
Flexible Parsing Architectures for NLPApplicationsRoberto Basili, Maria Teresa Pazienza, Fabio Massimo ZanzottoDipartimento di Informatica, Sistemi e Produzione,Universita' di Roma Tor Vergata (ITALY)fbasili,pazienza,zanzottog@info.uniroma2.itAbstract. The requirements of di�erent NLP applications have strongimplications on the design and implementation of the related syntacticrecognisers. In this paper, a �ne-grained modular parser design frame-work is presented. Our aim is to reduce the design of a parsing processorsto the composition of a pool of basic modules. Results over sample parsersand criteria for optimising coverage and accuracy are discussed.1 IntroductionNLP applications (as Information Extraction, Text Classi�cation, Document In-dexing, etc.) employ grammatical analysers in activities ranging from the recog-nition of simple structures (Proper Nouns, noun phrases, etc.) to the detectionof more complex phenomena (events). This heavily required 
exibility has deepimplications on the design and implementation of the target recognisers: di�erentapplications often have very di�erent focus and performance needs.The performance of the overall parsing process is a trade-o� between linguis-tic quality of the produced material, on the one side, and the computationalcomplexity, on the other. Lexicalisation of the grammatical rules and the de-composition of the parsing process are widely used approaches to control thequality of the results. However, sublanguage e�ects a�ecting subcategorisationlexicons have to be considered to make lexicalisation an e�ective means for con-trolling the performances. On the other hand, the decomposition of the parsingprocess (as often proposed in literature [1]) has suitable e�ects on the control ofthe overall parsing complexity, beeing too a clear and reliable principle for theengineering of NLP applications.The design of a parsing processor can bene�t from a �ne-grained modu-lar understanding of the syntactic recognition that models the overall (mono-lithic) process as a composition of dedicated components (e.g. POS tagging, nounphrase extraction, PP-attachment resolution). The design may simply proceedthrough elicitation of some of the available parsing components if they do notadd value to the overall process in term of performance gain or recognition ofinteresting phenomena. Furthermore, in a modular framework, benchmarking ofthe di�erent processors can be undertaken independently, and speci�c measuresfor the di�erent potential architectures are enabled. Independent measurements



can thus justify the selection of an optimal architecture among a pool of po-tential con�gurations. Performance evaluation as well as optimisation can enterthe design process since its earlier stages, as traditionally suggested in softwareengineering practice.2 A Flexible Framework for Parser DesignA design model that supports a �ne-grained modular parser development re-quires clear indications on the representation scheme of syntactic informationexchanged between the modules and on a the compositions of the parser modules.Furthermore, a criterion inspiring the decomposition of the monolithic parsingprocess is desirable. As a consequence of this criterion, a pool of processors canbe developed as the basic modules supporting for the composition of di�erentparser instances.2.1 Extended Dependency GraphThe uniform formalism should be able to represent partial analysis and show tothe modules only the relevant information. The constituency-based approach hasa limitation: the notion of continuous constituent. For instance, a pp-attachmentresolution module should be free to draw the conclusion that a PP -kernel isattached to the V P -kernel without postulating the structure of the rests ofNPs/PPs between the two. A dependency-based annotation scheme is moreindicated to cope with this kind of problems, but it is not conceived for theinformation hiding: the nodes of the graph are always words, no encapsulationof the information is foreseen.The formalism we have de�ned is a mixture inheriting the positive aspects ofthe two (apparently diverging) approaches: the data encapsulation and the par-tial analysis storage attitude. The proposed annotation scheme is an extended de-pendency graph (XDG): a graph whose nodes C are constituents and whose edgesD are the grammatical relations among the constituents, i.e. XDG= (C;D). TheXDG