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Abstract

In this paper we focus our attention to the construction
of one-to-many mappings between the coarse-grained re-
lational concepts and the corresponding linguistic realisa-
tions with an eye on the problem of selecting the catalogue
of the coarse-grained relational concepts. We here explore
the extent and nature of the general semantic knowledge
required for the task, and, consequently, the usability of
general-purpose resources such as WordNet. We propose
an original model, theverb semantic prints, for exploiting
ambiguous semantic information within the feature vector
model.

1 Introduction

Relational concepts and their linguistic realisations are
very relevant bits of semantic dictionaries. These equiva-
lence classes, often calledsemantic frames, may enable so-
phisticated natural language processing applications as ar-
gued in [7] among others. For example, take the relational
concept have-revenues(AGENT:X, AMOUNT:Y, TIME:Z)
and two related ”generalised” formsX has a positive net
income of Y in ZandX reports revenues of Y for Z. This
would help in finding answers to very specific factoid ques-
tions such as”Which company had a positive net income
in the financial year 2001?”using text fragments as”Acme
Inc. reported revenues of$.9 million for the year ended in
December 2001.”.

Information Extaction (IE) is based on this notion. Tem-
plates are relational concepts and extraction patterns are lin-
guistic relatisations of templates or, eventually, of interme-
diate relational concepts, i.e. the events. Besides used tech-
niques we can say that IE is asemantic-orientedapplication.

Generally, such a kind of applications rely on com-
plete semantic models consisting of: a catalogue of

named entity classes (relevant concepts) asCompany,
Currency, and TimePeriod; a catalogue of (generally)
coarse-grained relational concepts with their seman-
tic restrictions, e.g. have-revenues(AGENT:Company,
AMOUNT:Currency, TIME:TimePeriod); a set of rules for
detecting named entities realised in texts and assigning
them to the correct class; and, finally, a catalogue of one-to-
many mappings between the coarse-grained relational con-
cepts and the corresponding linguistic realisations. These
semantic models are often organised using logical for-
malisms (as in [6]). The results are very interesting artifacts
conceived to represent equivalences among linguistic forms
in a systematic and principled manner.

Besides the representational formalism, the actual con-
tent of semantic models is a crucial issue. Usingsemantic-
orientedsystems requires the definition of the relevant se-
mantic classes and their one-to-many mappings with the
linguistic realisations within the target knowledge domain.
Even if repositories of general knowledge about the world
exist both at the concept level (e.g. Wordnet [11]) and at
the relational concept level (e.g. Framenet [2]), they can be
hardly straightforwardly used. Specific domains and infor-
mation needs such as airplane travels in [16] or the company
mergers and acquisitions in [1] generally stress their lim-
its. Good coverage of phenomena and, consequently, good
performances of final applications can be reached when the
underlying semantic models are adapted to target domains.

It is reasonable to hope that the cost of building domain-
specific semantic resources can be drammatically reduced
as such a kind of knowledge already exists in ”natural”
repositories: the domain corpora. We are interested in in-
vestigating this problem relying on a ”terminologial” per-
spective [5]. It is our opinion that typical insights of termi-
nology studies asadmissible surface formsanddomain rel-
evancehelp in concentrating the attention on relevant and
generalised text fragments when mining large text collec-
tions.



In this paper we focus our attention to the construction
of one-to-many mappings between the coarse-grained rela-
tional concepts and the corresponding linguistic realisations
with an eye on the problem of selecting the catalogue of the
coarse-grained relational concepts. As it will be clarified in
Sec. 2 that describe the terminological approach, we work
on a list of extraction patterns derived from the analysis of
the domain corpus and we attack an aspect of this twofold
problem: the assignment of the correct relational concept
given a prototypical linguistic realisation. That is, given a
prototypical form”Companyhas a positive net income of
Currencyin TimePeriod” find have-revenuesas the correct
semantic frame. We leave apart the problem of mapping
arguments to thematic roles.

