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Abstract

Text understanding makes strong assumptions about the
conceptualisation of the underlying knowledge domain.
This mediates between the accomplishment of the specific
task at the one hand and the knowledge expressed in the tar-
get text fragments at the other. However, building domain
conceptualisations from scratch is a very complex and time-
consuming task. Traditionally, the re-use of available do-
main resources, although not constituting always the best,
has been applied as an accurate and cost effective solution.

In this paper, we investigate the possibility of exploit-
ing sources of domain knowledge (e.g. a subject reference
system) to build a linguistically motivated domain concept
hierarchy. The limitation connected with the use of domain
taxonomies as ontological resources will be firstly discussed
in the specific light of IE, i.e. for supporting linguistic in-
ference. We then define a method for integrating the taxo-
nomical domain knowledge and a general-purpose lexical
knowledge base, like WordNet. A case study, i.e. the inte-
gration of the MeSH, Medical Subject Headings, and Word-
Net, will be then presented as a proof of the effectiveness
and accuracy of the overall approach.

1. Introduction

In text understanding processes, such as the one under-
lying Information Extraction (IE) or Question Answering
(QA) systems, strong assumptions are made on the con-
ceptualization of the knowledge domain. An explicit rep-
resentation of key domain concepts and relationships helps
in explaining the mapping between the specific task (e.g.
event matching in IE) and the analysed text fragments.
When domain concept hierarchies are available more prin-
cipled information extraction patterns may be written or,
in a complementary fashion, induced from textual collec-
tions. Moreover, specific subtasks (e.g. the resolutions

of anaphoric references) can rely on simpler models with
clearer linguistic explanations. For example, the evaluation
in [7] suggests that richer semantic representation in IE may
result in more accurate co-reference resolution (see the IE
system described in [5]).

Concept hierarchies are very expensive resources. Lexi-
cal databases such as WordNet [6] or Euro-WordNet [9] are
currently widely used in NLP applications (e.g. in Question
Answering [4] or in automatic hyperlinking [2]). However,
they required huge efforts and large investments. Moreover,
in light of the narrow domains sought by IE applications,
these resources are overly general and may even amplify
dangerous phenomena, e.g. semantic ambiguity. In in-
formation extraction, domain and task specific approaches
(e.g. shallow and fully lexicalised IE patterns) seem to per-
form better than deeper ones based on weaker conceptual-
izations. The quality of the available domain conceptualiza-
tion is a key issue for the accuracy of the underlying NLP
task.

Building domain conceptualizations from scratch is a
very complex and time-consuming task. Traditionally, the
re-use of available domain resources, although not consti-
tuting always the best, has been applied as an accurate and
cost effective solution. Pre-existing resources such as do-
main ontologies or topical taxonomies are in general not
suited for linguistic tasks. There is in fact no clear sepa-
ration between concepts, their lexical realization (i.e. cate-
gory names as referential expressions) and their conceptual
properties. For example, text classification schemes, such
as the Medical Subject Headings (MeSH) or the IPTC Sub-
ject Reference System1, provide a taxonomic organization
of bodies of knowledge made explicit via linguistic defini-
tions, i.e. labels of the defined categories likeTissues in
MeSH. Topic labels are here used to denote complex do-
main concepts while the hierarchical structure suggest tax-
onomic relationships among concepts.

1Details can be found respectively in
www.nlm.nih.gov/mesh/meshhome.html and in www.iptc.org
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However, the use of these subject reference systems as
domain conceptualisations is not as straightforward as it is
too often assumed. This is particularly true when these lat-
ter have a role in the interpretations of textual material (e.g.
in IE). These reference systems are in fact devoted to hi-
erarchically organise documents in classes and the referen-
tial properties of class labels are very complex. Labels de-
note here not just one concept, but rather a set (or better
a system) of world concepts that enter into a given topic,
i.e. a phenomenon, discussed by a class of documents.
This has almost nothing to do with linguistic denotations
and inferences used to explain or predict natural language
structures within the actual documents. Other knowledge
organisations (e.g. general purpose lexical databases such
as WordNet) derive from a fully different design and are
better suited to deal with language understanding (e.g. dis-
ambiguation phenomena).

