexicalized approachesin frameworks for shallow parsing [7] is a relevant area of research.Building upon the idea of grammar strati�cation [1], we propose a method to push modularity andlexical sensitivity in parsing in view of customizable syntactic analysers.Supporting modularity within the parsing process requires:� a formal and homogeneous de�nition/representation for the partial parsing results able to supportinformation sharing among subcomponents;� principles for coherent composition of parsing subcomponents able to ease the design of applicationspeci�c parsers;� methods for the systematic control of ambiguity within as well as among the components(i.e.throughout a chain of interactions);� the detection of speci�c language phenomena where lexical information is relevant to the control ofambiguity, so that speci�c lexicalized components can be designed to reect it.In this paper a framework for modular parsing is presented. The principles for the strati�cationof the grammatical analysis and their implications on modularity are de�ned in the next section.In Section 3 the notion of syntactic module is introduced and a classi�cation according to basicgrammatical properties of the di�erent modules is given. In the same section an annotation schemeuseful for information exchange among modules is de�ned as a combination of a dependency andconstituency based formalism. Implications on grammatical properties and parsing architectures arethen discussed. Finally, section 4 discusses the evaluation of some parsing architectures within atypical application scenario.2 Fitting parsing performance through strati�cation andmodularizationThe interest of NLP application developers is in customizing a parser in order to meet applicationquality and time constraints. Final performances depend on the adopted trade-o� between the two.

It is widely accepted that computational lexicons increase the quality of the syntactic informationproduced by a parser [8]: this improvement is tightly dependent on the speci�c language level to whichlexical information refers. The strati�cation of a grammar resulting from a modular decomposition ofthe parser should facilitates the use of lexical information speci�c to each level.Let us again consider the (wsj 1692(9)) example and suppose that verb subcategorization informa-tion is available. The verb to contribute would be associated to a direct object and to a recipient(or beneficiary) argument as well. This would result in a frame like contribute-NP-PP(to)1. Theother verb in the sentence, to value, would be associated to its object (i.e. the evaluated entity) andto a prepositional phrase expressing the "degree/amount" (usually ruled by the preposition at), i.e.value-NP-PP(at).A strategy using a combination of clause boundary recognition and a verb argument detectionalgorithms could decide that: (i) valued is linked to at $ 25 million; (ii) contributed is linked to tothe assets. At the level of PP-attachment, most of the ambiguities in the sample sentence disappearsince they are resolved by lexical information. Firstly, links derived on lexical basis (i.e. attachmentof verb argumental modi�ers) have important e�ects on the remaining ambiguities: other potentialattachment sites of argumental PPs like at $ 25 million and to the assets are discarded. Secondly,persistent ambiguity is reduced. The (of Independent American)PP structure is no longer allowed toattach to nouns like real estate or million as illegal bracket crossing of the clause related to contributewould be generated: as a result the only allowed attachments are those with the verb contribute itselfor with the noun assets.The search space of the parser during the above lexicalized process depends on the number ofsentence words. If an early parsing phase, i.e. chunking [1], is applied, later parsing steps (e.g.the detection of verb modi�ers) deal with a much lower amount of ambiguity. Chunking is widelyadopted to recognize sentence fragments whose boundaries are independent from the verb grammaticalprojections. In the example sentence (wsj 1692(9)), noun phrases (e.g. Mr. Gaubert, real estate) andmodi�ers (e.g. to the assets, at $ 25 million) are simple examples of these segments. The detectionof verb modi�ers is disburdened since it has to deal only with the representative elements of therecognized structures.The above example is a simple instance of a phenomenon (i.e. verb subcategorization) that playsa relevant role in the control of the ambiguity propagation throughout the search space of the parser.The level (i.e. after chunking) in which this algorithm is applied and the used lexical knowledge arecrucial for optimizing the derived advantage:� the use of chunks provide an optimal representation as the search for verb arguments is limited tochunk heads;� the adopted lexical knowledge (i.e. subcat frames) in this speci�c process is a well focused compo-nents of a lexical KBs;� the verb argument detection suggested by the example strongly interact with other parsingactivities (e.g. detection of non-argumental and nominal modi�ers), with positive side-e�ects onthe reduction of ambiguity.The above properties are not speci�c to this kind of modular decomposition (i.e. chunking +verb phrase parsing) but can be generalized to a variety of other potential decompositions. The1Note that the subject is missing as mandatory in syntax, although it can be omitted.

