
Decision trees as explicit domain term de�nitions.Roberto Basili, Maria Teresa Pazienza, Fabio Massimo ZanzottoUniversity of Rome Tor Vergata,Department of Computer Science, Systems and Production,00133 Roma (Italy),fbasili,pazienza,zanzottog@info.uniroma2.itAbstractTerminology Acquisition (TA) methods are vi-able solutions for the knowledge bottleneck prob-lem that con�nes knowledge-intensive informa-tion access systems (such as Information Ex-traction systems) to restricted application sce-narios. TA can be seen as a way to inspectlarge text collections for extracting concise do-main knowledge. In this paper we argue thatmajor insights over the notion of term can beobtained by investigating a more domain-basedterm de�nition. We propose a decision treelearning approach as an interesting model ofthe human TA activity. An incremental modelis proposed to study the evolution of the termde�nition during the TA process over a particu-lar implicit domain model. The experimentalapparatus is based on robust text processingtools that support a large scale investigation.The good results suggest that the proposed au-tomatic TA model can support the developmentof conceptual domain dictionaries as required byknowledge-based information systems.1 IntroductionTerminology Acquisition (TA) methods are a vi-able solution for the knowledge bottleneck thatcon�nes knowledge-intensive information accesssystems (such as Information Extraction sys-tems) to restricted application scenarios. TAis the study of methods to extract concise do-main knowledge representation (i.e. termino-logical dictionaries or terminology knowledgebases, TKBs) by inspecting large text collec-tions. These corpora embody domain knowl-edge in the most natural and e�ective ways.The major limitation for any TA process is thediÆculty in capturing, in computational terms,the complex notion of the underlying corner-stone, i.e. the term.

Most automatic TA methods start from thede�nition of what a term is and use it against adomain corpus (Jacquemin, 1997). This latterrepresents source information for any decisionabout lexical items (i.e. legal terms of the do-main) that do (or do not) meet the given de�-nition. In this sense, the corpus expresses, im-plicitly, all the information needed for semanticcharacterization of the underlying domain: it isthus an implicit domain model (IDM)In automatic TA, there is a general consensusin assuming a term as a surface representationof a key domain concept (Jacquemin, 1997).Since this de�nition is open to di�erent "op-erational" interpretations, it has led to the de-sign of di�erent corpus-driven TA architectures.An "operational" model is obtained by specify-ing the prototypes of admissible surface formsand a notion of relevance of a candidate formable to capture the importance of the under-lying concept for the target domain. The pro-totypes for the surface forms are usually speci-�ed via NP grammars in agreement with validnatural language interpretations. Generally themorpho-syntactic level is used where term pro-totypes may be speci�ed for instance as AdjNoun or Noun Noun constraints able to select re-spectively surface forms as joint venture or infor-mation access. The notion of relevance for thedomain relies generally on probabilistic proper-ties. In (Daille, 1994), the simple frequency f(s)of surface forms in the corpus is suggested as themost e�ective measure. Frequency f seems toreproduce the terminologist judgement betterthan other more complex statistical measures.However, as admittedly mentioned in (Daille,1994), frequency alone is still far from being aperfect "termhood" function.In this paper we propose to consider furtherinformation embedded in the underlying im-



plicit domain model (IDM). When terminolog-ical dictionaries are manually built, terminolo-gists start from a general notion of term andapply it to the speci�c domain. As long asthey look at the target collections their intu-itive perception of the underlying domain im-proves. In fact, they tune their starting hypoth-esis along with their exposition to texts. In thisprocess, the IDM usually consists of a domaincollection together with an explicit pre-existingdomain terminology, T0. Two kinds of infor-mation, often neglected by other computationalapproaches, are here available: (1) usage of al-ready accepted terms (terms in T0) are embod-ied by the corpus and (2) negative evidences, de-rived through negative decisions, i.e. rejections.Frequent occurrences, but non-terminological,expressions increase the terminologists' percep-tion of what a non-term is.Typical uses of accepted (and refused) can-didates re�ne incrementally an inner de�nitionof terms. This, in a computational perspective,should be expressed via an intentional term def-inition. This is the purpose of the method de-scribed in this paper. Several observable prop-erties can be derived from the collections (i.e. inthe contexts of terms and non-terms). A predic-tive (intensional) model, able to correctly sepa-rate terms from non-terms, should be developedon the most relevant (i.e. distinctive) of suchproperties. In the following, two text fragmentsappear:Example 1 .a) The vorticity equation governs the evolutionof vorticity in a geophysical 
uid. This is an equa-tion used in large-scale geophysical 
uid dynam-ics.b) The generalized airfoil equation governs thepressure across an airfoil oscillating in a wind tun-nel.Both expressions vorticity equation and general-ized airfoil equation are here terminological withrespect to a scienti�c domain. The syntagmaticstructure of the sentences is similar. The ex-pressions are both subjects of the verb governand this is often true of technical de�nitions forphysical laws. Such grammatical facts may beusefully adopted as selective criteria as they es-tablish a domain speci�c notion of similarity.These decision rules should be embodied into