We here explore the extent and nature of the general se-
mantic knowledge truly required for the task, and, conse-
quently, the usability of general-purpose resources such as
WordNet [11]. We propose to use well assessed machine
learning algorithms based on the feature vector model to
study this problem. Limits of the feature vector model when
applied to natural language processing tasks are discussed
(Sec. 3.1). Trying to overcome these limits we propose
an original model, theverb semantic prints, for exploiting
ambiguous semantic information within the feature vector
model (Sec. 3.3). In order to understand the effectiveness of
the overall model we study it contrastively with a baseline
model based on lexicalised syntatic information (Sec. 3.2).
We argue that if general semantic information is relevant
we should be able to demonstrate that the related space out-
performs the other should across different machine learn-
ing algorithms. Moreover, it should demonstrate to better
converge to the final classification in unsupervised cluster-
ing methods. The experimental investigation is described
in Sec. 4. Results over a large range of different machine
learning algorithms (collected in [17]) are compared. Fi-
nally, before concluding, we briefly discuss the related ap-
proaches (Sec. 5) as the problem of finding equivalent lin-
guistic forms for relational concepts is largely debated.

2 A ”terminological” perspective in learning
equivalent linguistic forms

Domain corpora naturally contain a large quantity of do-
main knowledge: the same knowledge needed for adapting
or building sematic models for semantic-oriented applica-
tions. A common practice in terminology extraction [8] is
to exploit this knowledge trying to study what emerges from
the textual collections. The problem there is to build ter-
minological dictionaries containing relevant concepts, i.e.
terms.

Our target is to examine domain corpora in order to find
relevantrelational concepts(i.e. semantic frames) and their
corresponding linguistic realisations. In analogy with termi-

nological studies, we define a notion ofadmissible surface
form (i.e. prototypes for possible textual representations)
for relational concepts. Genereally prototypes are given at
the synatctic level. We expect that the linguistic forms of
relevantrelational concepts regularly emerge from a possi-
bly complex (but domain independent) corpus analysis pro-
cess. This can help in both deciding the relevant relational
concepts and finding the one-to-many mappings with the
linguistic realisations. In this process the following steps
are undertaken:

1. Corpus processing: the admissible surface formsare
detected and syntactically normalised. Each normal-
ized form is a generalization of several observations
ranked according to theirdomain relevance(i.e. their
frequency).

2. Concept formation: the most important normalised
forms are selected and they provide the set of target
conceptual relationships. We will refer to this set asT .

3. Form classification: the generalised forms are classi-
fied according to the types defined inT .

The notions ofadmissible surface formsand ofdomain rel-
evanceused in the corpus processing phase are borrowed
from the terminology extraction practice. These are very
useful in concentrating the efforts only on relevant analysed
text fragments.

As we want to analyse relational concepts we will limit
our attention here to verb phrases. Our admissible surface
form will be a verb with all his arguments. Even if verb
phrases do not cover all the possible relational words, these
are very good indicators. We will assume that the concepts,
i.e. the catalogue of the named entities and the terms, are
given.

The first phase is done more or less automatically using
the technique introduced by [5]. Then, domain experts, ex-
posed to the data such as the ones in Tab. 1 sorted according
to their relevance (e.g. computed on the frequencyfreq of
the form), can define the relational concepts. In the exam-
ple Cooperation/Splitting among Companies(2-1) orMar-
ket trends(6-1) can be the two relational concepts formed in
this phase. Finally, the classification of the instances is done
accordingly, i.e. the columnrelational conceptis compiled.
Theconcept formationphase is naturally more difficult than
the actual classification even if in this phase the concepts as
6-1 and 2-1 are defined extensionally. In theclassification
phaseexperts using the surrogate forms are able to decide
the concept extension on the basis of the observable features
such aspercentne (percentage), entity ne (named entity),
share, fall, lose, join, or own.



freq generalised form relational concept
88 (subj,entityne) own (dirobj,percentne) 1-2
70 (subj,entityne) join (dirobj,entityne) 1-2
58 (subj,entityne) lose (dirobj,percentne) 6-1
47 (subj,share) fall (dirobj,percentne) 6-1

Table 1. A very small sample of the classified admissible forms

3 Syntactic feature space and verb semantic
prints for learning relational concepts

The purpose of this study is trying to imitate experts
in forming relational concepts and in classifying linguis-
tic forms using well-assessed machine learning algorithms.
We want also to investigate the role in the task of general se-
mantic knowledge (i.e. Wordnet). Before developing new
algorithms for a task it can be useful to understand if the
feature observation space is worthy. However, the basic
problem that arises when using existing machine learning
algorithms is to understand if the underlying model, i.e. the
feature-value vector and its usage, supports the observations
we want to model. Before describing the syntactic (Sec.
3.2) and the sematic model (Sec. 3.3) we propose for form
classification and, eventually, for relational concept forma-
tion, we examine the limitations of the feature-value vector
model when used over models for natural language (Sec.
3.1).