e�ects of lexical information within each component increase the accuracy with respect to each tar-get speci�c (sub)problem. Modularity thus optimizes the lexical e�ects on the control of ambiguitythroughout chains of speci�c parsing steps.The adoption of a modular view in parsing supports a more exible design (via composition ofsimpler subcomponents in di�erent parsing architectures) and the throughput control is explicit.First throughput constraints can be met via simpli�cation (i.e. removing not crucial subcompo-nents) of the overall architecture. If a modular design is adopted, functionalities of modules andfunctional dependencies are well-de�ned. Eliciting processing capabilities consists in removing mod-ules from the parsing architecture.Moreover, modularity again helps in the control of losses in accuracy over the target phenomenondue to the removal of modules. As an example, let us consider a parser aiming to determine NPboundaries in order to detect candidate terms within a Terminology Extraction process. The removalof a verb argument recognition module would increase the parser throughput, by reducing also theresulting precision. In the example (wsj 1692(9)), the lack of verb subcategorization informationprovides, as a potential NP, the wrong excerpt $ 25 million to the assets of Independent American.It is only by means of a well-de�ned notion of verb argument detection component that a systematicmeasure of the trade-o� between accuracy and throughput can be controlled and employed as a designprinciple.In the next section, a method for designing modular parsing systems is introduced able to supportprinciples of lexicalization and decomposition.3 A modular approach to parsingA syntactic processor SP, according to the classi�cation given in [3], is a linguistic processing module. Itis a function SP (S;K) that, exploiting the syntactic knowledge K, produces a syntactic representationof the input sentence S.The strati�cation of the grammar induces modularization of the syntactic processor. The generalmodule component Pi takes the sentence at given state of analysis Si and augments this informationin Si+1 exploiting the knowledge Ki. The parser SP is thus a cascade of this modules.It is crucial to de�ne how the syntactic information produced and processed is represented. Thestrati�cation of the parsing activity requires that the representation scheme adopted satis�es somerequirements. In fact, on the one hand, strati�ed parsing techniques require the handling of partiallyparsed structures (cf. Sec. 2). On the other, lexicalized approaches require that the heads of sometypes of phrases are accessible during the analysis. In sec. 3.1, classical representations are discussedfrom the point of view of a modular perspective. Then, we propose, in sec. 3.2, an annotation schemethat satis�es the two requirements, some properties of the annotation scheme are discussed and somerestrictions, i.e. planarity constraints, proposed. Finally, a classi�cation of the modules is given inSec. 3.3 according to the kind of information K used and to the typical actions they perform inaugmenting the syntactic knowledge gathered for the input sentence.3.1 Modularity vs. annotation schemeModularization and lexicalization impose strict requirements on the annotation scheme used to de-scribe the syntactic information that the processors gather for a target sentence.