the domain-speci�c intensional term de�nition(itd) that we aim to capture.We then argue that major advances in ter-minology acquisition can be obtained by adopt-ing the intensional term de�nitions as a conciseoperational notion. For this reason we settleda learning model within a cycle of TA acquisi-tion. The resulting learning model is assumedto derive an itd as a decision tree representingthe terminologist activity in an explicit and hi-erarchical way. The induction can be incremen-tally applied to the TA cycle and the psycholog-ical plausibility (as an heurism) of the resultingmodel can be studied.In Section 2, the itd learning model is de�ned.The related feature space, introduced in Sec.3, is based on the implicit domain model (i.e.the corpus plus a seeding terminological dictio-nary). It supports the application of machinelearning algorithms such as (Quinlan, 1993).The natural language processing tools, respon-sible for mapping the textual material into thefeature representations (Basili et al., 2000), arethen described in Section 3.2. The results areanalysed in Section 4. First, a discussion ofthe induced models is presented (Section 4.1).Then, performance in the TA task is measuredover benchmarking data (Section 4.2).2 Decision Tree Learning of itdsThe decision tree formalism is an interestingway for representing the heurisms used bythe terminologists in assessing "termhood" ofthe incoming candidates as it represents thedecision rules in a hierarchical fashion. Asany categorisation method, a decision tree isa function that, given an object representedby a set of properties (i.e. attribute-valuepairs), outputs a category chosen from a pre-determined set. This latter is the classi�cationdecision over the input object. If 
 is the spacewhere properties are represented and � the setof the target decisions, the decision tree DT isthen a function: DT : 
! � (1)In this formalism, the decision strategy is repre-sented by a tree where each internal node corre-sponds to a test on a given property, i.e. the teston the value of a given attribute. The categori-sation is achieved when a leaf node is reached,



i.e. all the tests in the path are passed.Given its nature, a decision tree imposes ahierarchy on the attributes. In fact, the morediscriminating is an attribute with respect tothe target competing concepts (decisions), thehigher it should be modelled in the hierarchysince the decision can be taken more straight-forwardly. Therefore, the inspection of an al-ready built decision tree provides insights onwhich feature has been considered more impor-tant in the description of the target concepts.Applied to the problem of term de�nition, thedecision tree should represent the internal hi-erarchy of choices that terminologists performwhen observing the properties of a given termcandidate. The classi�cation decision they haveto take is whether or not the candidate is a term,i.e. whether or not it is an instance of the con-cept of term.Since in our model we assume that terminolo-gists use as a source of discriminating hints theterm contextual information, in a decision treethis information should be described. A sampledecision tree based on such a kind of contex-tual information is depicted in Fig. 2. Here
 V_Sog-essere 