3.1 Feature-Value Vector vs. Syntax and Concept
Hierarchies

A largely used model for describing instance charac-
teristics is the feature-value vector. This model underlies
many machine learning algorithms as the ones gathered in
[17]. It suggests an observation space in which dimensions
represent features of the object we want to classify and
dimension values are the values of the features as observed
in the object. Each instance object is then a point in the
feature space, i.e. if the feature space is(F1, ..., Fn) an
instanceI is:

I = (f1, ..., fn) (1)

where eachfi is respectively the value of the featureFi for
I.

Many machine learning algorithms (as the ones in [17])
use the feature-value model assuming:

• thea-priori independence: each feature isa priori in-
dependent from the others and, therefore, no possibil-
ity is foreseen to make explicit relations among the fea-
tures;

• the flatnessof the set of the values for the features:
no hierarchy among the values of the set is taken in
consideration;

• the certainty of the observations: given an instanceI
in the feature-value space, only one value is admitted
for each feature.

Under these limitations they offer the possibility of select-
ing the most relevant features that may decide whether or
not an incoming object in the feature-value space is instance
of a given concept.

Exploiting the feature-value vector model and the related
learning algorithms in the context processing natural lan-
guage may then be a very cumbersome problem especially
when the successful bag-of-word abstraction [15] is aban-
doned for deeper language interpretation models. The a-
priori independence among features, the flatness of the val-
ues, and the certainty of the observations are not very well
suited for syntactical and semantic models. On the one side,
syntactical models would require the possibility of defining
relations among features in order to represent either con-
stituents or dependencies among words. On the other side, a
semantic interpretation of the words (intended as their map-
ping in an is-a hierarchy such as WordNet [11]) would re-
quire the possibility of managing hierarchical value sets in
which the substitution of a more specific node with a more
general one can be undertaken as generalisation step. Fi-
nally, the ambiguity of the interpretations (either genuine
or induced by the interpretation model) stresses the basic
assumption of thecertainty of the observations. Due to am-
biguity, a given instance of a concept may be seen in the
syntactic or the semantic space as set of alternative observa-
tions. The limits of the underlying interpretation models in
selecting the best interpretation requires specific solutions
to modeluncertaintywhen trying to use feature-value-based
machine learning algorithms for learning concepts repre-
sented by natural language expressions.

3.2 A very simple syntactic (lexicalised) model

As we have seen in Sec. 2, the objects to be classified
are generalised verb forms, i.e. verbs with their more
frequent arguments. Apparently, it can seem very simple
mapping those structures to the feature-value vector. The



verb and the more stable arguments are in fact highlighted
and, moreover, the arguments are classified according
to the played syntactic role. A straightforward mapping
can therefore be performed and this is what we did. We
call this space as the syntactic-lexicalised feature space,
hereafter referred assynt-lexspace. The selected features
(for the feature-value vector model) are then respectively
the verb, the subject, the object, and finally the remaining
arguments represented by their heading preposition. This
defines the feature vector(F1, ..., Fn). Each pattern pro-
totype (v, {(arg1, lex1), ..., (argn, lexn)}) has therefore
a mapping to a feature-value vector in the following way.
EachFi has the value:

fi =

 v if Fi = verb
lexj if ∃j.Fi = argj

none otherwise
(2)

It is worth noticing that in the case of the prototype forms
the syntactic ambiguity is not a problem. These patterns are
in fact abstractions of the behaviour of the verbs in the cor-
pus, i.e. its arguments are statistically filtered. Furthermore,
in the corpus processing phase, first of all stable generalised
noun phrases are detected. This helps to filter out possibly
frequent wrong verb attachments detected by the syntactic
parser. Therefore, each item in the verb prototype form is
then unambiguously considered as verb argument.