In a modularized approach, a stable representation of partially analyzed structures is crucial. Inparticular, it is required to handle the representation of long-distance dependencies. For instance,considering the example (wsj 1692(9)), at a given state of the analysis could be necessary to expressthat contributed is linked to to the assets. In a constituency-based framework [11], it is quite hardto express the above relation without specifying the role of the excerpt real estate valued at $ 25million. Furthermore, in the same framework, the relation between contiguous constituents can notbe expressed if the constituent captured is not completely formed. In the excerpt of the examplesentence (wsj 1692(9)) contributed real estate valued at $ 25 million, the relation between contributedand real estate can be expressed only if the constituent real estate valued at $ 25 million has beenfully recognized. Extensions of constituency-based theories such as TAG [17] and D-Trees [23] allowto express discontinuous links and partial trees. From this point of view, a dependency-based syn-tactic [24] representation is preferable, since constituency-based approaches in the annotation are notnaturally conceived for the representation of distant dependencies without specifying the role of innerstructures. On the other hand, a fully dependency-based syntactic approach generally considers thewords of a sentence as basic constituents. Thus, each analyzing step has to deal with the same simpleconstituents: no packing of information is allowed. However, packing is important in a modular ap-proach. A processor using verb subcategorization frames as suggested in section 2, would be enhancedby looking at the candidate complements as single structures. For instance (wsj 1692), the analysisof the complements of the verb contribute-NP-PP(to) is disburdened if the candidate excerpt of thesentence were factorized in its chunks [real estate][valued][at $ 25 million][to the assets][of IndependentAmerican]. In fact, the argument PP(to) can be easily �lled with the chunk [to the assets].In a lexicalized approach, it is crucial to determine the potential governor [14] of a given structurethat is its semantic head [22] and activates lexicalized rules. For instance, given the structure [haswidely contributed], the annotation scheme should allow to express that the lexical item governing itsbehavior is contribute.3.2 Extended dependency graphTo satisfy the requirements imposed by the modularization and the lexicalization, the adoptedannotation scheme is a combination of the constituency-based and the dependency-based formalisms.Basically, the syntactic information associated to a given sentence is gathered in a graph, i.e.g = (n; a). The typed nodes (i.e. elements of n) of the graph g are the basic constituents of the sen-tence, while the typed and oriented arcs (i.e. elements of a) express dependencies between constituents(an head and a modi�er). Since the order of constituents is important, the set n is an ordered set.For the purposes of the syntactic parsing, nodes can represent sequences of words, i.e. constituents,that can degenerate in a single word. To satisfy the constraint arisen by the lexicalization, a functionh that spot the head of each constituent has been introduced. The representation should allowto express the type of each constituent and each arc. The possible types, elements, respectively,of the sets NTAG and ATAG, depend on the underlying grammar model. In the following, werefer to those representation graphs as eXtended Dependency Graph (XDG) that is de�ned as follows:Def. 1An XDG is a tuple XDG =< n; a;Ntag;Atag;h > where n are the nodes, a are the arcs, Ntag is thefunction that relates n with the set of NTAG, Atag is the function that relates a with the set of ATAG,and h is the function that elects for each node a representing head.

For sake of simplicity, we introduce a compact version G = (N;A) of the XDG. The compact versionis a transcription of the XDG de�ned as follows:Def. 2G = (N;A) related to XDG is such that N = f(node; tag; head)jnode 2 n; tag = Ntag(n); head = h(n)gand A = f(arc; tag)jarc 2 a; tag = Atag(arc)g.The proposed XDG allows to model the grammatical information, i.e. the detected relation andpersisting ambiguity, in an eÆcient way. In an XDG alternative interpretations coexist. In general,more than one interpretations projected by the same nodes are expressed by the same representationgraph that, by itself, do not allow multiple interpretations of the nodes. The ambiguity at this levelcan be modeled with an inherent proliferation of the interpretation graphs. This limitation is aninheritance of the dependency-based theory. Generally, in these theories, words in an interpretationrepresentation belongs to exactly a single word class (cf. [10]).The XDG represents a single syntactic interpretation only if it is a dependency tree (de�ned in[10]). In term of constraints on the XDG, the requirement translates in the property that forbidsmulti-headed nodes [24]:Prop. 1: Single headed nodesif 9(a; b) 2 A then 8a0 2 N then 6 9(a0; b) 2 A.For instance, in the example (wsj 1692(9)), an interpretation willing to be a single unambiguoussyntactic representation of the sentence can not include both the relations ([valued],[at $ 25 million])and ([contributed],[at $ 25 million]).In order to preserve the compatibility in the proposed representation with the constituency basedapproach, the property (Prop. 1) is not enough. Not enabling crossing links may be required.Crossing links are de�ned as follows:Def. 3: Crossing linksTwo links, (wh; wk); (wm; wn) 2 A where minfh; kg < minfm;ng, are crossing i� minfm;ng <maxfh; kg < maxfm;ng.The planarity property [15] can, thus, be introduced:Prop. 2: Planarity8l1; l2 2 A:l1; l2 are not crossing.The two properties, Prop. 1 and Prop. 2, are called planarity constraints and make a XDG thatsatis�es them a planar graph. An XDG satisfying planarity constraints is a single (partial) syntacticinterpretation.Consequently, since a viable single interpretation of the sentence must be a planar graph, an interpre-tation in which crossing links coexist is ambiguous. In the example, if both the relations ([valued],[ofIndependent America]) and ([contributed],[to the assets]) coexist, the interpretation is ambiguous.3.3 Parsing modulesA component P of the modular syntactic parser is a processor that, using a speci�c set of rules R,adds syntactic information to the intermediate representation of the sentence. Formally, a processorP is a function P (R;G) where R the knowledge expressed in a speci�c set of rule, and G the inputgraph. The result P (R;G) = G0 is still an XDG.The syntactic parser modules are classi�ed according to the actions they perform on the sentence,and to the information they use to perform these actions.The actions that modules perform on the input XDG can be conservative or not-conservative. Inthe case of conservative modules, all the choices contained in the input graph are preserved in the