NP_PP-contratto 

<= 0.00772 

V_Sog-essere 

> 0.00772 

TERM 

<= 0.153846 

 V_Obj-fare 

> 0.153846 

 V_PP-fare 

<= 0.002398 

TERM 

> 0.002398 

… … … … Figure 2: A sample decision tree.four properties are considered. The propertyof the candidate of being: (1) subject of theverb to be (V Subj-essere); (2) object of theverb to make (V Obj-fare); (3) prepositionalmodifier of the verb to make (V PP-fare); and(4) prepositional modifier of the noun con-tract (NP PP-contratto). What is stated inthe tree is that if the analysed candidate is"enough" correlated with the verb to be in asubject relation (i.e. the "correlation score" isbetween 0:00772 and 0:153846) it can be rea-sonable considered a term, otherwise the corre-lation with other features has to be evaluated.The noticeable information in the tree is that,in this particular term de�nition, the contextualrelation with the verb to be has been consideredas the more discriminating hint. In order to be

a useful decision maker, the tree should repre-sent the important properties of the notion ofthe term as well as the notion of non-term inthe given environment, i.e. in the particularimplicit domain model.Standard and e�ective tools for the induc-tion of decision trees are available (Quinlan,1993). In particular, this latter method isable to infer regularities over feature space withcontinuous-valued attributes. This is necessaryin the model we propose since we want to studythe regular correlations of terms and non-termswith the other words in the domain contexts.It is worth noticing that the applicability of thetree learning method is possible due to the in-clusion of the non-term concept in the model ofTA postulated in this work.The model of the overall process includes thefollowing steps: (a) Generation of a global fea-ture vector for knowledge item (i.e. a term or anon-term); (b) Induction of the target inten-sional de�nition as a decision tree that dividesincoming candidates into terms and non-terms.To better understand the terminologists' be-haviour, the above process can be also modelledas an incremental approach. Newly accepted (orrejected) candidates allow a dynamic revision ofthe corresponding decision tree structure: a newlearning process can be activated over the newlyassessed instances.3 Making use of Implicit DomainModels in TAThe induction of concise domain-oriented termde�nition needs a suitable representation of theobservations. This representation should bederivable from the implicit domain model. Asuitable observation model should include allthose selective properties characterizing the no-tion of term and non-term.The aim here is to understand if and how reg-ularities in the behaviour of terms in the corpusare used by terminologists as selective featuresfor the �nal decision. Syntax will be used (inline with other works like (Grefenstette, 1993)or (Basili et al., 2001)) as linguistic level able tocharacterize the similarity among contexts.In the next Sections the formal de�nitionsof the feature vectors representing positive andnegative instances are presented.



3.1 Sampling the Implicit DomainModelWhen collecting evidences of a given term tacross a domain corpus we need to determinewhether or not di�erent contexts are indica-tors of its syntactical behaviour. A �rst pos-sibility is to collect only contexts where a validsurface form for t appears. However, in manycases terms are referred in an elliptic fashion.In the example 1.a), the second occurrence ofthe word equation is an elliptic occurrence ofvorticity equation. As a consequence the contextThis is an equation used in large-scale geophysi-cal 
uid dynamics. describes the contextual be-haviour of the vorticity equation term as well.Many simple terms (i.e. one-word terms) areelliptic references to complex terms (i.e. multi-word terms). Generally, the term grammaticalhead (e.g. equation in vorticity equation) is usedin elliptic references.The syntactic, hereafter exogenous, be-haviour of a term is driven by its semantics.The head h(t) of a term t is usually its seman-tic carrier. This assumption is widely used inother term structuring approaches (cf. (Morin,1999)). h(t) is thus a good canonical candidateof t. Its occurrences in the corpus are represen-tative of direct or elliptic occurrences of t. Thisis a computationally attractive approximationfor estimating frequency. Moreover, as termsare expected to have unique interpretations ina coherent domain, terms t and t0 such thath(t) = h(t0) will be considered equivalent withrespect to their exogenous information. Accord-ingly, terms vorticity equation and generalizedairfoil equation are equivalent with respect to thehead equation.The contribution of all contexts where a givenhead h(t) appears forms an equivalence class,C(t), in the corpus. A single (collective) repre-sentation, v(t), for t can be thus derived fromall c 2 C(t). This seemingly applies to "non-terms". In the next section, the de�nition forvectors v(t) , i.e. feature vectors populating thesample space, is given.3.2 Syntactic feature spacesThe induction of a model for terms (or nonterms) requires a suitable knowledge represen-tation formalism in which the global feature vec-tors for each term equivalence class can be de-