The chosen mapping method has some inherent limita-
tions. Firstly, the structure of the complex noun phrases is
not resolved in the feature-value model. They are in fact
preserved as they are, i.e. the overall structure is replicated
in the value of the related feature. For instance, in the case
of (subject,shareof companyNE)where a complex noun
phrase appear the value given to thesubject feature is
exactly the related form. The main reason for this choice
is that the more complex structure is more selective for
classifying incoming instances. However, no subsumption
is possible between the formshareof companyNEand
share. Such instances will be considered as completely
different forms. The second limitation is instead introduced
by the ”variable drop” we perform in building the verb
pattern prototypes. As part of the semantic of the verb is
given by its surface syntactic structure [10], we tend also to
offer relevant partially incomplete verb pattern prototypes
where the lexicalisation of some syntactic argument may
be left ungrounded. The annotators may face a pattern as
the following:

(fall,{(subject,ANY),(from,currencyNE),(to,ANY))

where some arguments of the verb are indicated but no re-
striction is given (i.e. ANY lexicalisation or named entity
class is admitted). Possibly using the expectations induced
by the investigated domain, the annotator should decide

whether or not the given information helps in classifying the
instance. In some case, a decision may be also taken with
this reduced information. However, as no subsumption is
possible in the feature-value translation of the instance no
explicit relation may be drawn with an other instance such
as (fall,{(subject,share)}). This sort of variable drop cannot
be managed. Finally, the mapping solution we adopted does
not take into account the possible syntactic changing of the
arguments as considered in the method exploited in [9] for
a verb paraphrasing algorithm. It is worth noticing that in
the case of [9] the search space was reduced by the fact that
only couples of verbs suggested by a dictionary have been
considered.

3.3 Ambiguous conceptual generalisations as
verb fingerprints

The exploitation of conceptual hierarchy is instead a
more cumbersome problem due to the limits of the feature-
value model. The idea here is to investigate the possibility
of integrating some sort of ”semantic” generalisation for the
verbs. These latter semantically govern the verbal phrases
taken as forms admissible for the relationships and may give
an important input to cluster prototype forms in classes. For
instance, let us take the patterns in Tab. 1 and suppose
that the first three lines have already been encountered, i.e.
these can be considered training examples. According to
the syntactic-lexicalised space previously defined the new
instance may belong both to class 6-1 and to the class 1-2
as it has one common feature with all the considered known
instances. The only possibility of classifying the new in-
stance in one of the two classes relies on some sort of gen-
eralisation and the verb seems to be a very good candidate.
According to WordNetloseandfall have two common an-
cestorschangeand move-displace. This does not happen
for fall and join or fall andown. The injection of such a
kind of knowledge seems therefore to be useful for the clas-
sification task as happens in [4, 9] where noun conceptual
hierarchies have been exploited using the definition of dis-
tance measures among nodes.

The introduction of a conceptual hierarchy is somehow
in contrast with what has been above called theflatnessof
the feature values. If we want to use this information, this
hierarchies should be somehow reduced to a flat set where
the problem of the inherent structure is simply forgot. One
possibility is choosing one level of generalisation and re-
ducing each element to this level. This is the one we adopt
in our model for the exploitation of conceptual hierarchies
in the problem of detecting equivalent surface forms. In
particular, in order to limit the number of features we have
chosen the level of the topmosts, hereafter referred as the
setT .

If the previous choice helps in using part of the hierar-



chy, there is still the issue of the ambiguity that in this case
cannot be neglected. We do not plan to use any a priori word
sense disambiguation mechanism. We would rather prefer
to discover and limit the senses of the investigated verb a
posteriori, i.e. while analysing the verb prototype forms.
Verb senses should be determined in the domain defined by
the text collection. The ambiguity should then be modelled
in the images of the pattern prototypes in the feature space.
It is as if we model uncertainty in the observations of con-
cept instances. However, features can not have multiple val-
ues. The way we propose in our model to solve the problem
is to use all the topmost senses activated by the analysed
verb as representing of the ”overall sense” of the verb. This
set can be considered asverb semantic print. It will be the
task of the machine learning algorithm the selection of the
sense (or the senses) more promising for representing the
investigated relationship. The algorithm will therefore also
work as verb sense disambiguator if the semantic informa-
tion and the way we use it demonstrates to be useful.

The second model we propose integrates then syntactic
with semantic information. The syntactic semantic space is
(F1, ..., Fn, T1, ..., Tk) whereFi features and the relatedfi

values have been defined in the previous section whilst the
Tj represent theverb semantic print. In particular, all the
elements in the topmost setT are represented in the feature
space. Given a verb prototype form headed by the verbv,
the valueti ∈ {yes, no} for the each semantic featureTi

in the respective point in the feature space is obtained as
follows:

ti =
{

yes if hyper(v, Ti)
no otherwise

(3)

wherehyper(x, y) is the property defining the hyperonym
relation amongx and y. This latter space will here-
after referred as syntactic-lexicalised-semantic space(synt-
lex-sem).