Consider the MeSH topic taxonomy. This is unsatis-
factory mainly for two reasons: firstly, the nature of the
broader/narrower relation is not clear and, secondly, the
knowledge embodied is not linguistically principled. It has
not in general a direct explanation in terms of language
constituents so nodes do not work as selectional primitives
for activities such as co-reference resolution. As an exam-
ple, consider the termdendriteappearing in three points
of the MESH hierarchy, i.e. ”Dendrites→ Neurons→
Nervous System”, ” Dendrites→Cell Surface Extensions→
Cellular Structures→ Cells”, and ”Dendrites→ Neurons
→ Cells”. It may be observed that the nature of the arrows
changes betweenpart of andis a, e.g. ”Dendrites isa Cell
Surface Extensions” or ” Dendrites partof Neurons”. As a
result, these classifications of the worddendritedo not help
in predicting and, therefore, interpreting text fragments as:

None of the dendrites were cut.
...but the dendrites and axons are often cut.
Researchers don’t know why, but for some reason,
the ends of dendrites tangle and knot.

where the fact that dendrites may be cut, tangled, or
knotted strictly depends on the properties they inherit be-
ing fibres. This is better represented in WordNet where
the generalisation chain ”dendrite→ nerve fiber, nerve fi-
bre→ fiber, fibre” is postulated. Beside the considerations
about the quality of WordNet as a valid semantic model
for the medical knowledge and terminology, its psycholog-
ically principled organization better capture the meanings
expressed through language. Such a conceptualisation is
better suited for writing syntactic-semantic interfaces since
selectional preferences for prototypical text fragment can
be more expressively defined. An integration of the two re-
sources is then desirable.

In this paper, we want therefore to investigate the ex-

ploitation of domain knowledge (e.g. a subject reference
system) in the design of a linguistically motivated domain
concept hierarchy. We then define a method for integrat-
ing the taxonomical domain knowledge and a general pur-
pose lexical knowledge base, like WordNet (Sec. 2). A case
study, i.e. the integration of the MeSH, Medical Subject
Headings, and WordNet, will be then presented as a proof
of the effectiveness and accuracy of the overall approach
(Sec. 3).

2. Building a Semantic Dictionary

The process of building a semantic dictionary aims to de-
tect of a suitable subset of semantic primitives able to rep-
resent promising and effective generalizations of linguistic
expressions in the domain. The domain specific resource
here is a topic taxonomy, hereafter referred to asdomain
concept hierarchy(DCH). The need for linguistically con-
sistent knowledge requires the availability of language ori-
ented ”isa” hierarchies to model and explain textual phe-
nomena in the domain. We will hereafter refer this latter
knowledge as the domain-independent lexical knowledge
baseLKB . An example of such information could be the
hyponomy/hyperonimy taxonomy in WordNet [6]. Such an
overall framework requires a suitable mapping strategy be-
tween LKB and DCH. Notice how this mapping deals with
a general many-to-many correspondence between the DCH
ontological primitives (likeTissuein MeSH) and the LKB
word senses. For example, the word ”tissue” has two senses
in WordNet while corresponding to just one MeSH topic
category.

In the rest of the section we need to discuss concepts
(in DCH), word senses (in LKB) and several significant im-
plications. We hereafter introduce more formally a set of
useful definitions. Any conceptC in the domain hierar-
chy (DCH) is characterized by its linguistic label hereafter
noted astC . This labelt corresponds either to a singleton
word or to a multiword expression. This information can
be used as a reference within the lexical knowledge base
LKB. We will denote LKB entries by means of Greek let-
ters, e.g.α. Those LKB senses that correspond to possible
linguistic meanings of labelt will be denoted asαt. Some-
timesαt may not exist for technical concepts as they are
not present in the domain independent LKB2. In general, a
labelt will correspond to more than one sense.

As DCH and LKB have both an internal structure some
other useful properties can be introduced. First of all we
will call linguistic extensionof a DCH conceptC, denoting

2Notice that in this case we could relax the search of the multiword
expression, e.g.Common Hepatic Duct, and try to match senses for sub-
expressions obtained by neglecting some modifier, e.g.Hepatic Duct. The
longest expressions corresponding to one LKB entry would be retained as
a possible linguistic interpretation.
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Figure 1. Integration of domain and generic knowledge: WordNet and MeSH

it as ext(C) the set of the labels forC or for one of its
descendantsC ′ as follows:

ext(C) = {tC′ |C subsumesC ′ according toDCH} (1)

For example the linguistic extension ofTissuesin MeSH
includes words and terms like ”Articular Cartilage”,
”Corneal Endothelium”.