rived by their local contexts represented as lo-cal feature vectors. The global feature vectorsshould represent the exogenous behaviour of anentire term equivalence class. A model pre-serving the syntactic information together withthe local lexicalisations is then proposed. Insuch a "syntactic lexicalised" model (�), thelexical item that governs the observed gram-matical relation is stored in a local vector to-gether with its grammatical type. For exam-ple, given the context "The equation of mechan-ics governs the conservation of energy." of equa-tion, we can capture equation as the subject ofthe verb to-govern. In the syntactic lexicalisedspace � the di�erent lexicalised information(Syntactic Type, governing lemma) will beconsidered as independent features. For exam-ple F�h =(V-Subj,to-govern) for t=equation orF�k =(NP-PP,conservation) for the t=energycan be derived from Ex. 1.The above features can be obtained by shal-low parsing of the corpus sentences. Noticethat syntactic ambiguity in parsing may a�ectthe above observations and frequency counts.Highly ambiguous (but frequent) phenomena(e.g. prepositional phrase attachments) may in-crease the values for irrelevant features. On thecontrary, the pruning of all ambiguous relationsmay result in too poor evidences. In our ap-proach we use the notion of plausibility of agrammatical relation within an eXtended De-pendency Graph (XDG) representation scheme(see (Basili et al., 2000)). Ambiguous relationsr in a dependency graph are given a score pl(r)inversely proportional to the number of con
ict-ing syntactic interpretations. The plausibilitypl(r) ranges in the (0; 1] interval: pl(r) = 1 ifr is unambiguous for the parser, and pl(r) < 1otherwise.
 
 
 
 
 
 
 
 

[The bread-and-butter equation] [governs] [the conservation] [of energy] [.] 

VP_Subj::: 1 
VP_PP ::: 0,5 

NP_PP:::0,5 VP_Obj:::1 Figure 3: A sample XDGGrammatical relations, local to the sourcesentence s, are thus a set I(s) of triples (t; F; p)where p is the plausibility local to s of the rela-tion between the term t and the feature F . Theexcerpt in Ex. 1.a) generates the XDG in �gure



3, wherethe relations (energy,NP-PP-conservation,0:5)and (energy,VP-PP-govern,0:5) are ambiguous.The i-th component (representing the featureFi) of the local feature vector for t thus obtainedas v�i (t; s) = �(t;Fi;p)2I(s)p.Once local vectors v�(t; s) are available forsentence s, the global feature vectors in the twospaces are obtained as follows:v�(t) = Xs2C(t) v�(t; s) (2)where C(t) include the corpus contexts (i.e. theequivalency class) of t.The values a feature vector assigns to fea-tures Fi emphasize the strength of associationbetween the t and Fi. Cumulative plausibilityhere replaces frequency counts to better modelambiguity in observations. Notice that, for thesame Fi, the estimated frequencyP(t;Fi;p)2C(t) pproduces the same ranking as mutual informa-tion MI(t; Fi). Feature vectors v�(t) are �-nally normalized to obtain v̂�(t). These normal-ized vectors v̂�(t) are input to the decision treelearner. For sake of comparison, a frequency-based learner has been obtained (feature space�) by de�ning v̂�(t) = (rf(t)) where rf(t) isthe relative frequency of t in the corpus. Suchdiscrete space will simulate the behaviour of aquantitative model based on simple frequency.The above spaces, i.e. the syntactic lexi-calised and the frequency-based spaces, can becalled here "pure". As better results can beobtained if di�erent information is integrated(as also suggested in (Basili et al., 2001)): con-textual information can be used in cooperationwith the term frequency. An other space hasbeen thus de�ned via juxtaposition of the un-derlying pure vectors, v�(t), and v̂�(t): the re-sulting space �� � merges frequency and syn-tactic lexicalised information.4 Experimental investigationThe aim of the investigation is twofold. Firstly,to establish that a domain-oriented term de�ni-tion better models the terminologists' choices.Secondly, to analyse the upgrading of the modelof the terminologists' term de�nition during theanalysis. The two di�erent lines of investigationhave been carried out over a well-establishedimplicit domain model. For what concerns the