set is completely de�ned when the node tags, � , and the edge tags, �, arefully speci�ed, i.e. it will be denoted by XDG��. The � and � tag sets dependupon the level of the syntactic analysis (and the underlying grammatical theory).The formalism eÆciently models the syntactic ambiguity. In general, alternativeinterpretations for dependencies are represented by alternative d 2 D. However,planarity [6] can be used to select unambiguous sentence (eventually partial)interpretations.2.2 Composition of Parsing ModulesA generic syntactic processor MP is a linguistic processing module that (may)exploit syntactic knowledge stored in (possibly lexicalised) rule set R. MP pro-cesses a sentence S in order to augment it with syntactic information producing



a richer representation S'. The same applies to the parsing sub-processors Pi, i.e.P : R�XDG�� ! XDG�0�0 (1)so that P (r; xdg) = xdg0, where xdg and xdg0 are the input and the enhancedgraph, respectively. The �rst argument of a function Pi can be omitted for sakeof synthesis (since it is de�ned for a given parser instance). The equation 1 willbe written Pi(xdg) = P (xdg; ri) = xdg0. The overall modular parser MP is acascade of processing modules (P1; :::; Pn) obtained via composition operatorMP (xdg) = Pn Æ Pn�1 Æ : : : Æ P2 Æ P1(xdg)Parsing sub-processors can be classi�ed according to their attitude to pre-serve pre-existent choices (monotonicity), the actions performed on the graph(constituent gathering, for processors grouping set of words into larger con-stituents, and dependency gathering, where nodes are left untouched and onlydependencies are added), and, �nally, with respect the knowledge Ri used (lex-icalised or grammar-driven). This classi�cation gives indications both on thedevelopment and tuning costs and on the possible use in the chain of each singlemodule.2.3 Lexicalised Syntactic ProcessorsThe decomposition adopted is inspired by the principle that subcategorisationlexicons are valuable resources for controlling the performances. Furthermore,the possibility of reducing the costs for building lexicons via automatic acqui-sition [4] makes lexicalised modules more attractive. In this framework, twolexicalised modules are adopted: a verb argument matcher and a adjective mod-i�er matcher. These require a module, the chunker P1 [1], for producing anintermediate sentence representation able to hide unrelevant ambiguities. Theintermediate representation is XDG�� whose nodes are chunks (� and � are�=fVPK, NPK, PPK, ...g and �=fSUBJ, DIROBJ, PPMOD, g). More for-mally, P1 : XDG�0�0 ! XDG�� where � 0=fNoun, Prep, Verb, ...g and �0 = ;.The speci�c processor for matching verb argument structures, P2, is a de-pendency lexicalised processor able to work at di�erent levels of lexicalisation. Itprocesses XDG��, i.e. P2 : XDG�� ! XDG��. Successful matches add to thetarget xdg dependency edges also called icds, i.e. inter-chunk dependencies. Anoriginal feature is the speci�c combination of the argument matching with theclause recognition [3]. The role of lexical information is not only to �ll slots in va-lency lexical entries, but also to control, via planarity constraints, the matchingfor other verbs.The second dependency-gathering lexicalised processor, P3, has been de-signed to deal with adjectival subcategorisation. The recognition of dependencieswhose heads are adjectives may well employ adjective subcategorisation frames.Let us take, as an example, an excerpt of the sentence # 0439(63) of the PennTree bank:An increasing number of references by the Soviet press to opposition groups now active



in the U.S.S.R., particularly the Democratic Union, allege that ...The processor will augment the grammatical information detected in the sen-tence by adding the dependency between active and in the U.S.S.R. accordingto the subcategorisation frame [active [PP [P in] [NP ]] .3 Evaluating Alternative Parsing ArchitecturesThe 
exible architecture gives the possibility to investigate di�erent parsing pro-cessors. In order to understand the value of the lexical information, the followingcon�gurations have been analysed:{ a base (non lexicalized) processor, i.e. P1 Æ P4, hereafter called BASE{ a strictly lexicalized processor, made of the composition of the chunker P1with P2 and P3 components referred to as LEXICAL{ a processor integrating lexicalized and shallow parsing, i.e. P1 ÆP2 ÆP3 ÆP4,hereafter called COMBINEDwhere P4 (P4 : XDG�� ! XDG��) is a non-lexicalized shallow analyzer [2],mainly used for lexical acquisition from corpora. Thus, it follows a recall�firstpolicy and retains ambiguous dependencies. Con