output. The property is not true for the not conservative modules. A conservative module resultsin a monotonic function of the module. A not-conservative module is a not-monotonic function. Asyntactic processor is a cascade of processing modules. Note that the composition of modules preserve,where it exists, the monotonicity.Furthermore, since the representation of the syntactic information is an XDG, the ability of themodules refers to: (i) constituent gathering; (ii) dependency gathering. Under this distinction,processors are:� constituent processors, Pc, that are purely constituent gatherer;� dependency processors, Pd, that are purely dependency gatherer;� hybrid processors, Ph, that perform both dependency and constituent gathering.Starting by a model of the process as previously described, i.e. P (R;G) = G0, where G = (N;A)and G0 = (N 0; A0), and by the distinctions introduced, a description of the typology of processingmodules used in the whole parsing processor will be provided. The description is in term of the actionthey perform on the syntactic graph.The main characteristic of the processors of the typology Pc is that, in the changing of the con-stituents (i.e. nodes of the representation) the arcs between constituents are coherently translated, i.e.for each arc in A, there is the correspondent arc in A0 if it connects di�erent nodes. For this typologyof modules, a monotonic processor PMc preserves the property of not crossing-brackets between theinput and the output, i.e. N 0 is a partition of N or vice-versa. A not-monotonic processor PNMc doesnot satisfy this property. In the monotonic processors, we distinguish:[PMc:1] N 0 is a partition of N and A0 = f(a; b)ja 6= b; a = (a1; : : : ; an); b = (b1; : : : ; bm); (aj ; bi) 2 Ag[PMc:2] N is a partition of N 0 and A0 = f(a0; b0)ja0 = h(a); b0 = h(b); (a; b) 2 AgWe now analyze how, according to this taxonomy, a tokenizer T and a chunker [1] can be classi�ed.The aim of a tokenizer is to split a sentence S = c1c2 : : : cm represented by a stream of characters in itscomposing words S0 = w1w2 : : : wn. It is a PMc:1 module. In fact, the input is a graph whose set of noderepresents the stream of characters, i.e. G = (f(c1; char; c1); : : : ; (cm; char; cm)g; ;), while the outputG0 models the words, i.e. G0 = (f(w1; token; w1); : : : ; (wn; token; wn)g; ;). The relation between Aand A0 satis�es the constraint of the module typology. A chunker [1] falls in the typology PMc:1. As,a Chunker is a rewriting device of input sentences, according to the available chunk prototype(CP)[6]. The objective of the chunker function is to build the chunk representation cs = ch1 : : : chmcorresponding to each input sentence ws = w1 : : : wn. Each chunk chi is the instance of a chunkprototype in CP and is a sequences of words that does not overlaps other chunk of the sentence.Then, in the proposed framework, the chunker transforms G = (f(w1;m1; w1); : : : ; (wn;mn; wn); A)gin G0 = (f(ch1; cht1; h1); : : : ; (chn; chtn; hn); A)g; A0), where mi is the pos-tag of the word wi, chtiand hi are respectively the type and the head of the chunk.The main characteristic of the processor of the type Pd is that in the processing the propertyN = N 0 is met. For the not-monotonic processors PNMd of this type no additional property isrequired. Monotonic processor we adopt in the architecture are de�ned as follows:[PMd:1] A � A0 , G and G0 meet planarity constrains (G and G0 represent a single interpretation of thesentence)