reported performances, a statistical validationhas been obtained by n-fold cross validation.The source domain consists of a corpus of about250,000 words on the Italian Civil laws, and ofa corresponding thesaurus of 600 term equiva-lence classes built by a team of expert terminol-ogists. The corpus has been processed by theCHAOS parser (Basili et al., 2000) producingabout 3,000 di�erent term equivalency classes.We assumed that the only valid term instancesare those coded in the thesaurus. We have thusabout 1/4 valid structures among the corpus-derived candidates.4.1 DT as itdsFor the analysis of the intensional term de�ni-tion, an incremental approach has been carriedout (cf. Sec. 2). The seeding of the process (i.e.the pre-existing terminology of the initial im-plicit domain model) has been obtained collect-ing a 80% of the 600-term thesaurus as traininginfo and the rest as test. Moreover, the termi-nologists incremental work has been simulatedby training over increasing bags of non-terms.The learning process has been fed with an in-creasing number of non-terminology subsets (upto 20) and a decision tree has been derived foreach subset. By adding the negative evidence(i.e. refused entries) as training examples wesimulate the activity of the terminologists.By inspecting the obtained trees we study theincreasing awareness about the domain alongwith the term judgment. As expected, thetrends described below are shared by the dif-ferent trees derived via iterations in the n-foldcross validation.In Fig. 4 and in Fig. 5, we report an ex-cerpt of the decision trees derived, respectively,over the � and � � � spaces. The reported3 trees re
ect di�erent stages as they are builtover increasing numbers of negative examples:lex-1-3 to lex-1-20 refer to 3/20 and 20/20among the 2400 available negative examples. Asthe upper levels of the trees are shown, the �g-ures show the most general rules. The trend (seeFig. 4) is that general features (e.g. being partof a predicative structures, i.e. V Obj-essere)are initially retained as decision rules. How-ever they lose importance as soon as more neg-ative information is available. General predic-tion rules based on general verbs such as essere(to be), avere (to have), etc. are substituted



 
Iteration: <lex-1-3> 
 
V_Obj-essere <= 0.166667 : TERM  
V_Obj-essere > 0.166667 : 
|   V_Obj-fare <= 0.05 : NON-TERM  
|   V_Obj-fare > 0.05 : TERM  
 
 
Iteration: <lex-1-4> 
 
V_Obj-essere > 0.185185 : NON-TERM  
V_Obj-essere <= 0.185185 : 
|   V_Sog-avere > 0.00281691 : TERM  
|   V_Sog-avere <= 0.00281691 : 
|   |   V_Sog-dovere > 0.00262467 : TERM  
|   |   V_Sog-dovere <= 0.00262467 : 
|   |   |   NP_PP-effetto > 0.00673758 : TERM  
|   |   |   NP_PP-effetto <= 0.00673758 : -----> 
 
 
Iteration: <lex-1-20> 
 
V_PP-intervenire > 0 : TERM  
V_PP-intervenire <= 0 : 
|   NP_PP-estinzione <= 0 : 
|   |   NP_PP-nomina <= 0 : 
|   |   |   V_PP-escludere <= 0.00136612 : -----> 
|   |   |   V_PP-escludere > 0.00136612 : 
|   |   |   |   NP_PP-cosa > 0.00250356 : NON-TERM  
|   |   |   |   NP_PP-cosa <= 0.00250356 : 
|   |   |   |   |   NP_PP-venditore > 0.0048077 : N ON-TERM  
|   |   |   |   |   NP_PP-venditore <= 0.0048077 : 
|   |   |   |   |   |   V_PP-riconoscere <= 0.00333 333 : TERM  
|   |   |   |   |   |   V_PP-riconoscere > 0.003333 33 : NON-TERM  
|   |   NP_PP-nomina > 0 : 
|   |   |   NP_PP-affittuario > 0 : NON-TERM  
|   |   |   NP_PP-affittuario <= 0 : 
|   |   |   |   NP_PP-scadenza <= 0.00735295 : TERM   
|   |   |   |   NP_PP-scadenza > 0.00735295 : NON-T ERM  
|   NP_PP-estinzione > 0 : 
|   |   NP_PP-persona <= 0.0277778 : TERM  
|   |   NP_PP-persona > 0.0277778 : NON-TERM  
 Figure 4: Domain-oriented de�nition evolution inthe � spaceby more domain speci�c cues. Domain speci�crules as the ones based on intervenire (to inter-vene), nomina (nomination), estinzione (liqui-dation), etc. tend to appear higher in the hierar-chy, i.e. they gain importance. Moreover, sincethe categorization capability of the trees aug-ments (i.e. the error rate decreases from 40%to 14,25%), the induced (domain-speci�c) DTseems better modelling the terminologist judge-ment. Fig. 5 reports DTs based also on fre-quency. We can observe here a similar adap-tation process. In fact, the general rules fullybased on frequency (e.g. freq-lex-3-2) are re-placed by more speci�c ones that do not dependonly on frequency: on the contrary syntagmaticlexicalised decision rules emerge at the upperlevels (e.g. freq-lex-3-20).We observed the emergence of very speci�crules (patterns) at the lower levels of the hierar-chy as, for example, the following excerpt of tree(re-written in an IF...THEN...ELSE... fashion):1. IF plausible(atto-NP_PP-X) THEN1.1. IF plausible(apporre-V_Obj-X) THEN TERM1.2. ELSE IF plausible(autorizzare-V_Obj-X)THEN TERM ELSE NON TERMELSE ...