4 Experimental investigation

In the previous sections, we proposed a model for ex-
ploiting syntax information and semantic networks in ma-
chine learning algorithms. As discussed, the proposed mod-
els (and the related feature spaces) relies on a large num-
ber of approximations to overcome the limitations of the
feature-value model. In this section, we will explore the per-
formances the machine learning algorithms will obtain rely-
ing on the proposed models in order to understand the rele-
vance of the syntactic and semantic information. First of all,
we will describe the test set preparation. This will clarify
the final classification task. Secondly, the performances of
a number of machine learning algorithms will be analysed
over the two proposed feature-value space, i.e.synt-lexand
synt-lex-sem. In this latter phase we will use well-assessed
machine learning algorithms gathered in Weka [17]. This

collection of algorithms, originally done for Data Mining,
has the principal advantage of proposing stable input inter-
faces for a large number of algorithms. This speeds up the
possibility of testing a large number of different algorithms
for the same problem. The cross-algorithm validation can
give hints on the relevance of the chosen features and on the
correctness of the proposed model.

4.1 Corpus analysis and test-set preparation

As discussed in Sec. 2, the context of the experiment is
an overall methodology intended to extract equivalent forms
out from a homogeneous document collection, i.e. the do-
main corpora. It worth noticing that the homogeneity hy-
pothesis seems to be similar to the one driving the methods
in [18, 14]. The main difference is the grain: the cited two
methods in fact that it is stated for each document the be-
longing to a very specific class representing the specific in-
formation need, conservatively here we are thinking to doc-
uments related to a coarse grain class such assport, finance,
etc. Efficient methods to obtain such a document classifi-
cation may be settled on the bag-of-word document model
[15]. Moreover, such kinds of classified corpora are largely
available: news agencies and on-line newspapers tend to of-
fer documents organised in a classification scheme to better
serve their costumers.

For the reported experiment, we used a corpus consisting
of financial news. The text collection gathers around 12,000
news items published from the Financial Times in the period
Oct./Dec. 2000. The relational concepts we will discover
are therefore the ones related to financial events. After the
corpus processing phase, that selected around 44,000 forms
appearing more that 5 times in the corpus collection, in the
concept formation phase13 target relational concepts have
been defined inspecting the top ranked forms (see Tab. 2) .
Even if we don’t claim this as an exhaustive list, the defined
relational concepts represent the more relevant knowledge
appearing in the document collection and, more in general,
in financial news.

The classification of the forms in the classes has be per-
formed by 2 human experts. Out of the first 2,000 forms
considered, 497 were retained as useful, i.e. the informa-
tion carried in the words or in the named entity classes sur-
vived in the form has been considered sufficient to draw a
conclusion on the classification. Due to the nature of the
overall list of pattern prototypes, some of the more specific
forms may be trivially tagged using an eventually classified
more general form. In the preparation of the final test set we
therefore got rid of this simple cases. When the class of the
more specific form it is the same of the more general one,
the more specific form has been removed. The resulting test
set consists then of 167 different forms whose classification
cannot be trivially obtained. The distribution of the forms



Class # of equivalent linguistic forms
1 RELATIONSHIPS AMONGS COMPANIES

1-1 Acquisition/Selling 15
1-2 Cooperation/Splitting 8

2 INDUSTRIAL ACTIVITIES
2-1 Funding/Capital 4
2-2 Company Assets (Financial Performances , Balances, Sheet Analysis) 20
2-3 Market Strategies and plans
2-4 Staff Movement (e.g. Management Succession) 6
2-5 External Communications 13

3 GOVERNMENT ACTIVITIES 3
3-1 Tax Reduction/Increase
3-2 Anti-Trust Control

4 JOB MARKET - MASS EMPLOYMENT/UNEMPLOYMENT 3
5 COMPANY POSITIONING

5-1 Position vs Competitors 3
5-2 Market Sector 7
5-3 Market Strategies and plans 7

6 STOCK MARKET
6-1 Share Trends 62
6-2 Currency Trends 0

Table 2. The event class hierarchy of the financial domain and form distribution

in the classes is reported in Tab. 2.
It is worth noticing that in the final list only 4 macro-

scopic parsing errors survive: 3 related to prepositional
phrase headed byof erroneously considered attached to the
verb and one related to the form:

(value,{(dirobj,companyat currencyNE)})

The verb modifierat currencyNEhas been erroneously con-
sidered as modifier of the nouncompany. This is mainly be-
cause the overall form appears frequently as it is and, there-
fore, the fact that is chosen the ”noun” reading is because
this attaching phase is run as the first. These errors have
been left in the final list in order to see the robustness of the
learning algorithms with respect to spurious input data.