[PMd:2] A � A0, where for each a 2 A0 the graph G00 = (N;A [fag) meets planarity constrains, this meansthat in general a module of this type introduces ambiguityAccording to these de�nitions, a PMd:1 is a PMd:2. Generally, PMd:1 processors gather unambiguous in-formation and are used to trigger PMd:2 processors. These latter are thought to complete the partialinformation given by PMd:1 processors. Under this taxonomy, a link parser [15] is of the PMd:1. In fact,starting from a representation G = (ts; ;) where ts is the set of ordered tokens representing the targetsentence, produces a G0 = (ts; A0) that is a planar graph, i.e. meets planarity constraints.Another classi�cation may be done considering the knowledge that a processor uses to producemodi�cation in the syntactic graph. Here the lexicalization of the grammatical rules plays a crucialrole. In this classi�cation, processors are: (i) lexicon-driven processors; (2) grammar-drivenprocessors. A mildly lexicalized approach is also possible when grammars are only adopted if lexicalinformation is not available. A lexicalized approach usually depends on the availability of accurateinformation, and it is usually domain dependent. Examples of the lexicalized modules will be givenin the next section.4 Chaos: a modular lexicalized syntactic parserThe major result of the proposed parsing methodology is the possibility of customization given bothby the modular and by the lexicalized approaches. Given a set of syntactic processing modules,this results in a range of possible parsers that di�er in term of produced syntactic material andperformance. In the following sections, we will introduce Chaos, (Chunk Analysis Oriented System),a customizable parser based on a pool of four modules: the Chunker, the Verb Shallow Analyzer, theShallow Analyzer, and the Projector. We will discuss its adaptability to di�erent applications throughthe analysis of performance obtained on the standard Penn Treebank [19].4.1 Linguistic modules and parsing architecturesThe strati�cation of Chaos and its parsing processor modules (Fig. 1), reect the idea that verbs arecrucial in controlling the ambiguity at the level of PP-attachment and are important for applications.Thus, the Chunker is especially conceived for packing the ambiguity not relevant at the level of PP-attachment. This rely on syntactic categories and on the relative position between words. It processesa POS tagged sentence ams = (ws; ;) and produces a chunked sentence chunks = (cs; ;) using asrules the chunks prototypes(see Fig. 1.(1)). According to the classi�cation given in Sec. 3.3, thisprocessor is a grammar-based constituent gatherer (PMc:1).The verb subcategorization structures that play a disambiguating role are exploited by the verb-driven analysis processor VSP(Fig. 1.(3)). It is conceived to eÆciently extract dependencies thatinvolve verbs as heads (V � icds, i.e. verb inter-chunk dependencies). This processor is a dependencylexicalized processor, that can work at di�erent level of lexicalization, of the class PMd:1. VSP demandsa syntactic graph whose node are chunks, and it works correctly if those chunks are conceived topack the ambiguity not controlled by verb connections. The module architecture exploits a clausehierarchy approximation (H) via the loop Clause Boundary Recognition (CBR) and Verb ShallowAnalyzer (VSA).The module of shallow analysis SP(Fig. 1.(2)) is designed to express all the syntactic links that arecompliant with a particular con�guration of the input. It is a grammar-based dependency module of

DPV�
Chunker

FKXQNV� VSG

9HUE�6XEFDW�OH[LFRQ�

+� 9�LFG

&KXQN�SURWRW\SHV�

*�

6KDOORZ�6\QWDFWLF�5XOHV�

SP
*¶�

*� *¶�

(1)

(2)

(3)

VSP

CBR

*�
Prj

*¶�

(4)
 Figure 1: The pool of Chaos processorsthe class PMd:2.The module of unambiguous projection Prj (Fig. 1.(4)) aims to project a given XDG on the unam-biguous subgraph removing colliding arcs. This is a grammar-based dependency module of the typePNMd .To meet the requirements of an application, di�erent chains of analysis can be arranged. Note thatin the present con�guration, the Verb Shallow Analyzer and Shallow Analyzer modules work at thehigher level of performance if the speci�c chunker is used.A chain Chunker -Verb Shallow Processor can be suÆcient for an IE application devoted to extractevents from sentences if the events prototypes are well described by the verb subcategorization frames.On the other hand, for Lexical Acquisition applications such as verb subcategorization frames acqui-sition that requires a high coverage of the phenomena [5], a parser composed by the Chunker and theShallow Analyzer is suÆcient. For an application as Terminology Extraction focussed on Noun Phraseboundary recognition, from the point of view of typology of the phenomena covered a chain composedby the Chunker and the Shallow Processor is enough, but the performance are not suÆcient for thetask. Thus, a chain Chunker -Verb Shallow Processor -Shallow Processor is required to augment theperformance.4.2 Task oriented parser designWe here analyze how to choose parsing chains for given application scenarios through the investi-gation of their performances. The examined applications are event recognition in an IE context,and candidate term boundary detection in a Terminology Extraction framework. Performances interm of quality of the syntactic material are evaluated through the metrics of Recall, Precision andF-measure. Given a grammatical relation � (e.g. NP � PP), metrics de�ned as follows:(a) R� = card((A�o\A�s))card(A�o) (b) P � = card((A�o\A�s))card(A�s) (c) F � (�) = 1(� 1P� +(1��) 1R�) (1)A�o are the correct syntactic relations of type � for the sentence, and A�s are the syntactic relationsof type � extracted by the system. The oracle used is obtained via a translation from the PennTreebank [19]. The translation of the PTB constituency-based to the dependency-based annotationscheme, compliant with the evaluation requirements, is a crucial problem. Translation algorithms