 
Iteration: <freq_lex-3-2> 
 
Freq > 0.0348566 : TERM  
Freq <= 0.0348566 : 
|   Freq <= 0.0174283 : NON-TERM  
|   Freq > 0.0174283 : TERM  
 
Iteration: <freq_lex-3-4> 
 
Freq <= 0.0348566 : 
|   Freq <= 0.0174283 : NON-TERM  
|   Freq > 0.0174283 : 
|   |   V_PP-essere <= 0.0820313 : NON-TERM  
|   |   V_PP-essere > 0.0820313 : TERM  
Freq > 0.0348566 : 
|   NP_PP-trasferimento > 0 : TERM  
|   NP_PP-trasferimento <= 0 : 
|   |   NP_PP-creditore > 0.00128699 : TERM  
|   |   NP_PP-creditore <= 0.00128699 : 
|   |   |   NP_PP-responsabilità > 0.00543479 : TER M  
|   |   |   NP_PP-responsabilità <= 0.00543479 : -- ---> 
 
 
Iteration: <freq_lex-3-20> 
 
NP_PP-estinzione <= 0 : 
|   NP_PP-deliberazione <= 0.00485437 : 
|   |   V_PP-effettuare <= 0.000685865 : 
|   |   |   NP_PP-trascrizione <= 0.000614251 : --- --> 
|   |   |   NP_PP-trascrizione > 0.000614251 : 
|   |   |   |   Freq <= 0.278853 : NON-TERM  
|   |   |   |   Freq > 0.278853 :   -----> 
|   |   V_PP-effettuare > 0.000685865 : 
|   |   |   V_PP-operare <= 0.00243307 : TERM  
|   |   |   V_PP-operare > 0.00243307 : NON-TERM  
|   NP_PP-deliberazione > 0.00485437 : 
|   |   NP_PP-data <= 0.015641 : TERM  
|   |   NP_PP-data > 0.015641 : NON-TERM  
NP_PP-estinzione > 0 : 
|   NP_PP-persona <= 0.0277778 : TERM  
|   NP_PP-persona > 0.0277778 : NON-TERM  Figure 5: Domain-oriented de�nition evolution inthe �� � spacewhere plausible(atto-Rel-X) expresses thecontraints that the candidate X must be observ-able (frequently) as a modi�er of type Rel withthe word atto (i.e. legal act). In this case, therule applies to heads like notaio (notary) sincestructures like atto di notaio (the act of notary)and autorizzare il notaio (to authorize a notary)are frequent: they are thus accepted as terms(as for rules 1. and 1.2). On the contrary, anhead like ricevimento (the reception) is refused.In fact, although atto di ricevimento (the act ofreception) is frequent in the corpus, there are nofrequent structures for contraints 1.1 and 1.2(e.g. * apporre un ricevimento (to pose a recep-tion and * autorizzare un ricevimento (to autho-rize a reception). Criteria like the above onese�ectively capture the terminologist behaviourin a computationally attractive form.4.2 Performance EvaluationA general analysis of the average error rate �(i.e. the percentage of misclassi�ed items withrespect to the terminological database avail-