4.2 Analysis of the results

The classification problem over the proposed spaces has
been therefore studied with a number algorithms and the re-
sults have been reported in tab. 3. It appears that the base-
line of the classification problem proposed is around 37%
that is reached by those algorithms classifying all the in-
stances in the more probable class (i.e. 6-1). This value of
performance is obtained by the NaiveBayes classifier and
the DecisionStump. An important observation is that all the
other algorithms report even in the syntactic space better
results with respect to the base-line, i.e. they are not con-
fused by the provided features. Furthermore, the use of the
semantic information by means of theverb semantic print
seems to be relevant. The major part of the investigated
algorithms has an advantage in semantic space. The confu-
sion introduced by the ambiguity seems to be easily man-
aged and the relevant information used. The algorithms are
doing the job of disambiguating the verb senses. The best
result is obtained by the Voting Feature Interval algorithm
on the semantic space. However, it does not seems to have

a relevant improvement with the introduction of the seman-
tic. It is worth noticing that this model is statistically based
and, when it faces nominal attributes1 as the one proposed
here, it becomes very similar to a profiled based classifier.
Looking in the tab. 3, it furthermore seems that algorithms
classifying with probability scores (as the NaiveBaye, Hy-
perPipes, and VFI) take a small benefice from using the se-
mantic information as it has been modelled.

Algorithms based on the decision trees (i.e. j48) give
moreover the possibility to understand which are the more
important attributes driving the decisions. Observing the
decision tree for thesynt-lex-semspace, it becomes clear
that the more selective information is represented by the
verb senses. Verb lemmas nearly disappeared, i.e. verb
senses generalised this information. This phenomenon is
not obvious due to the previous independence among the
attributes. Furthermore, interesting classification rules as
the followings may be observed:

 verb
change
¬control





 obj
percentNE

currencyNE

 6-1 obj
capital
fund

 2-1

subj
turnover
income

operating profit
pre− tax profit

revenue
profit


2-2

(4)
A verb ofchange(but having any sense ofcontrol) assumes
very different meaning according to the companions. This
clustering can be a very interesting starting point to write
more complex semantic restrictions that tend to cluster also

1Attributes assuming values in a finite set.



Method synt-lex synt-lex-sem % increase/decrease
j48.J48 60.355% 65.0888% +7,84%
j48.PART 53.8462% 56.8047% +5,49%
DecisionStump 36.6864% 42.0118% +14,52%
DecisionTable 59.1716% 59.1716% 0
IB1 47.3373% 60.9467% +28,75%
IBk 55.6213% 60.9467% +9,57%
ID3 44.9704% 44.9704% 0
NaiveBayes 36.6864% 37.2781% +1,61%
HyperPipes 63.9053% 62.7219% -1,85%
VFI 65.6805% 66.2722% +0,90%

Table 3. Success rate of different methods over the two spaces in a 5-fold cross-validation

nouns as done in [4, 9].
There is a last consideration in favour of the semantic

space. It seems to offer a better possibility of learning this
classes from scratch using a clustering algorithm. In the
case a very simple algorithm, i.e. the simple k-means with
20 clusters and averaged on 10 different seeds we obtained
an error rate of 72.54% for the synt-lex space and 69.17%
for the synt-lex-sem space. This timid result induces to
think that, in the concept formation phase, better results can
be obtained using some sort of semantic model.

5 Related work

It is largely agreed that availability of explicit many-
to-one mappings between linguistic forms and their cor-
responding meaning (i.e. concepts or relational concepts)
is beneficial for several linguistic applications. Many re-
searches are in fact devoted to propose methods for auto-
matically building equivalence classes of patterns in fields
such as Information Extraction [18, 14], Question Answer-
ing [13], Terminology Structuring [12], or Paraphrasing
[3, 9].