have been settled in previous works [18, 6]. In the present work the adopted translation algorithmleft untranslated about 10% of the oracle trees(i.e. reference corpus trees). The resulting evaluationtest-set consists of nearly 44,000 sentences.For the event recognition, three parsing chains have been tested: two light and one lexicalized.The �rst composes the chunker, the shallow analyzer and the disambiguator, i.e. Chunker-SP-Prj,the second remove the disambiguator, i.e. Chunker-SA, and the third introduces the lexicalized verbshallow analyzer, i.e. Chunker-VSP-SP-Prj. The interest here is in extracting relations whose verb isthe head (V-Sub, V-Obj, and V-PP).Parsing chain Link Type R P F (� = 0:5)V-Sub 0.75 0.89 0.82Chunker-SP V-Obj 0.90 0.65 0.75V-PP 0.82 0.58 0.68V-Sub 0.75 0.89 0.82Chunker-SP-Prj V-Obj 0.90 0.66 0.76V-PP 0.58 0.94 0.72V-Sub 0.76 0.89 0.82Chunker-VSP-SP-Prj V-Obj 0.90 0.69 0.78V-PP 0.70 0.86 0.77Table 1: verb argumentsAnalyzing the table 1, from the point of view of the coverage of the phenomena, a better architectureappears to be Chunker-SP, but it guarantees a low level of precision compared to the other two. Incase the interest of event extraction is in populating a database of facts, the most suitable process isthe chain that guarantees the higher precision degree: the chain Chunker-VSP-SP-Prj. While, if thedeveloper will feed an information retrieval system, the chain Chunker-SP-Prj is more appropriate.In the case of NP recognition that Terminology Extraction (TE) requires, the application is inter-ested in the relation typed NP-PP. Experimental evidence shows that the coverage of the phenomenais assured by a chain Chunker-SP, but the quality of the syntactic material is improved through theuse of triggers provided by verb subcategorization lexicon in the chain Chunker-VSP-SP. The trade o�between the cost of the system in term of subcategorization lexicon production and the performancerequired is another factor to be considered. The table 2 shows experimental results.Parsing chain Link Type R P F (� = 0:5)Chunker-SP NP-PP 0.85 0.65 0.73Chunker-VSP-SP NP-PP 0.82 0.75 0.78Table 2: noun phrases-prepositional phrases attachmentIn a TE chain where the �ltering is based upon statistical methods, the chain Chunker-SP is lightand assures an higher coverage of the phenomena. While in a TE chain where the �ltering is donemanually, an high degree of precision disburden the work of the terminologists. The improvementwith respect to the precision from Chunker-SP to the chain Chunker-VSP-SP, even if there is a loss inthe recall, may justify the cost in term of time complexity of choosing the Chunker-VSP-SP insteadof the Chunker-SP.