Feature Space � � �� �Error Rate (%) 16,99 14,25 13,88Table 1: Final error rate on the �, � and �� �.able) has been also carried out. In each 5-foldcross-validation, the system considers an 80% ofthe corpus candidates as training items (dividedevenly between positive terms in the thesaurusand negative items, i.e. nominals that are NOTin the thesaurus). The test is then run overthe 20% remaining candidates and error ratesare then reported as mean values. The syn-tactic lexicalised � space reaches superior per-formances with respect to the pure frequency(�). All the two learning processes make simi-lar use of negative information. Moreover, theone depending more tightly on the domain evi-dence (�) outperforms a more domain indepen-dent notion of relevance (i.e. frequency). Theexogenous grammatical information is very ef-fective (i.e.+18% wrt �). This con�rms the ini-tial assumption: stable relations between par-ticular lexicals in the domain (captured, in thiscase, with syntactic lexicalised feature model)produce better models for the inner perceptionof terms hold by the terminologists. Further-more, the syntactic lexicalised model representsspeci�c "shallow" semantic properties of termsas induced from the corpus. Combining di�er-ent sources always outperforms "pure" systems:performances obtained in the ��� are superiorto the one obtained on the "pure" �.5 ConclusionIn this paper, a terminology acquisition modelbased on the decision tree learning has been pre-sented. The proposed approach makes use ofcontextual evidence observable for known termsas well as information about non terminolog-ical expressions. A lexico-syntactic represen-tation of such information is used on a largescale within a robust text processing frame-work (Basili et al., 2000). Moreover, a de-cision tree machine learning algorithm (Quin-lan, 1993) is applied for the empirical investiga-tion. First, experiments aimed to simulate thedevelopment of an explicit domain-dependentmodel of termhood have been carried out. Re-sults show that decision trees embed system-atic information and emphasize correctly typi-

cal domain e�ects. Performance evaluation con-�rms the e�ectiveness of the overall approacheither on a pure application of lexico-syntacticcriteria as well as by combining it with morefrequency oriented rules. An improvement ofabout 18% against the previously reported suc-cessfully methods has been obtained.The method depicted above represents anoriginal approach to automatic TA. Since itseems better to approximate the terminologistbehaviour, it will play a relevant role in ourfuture research on the induction of ontologicalknowledge from texts.ReferencesRoberto Basili, Maria Teresa Pazienza, andFabio Massimo Zanzotto. 2000. Customiz-able modular lexicalized parsing. In Proc. ofthe 6th International Workshop on ParsingTechnology, IWPT2000, Trento, Italy.Roberto Basili, Maria Teresa Pazienza, andFabio Massimo Zanzotto. 2001. Modellingsyntactic context in automatic term extrac-tion. In Proc. of the 3th Conference on Re-cent Advances in Natural Language Process-ing, RANLP2001, Tzigov Churck, Bulgaria.Beatrice Daille. 1994. Approche mixte pourl'extraction de terminologie: statistque lexi-cale et �ltres linguistiques. Ph.D. thesis, C2V,TALANA, Universit�e Paris VII.Gregory Grefenstette. 1993. Evaluation tech-niques for automatic semantic extraction:Comparing syntactic and window based ap-proaches. In Proceedings of the Workshop onAcquisition of Lexical Knowledge from Text,Columus, OH, USA.Christian Jacquemin. 1997. Variation termi-nologique : Reconnaissance et acquisition au-tomatiques de termes et de leurs variantesen corpus. M�emoire d'Habilitation Dirigerdes Recherches en informatique fondamen-tale. Universit�e de Nantes, Nantes, France.Emmanuel Morin. 1999. Extraction de lienss�emantiques entre termes �a partir de corpusde textes techniques. Ph.D. thesis, Univesit�ede Nantes, Facult�e des Sciences et de Tech-niques.J.R. Quinlan. 1993. C4.5: Programs for ma-chine learning. Morgan Kaufmann, San Fran-cisco, CA.