icting syntactic readings arepreserved in the output graph. This a�ects the precision of the BASE andCOMBINED con�guration. As our goal is also to study precision, a PP-disambiguation module P5 (P5 : XDG�� ! XDG��) has been also integrated inthe parsing chains. P5 implements a simple disambiguation strategy, i.e. the min-imal attachment choice. P5 is thus a non monotonic dependency-gatherer as it re-moves some of the previously assigned links in the input xdg. We have tested alsotwo augmented con�gurationsMA� (P1ÆP4ÆP5) andMA+ (P1ÆP2ÆP3ÆP4ÆP5)obtained by integrating the disambiguation processor.For the performance evaluation in terms of quality of derived linguistic in-formation, a metrics oriented to an annotated-corpus has been adopted. In par-ticular the used formalism is Parseval -like where the Parseval scheme [5] hasbeen adapted to the particular annotation paradigm. The comparison betweenthe oracle information, i.e. the treebank-information, and the parser syntacticmaterial is carried on a dependency-annotation base. The annotated corpus isthe Penn Treebank [8], and the metrics adopted are then Recall, Precision andF -measure. Constituency-based annotated information of the oracle has beentranslated in a dependency formalism. Translation algorithms have been settledin other works [7, 4]. In the present work the adopted translation algorithm leftnot translated about 10% of the oracle trees(i.e. reference corpus trees).Metrics are settled on this representation and they are targeted over givengrammatical relation � (e.g. NP PP ), as follows:R� (S) = card((A�o(S) \ A�s(S)))card(A�o(S)) P � (S) = card((A�o(S) \A�s (S)))card(A�s (S)) (2)where A�o(S) are the correct syntactic relations of type � for the sentence S, andA�s (S) are the syntactic relations of type � extracted by the system. In particular,



given the set of test sentences 
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 is a subset of 500 sentences out from the 40,000 translatedinterpretations. It has been set up in order to selectively measure the e�ects ofthe lexicalized processors in the parsing chains.Our evaluation goal here is to compare the accuracy of di�erent con�gura-tions. By using equation 3, we averaged precision and recall (i.e. 
S and !S areset to 1, 8S), and we measured the F -measure of the di�erent architectures.Values of 72:23% and 78:19% characterizes the BASE and COMBINED con-�guration respectively. If disambiguation is adopted (i.e. in MA+), the result isF0:5(
) =81.48%. It is clear here that combination of lexicalized processors, plusa simple disambiguation strategy, outperforms in general the BASE parser.In order to selectively analyse syntactic dependencies (�) several runs havebeen carried out. The measures of R� and P� , as in equations 4, are reported inTable 1.The BASE processor is the less precise, as it preserves all the potential at-tachments. Its recall represents an upper-bound for the other processors. Noticethat the LEXICAL con�guration has an high precision (on speci�c phenomena,V PP and Adj PP ) but its recall suggests that it is insuÆcient to fully "cover"the wide phenomena related to prepositional dependencies.The best performing architecture is the COMBINED cascade, where lexicalknowledge is �rstly employed and it constraints the scope of the shallow analyzer.This is true not only on prepositional modi�ers but also on the attachment ofdirect object (� = V NP ).Several relevant consequences can be drawn. First, di�erent types of phe-nomena with respect to the contributions of lexicalized processors can now beselectively studied. Secondly, optimal con�guration for speci�c phenomena canbe outlined, even in the design phase, and this supports and eases the systematiccon�guration of novel parsing architectures within new application scenarios. Fi-nally, factorising lexical processes has proofed bene�cial in the overall parsingprocess. This allows to (1) estimate the role of some lexicalised components and,if strictly required by the new application, (2) assess them via speci�c customi-sation actions during porting. The results suggest that modular parsing is viable
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