The automatic construction of equivalent linguistic pat-
terns has been studied attacked from extremely different
perspectives and for apparently different reasons. The tar-
get relationships range from the very generalhyperonymre-
lation investigated in automatic approaches to terminology
structuring (e.g. [12]) to more specific information as those
expressed by equivalence classes of paraphrases [3, 8, 9].
Clearly, template acquisition as typically employed in In-
formation Extraction (e.g. [14]) is part of these studies. The
target relationships may vary slightly but the common un-
derlying targets of these methods are equivalence relations
derived by analysing text material. The aim is to derive dif-
ferent surface forms of prototypical relationships by means
of the smallest annotation effort possible.

In [14, 18] the problem of building information extrac-
tion patterns from scarcely annotated texts is investigated.

In this case, the target relationship is very complex (i.e. a
template) and very specific. Due to the fact that the tem-
plate isa priori known, the notion ofrelevanceof the texts
in its respect can be suitably exploited. Similarities among
the different butrelevant texts suggest equivalent linguis-
tic forms. The issue of classifying texts is central in the
two approaches: in [14] the full classification of the texts in
relevant vs. irrelevant is required whilst in [18] a bootstrap-
ping approach is used2. It is to be noticed that both methods
strongly rely on the shortness of the investigated texts, each
one usually targeted to only one template.

A completely different approach to pattern clustering is
proposed in [12, 13]. The targets are binary relationships
among concepts and the assumption is that (at least some
instances of) the related concepts are knowna priori. When
such coupled concepts jointly appear in a text fragment, this
latter is assumed as a valid form for the target relationship.

In [12], the method has been used to compile equiva-
lent forms for theis-a relationship in the context of termi-
nology structuring. As in any terminology extraction ap-
proach the corpus used specifically models a knowledge do-
main. In [13], the corpus considered has been the entire
world wide web and the target was to find the answering
patterns using question-answer couples. Questions are first
of all (manually) clustered to identify the target relationship
types, called here question types (e.g.inventor, discoverer,
etc.). Then for each question the coupleanswerand main
nameof the question are extracted. These latter are used
to query an information retrieval engine in order to find the
forms representing the given relationships.

In [3] the target is to learn syntactic paraphrasing rules
mainly for verbal sentences instead of nominal forms (e.g.
as in [8]). The problem is then slightly different but an
interesting method for deriving the equivalence among the
surface forms is used. In fact, ”parallel corpora”, as those
employed in machine translation studies, are collected by

2The relevance of texts with respect to a template is modelled as a sort
of distance between new texts and a kernel of annotated texts



groupings different English translations of a single non-
English text (e.g. a novel). The different translator styles of-
fer heterogeneous translations of the same sentences that in
fact convey the same meaning . Parallel sentences thus em-
body equivalent forms of the same relationship. Although
this method is very interesting for general syntactic para-
phrasing rules, it has a limited applicability due to the spe-
cific ”parallel corpora” employed.

For all the methods, the use of some previous specific
knowledge (not always available) seems indispensable:

• focused and structured templates plus examples in [18,
14]

• definitions and examples of the target relationships in
[12, 13]

• parallel corpora for [3]

6 Conclusions

In this paper, after the analysis of the limits of the
feature-value model, we proposed a method for exploiting
well-assessed machine learning algorithm for the problem
of learning equivalent surface forms. We obtained some in-
dications that the proposed way to use semantic hierarchies
may helpful in the proposed problem. In any case, the over-
all approach may be included as a suggesting mechanism
for the experts involved in the task.
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de Nantes, Faculté des Sciences et de Techniques, 1999.

[13] D. Ravichandran and E. Hovy. Learning surface text patterns
for a question answering system. InProceedings of the 40th
ACL Meeting, Philadelphia, Pennsilvania, 2002.

[14] E. Riloff. Automatically generating extraction patterns from
untagged text. InProceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), Portland,
Oregon, 1996.

[15] G. Salton. Automatic text processing: the transformation,
analysis and retrieval of information by computer. Addison-
Wesley, 1989.

[16] D. Stallard. Talk’n’travel: A conversational system for air
travel planning. InProceedings of the 6th Applied Nat-
ural Language Processing Conference (ANLP’00), Seattle,
Washington, 2000.

[17] I. H. Witten and E. Frank.Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, Chicago, IL, 1999.

[18] R. Yangarber.Scenario Customization for Information Ex-
traction. PhD thesis, Courant Institute of Mathematical Sci-
ences, New York University, 2001.