5 ConclusionsA framework for modularization of the parsing process that eases their customization to the applica-tions has been here described. The notion of syntactic module has been introduced and a classi�cationaccording to basic grammatical properties of the di�erent modules has been provided. Particular at-tention has been given to the syntactic annotation scheme. A useful syntactic information "holder"for the exchange among modules has been de�ned as a combination of a dependency and constituencybased formalisms. An application of the given framework has been proposed. It has been shown andmeasured how di�erent NLP applications may select an appropriate parsing chain according to theirrequirements.References[1] Steven Abney. Part-of-speech tagging and partial parsing. In G.Bloothooft K.Church, S.Young,editor, Corpus-based methods in language and speech. Kluwer academic publishers, Dordrecht,1996.[2] Salah A��t-Mokhtar and Jean-Pierre Chanod. Incremental �nite-state parsing. In Proceedings ofANLP97, Washington, 1997.[3] Roberto Basili, Massimo Di Nanni, and Maria Teresa Pazienza. Engineering of ie systems: Anobject-oriented approach. In Maria Teresa Pazienza, editor, Information Extraction. TowardsScalable, Adaptabe Systems, number 1714 in LNAI. Springer-Verlag, Heidelberg, Germany, 1999.[4] Roberto Basili, Maria Teresa Pazienza, and Paola Velardi. A shallow syntactic analyser to extractword association from corpora. Literary and linguistic computing, 7:114{124, 1992.[5] Roberto Basili, Maria Teresa Pazienza, and Michele Vindigni. Corpus-driven unsupervisedlearning of verb subcategorization frames. Number 1321 in LNAI, Heidelberg, Germany, 1997.Springer-Verlag.[6] Roberto Basili, Maria Teresa Pazienza, and Fabio Massimo Zanzotto. Evaluating a robust parserfor italian language. In Proc. of the Workshop on the Evaluation of Parsing Systems, held jointlywith 1st International Conference on Language Resources and Evaluation, Granada, Spain, 1998.[7] Roberto Basili, Maria Teresa Pazienza, and Fabio Massimo Zanzotto. Lexicalizing a shallowparser. In Proc. of the TALN99, Cargese, FR, 1999.[8] Branimir Boguraev and James Pustejovsky, editors. Corpus Processing for Lexical Acquisition.The MIT Press, Cambridge, Massachusetts, US, 1996.[9] Eric Brill. A simple rule-based tagger. In Proc. of 3rd Applied Natural Language ProcessingConference, Trento, IT, 1992.[10] Norbert Broker. A projection architecture for dependency grammar and how it compares to lfg.In Proc. of LFG98 Conference, Brisbane, US, 1998.[11] Naom Chomsky. Aspect of Syntax Theory. MIT Press, Cambridge, Massachussetts, 1957.

[12] Mary Darlymple, Ronald M. Kaplan, John T. Maxwell III, and Annie Zeanen, editors. FormalIssues in Lexical-Functional Grammar. CSLI Publications, US, 1995.[13] Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srinivas, and Martin Zaidel. Xtag system - awide coverage grammar for english. In Proc. of 15th International Conference on ComputationalLinguistic, COLING'94, Kyoto, Japan, 1994.[14] S. Federici, S. Montemagni, and V. Pirrelli. Shallow parsing and text parsing: a view in under-speci�cation in syntax. In Proc. of Workshop on robust parsing ESSLLI, Prague, 1996.[15] D. Grinberg, J. La�erty, and D. Sleator. A robust parsing algorithm for link grammar. In Proc.of 4th International workshop on parsing tecnologies, Prague, 1996.[16] A. Joshi and Y. Shabes. Tree-adjoining grammars and lexicalized grammars. In M. Nivat andA. Podelsky, editors, De�nability and Recognizability of Sets of Trees. Elsevier, 1991.[17] A.J. Joshi, L. Levy, and M. Takahashi. Tree adjunct grammars. Journal of Computer and SystemScience, 1975.[18] D. Lin. A dependency-based method for evaluating broad-coverage parsers. In Proc. of the 14thIJCAI, pages 1420{1425, Montreal, Canada, 1995.[19] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus ofenglish: The penn treebank. Computational Linguistics, 19:313{330, 1993.[20] Maria Teresa Pazienza, editor. Information Extraction. A Multidisciplinary Approach to anEmerging Information Technology. Number 1299 in LNAI. Springer-Verlag, Heidelberg, Germany,1997.[21] Maria Teresa Pazienza, editor. Information Extraction. Towards Scalable, Adaptabe Systems.Number 1714 in LNAI. Springer-Verlag, Heidelberg, Germany, 1999.[22] C. Pollard and I.A. Sag. Head-driven Phrase Structured Grammar. Chicago CSLI, Stanford,1994.[23] Owen Rambow, J. Vijay-Shanker, and David Weir. D-tree grammars. In Proc. of ACL'95, 1995.[24] L. Tesniere. Elements de syntaxe structural. Klincksiek, Paris, France, 1959.