Given its extension, a DCH conceptC can be interpreted
in LKB via its linguistic generalization set, that is the set of
generalizations,αt, in LKB for the labelst ∈ ext(C). It
will be denoted bylgen(C) that is defined as

lgen(C) = {α ∈ LKB|∃t ∈ ext(C) and

αt is subsumed byα in LKB} (2)

Due to language ambiguity the generalization setlgen(C)
includes more senses in LKB than those needed for repre-
sentC as each senseαt for a givent ∈ ext(C) is retained.
In the next two sections the model to constraint generaliza-
tions in LKB by means of DCH information will be defined
aiming to reduce the overall ambiguity and detect the cor-
rect LKB sense assignments(s) to DCH elements.

2.1. Inspiring principles

One of the aims of the proposed integration is to con-
straint the search for word sense assignment (i.e. naviga-
tion in the LKB) through information provided by the do-
main resource. Vice versa the LKB structure will be used
to bias the search of DCH meanings, i.e. explain linguisti-
cally the nature of the DCH primitives: for exampleCardio-
vascular Systemhas just one sense in WordNet, under the
”bodypart” sub-hierarchy; however, as a MeSH topics, it
is also related to functionalities and physiological processes
not coded as ”bodypart”s.

Cross-corresponding concepts between a DCH and a lex-
ical model LKB can be detected by exploiting in combina-
tion both constraints. We will rely on the following two
principles:

(P1) (Extensional Nature of DCH). Given a domain concept
hierarchy DCH, whatever the nature of its basic unit
is, subsumption throughout the hierarchy has always
an extensional interpretation, i.e. for each couple of
conceptsC ′ andC ′′ subsumed by a common ancestor
C in DCH, there is always a linguistically consistent
conceptα ∈ LKB such that the linguistic expressions
t′ = tC′ andt′′ = tC′′ have sensesαt′ andαt′′ both
subsumed byα in LKB3.

(P2) (Intentional strength in LKB). A set of linguistic deno-
tationsW = {wi} 4 whose senses are all subsumed by
a givenα ∈ LKB has anintentional strengthfor W
that is a function of the senses ofwi and of their dis-
tribution in the LKB sub-hierarchy dominated byα.
α represents the trade-off between the generalization
required to represent all the denotationswi and their
specialization, i.e. the capability of separating the in-
dividual different senses of thewi’s. Any monotonic
non-decreasing function of such a trade-off is a valid

3The extensional interpretationα may not be unique. In fact, given a bi-
partite set ofC descendants{C′1, ..., C′n, C′′1 , ...C′′m}, then two (or more)
concepts may exist,α′ 6= α′′, such that∀i = 1, ..., n tC′

i
generalizes in

α′ and∀j = 1, .., m tC′′
j

generalizes inα′′

4The use ofwi here emphasizes the difference with respect to the pre-
viously adopted notion ofti. wi are linguistic symbols that independently
from any domain are referential in the world.ti are terminological labels
of DCH concepts and their semantics is NOT exhaustively determined on
a linguistic ground. PrincipleP1 focuses on the interpretation of domain
symbolsti by means of the DCH hierarchy. AsP2 focuses on purely lin-
guistic information determined by LKB, a different notation is required.



Table 1. MeSH Headings mapped in WordNet synsets
MeSH Category WordNet Synset CD Score Term Coverage
A10 Tissues body part 981980 85%
A10 Tissues epithelium 359.066 3%
A10 Tissues scar cicatrix cicatrice 0.971 2%
A10 Tissues object physicalobject 0.575 7%
A10 Tissues cell 0.085547 3%
B02 Vertebrates mammalfamily 1.06E+19 6%
B02 Vertebrates taxonomicgroup taxon 1.74E+18 31%
B02 Vertebrates vertebrate craniate 7.68E+14 60%
B02 Vertebrates life form organism being livingthing 8.07E+14 2%
B02 Vertebrates object physicalobject 291.277 1%
C11 Eye Diseases symptom 3264.270 27%
C11 Eye Diseases visual impairment visualdefect visiondefect 722.276 16%
C11 Eye Diseases condition status 149.956 34%
C11 Eye Diseases cognition knowledge 246.031 5%
C11 Eye Diseases obstruction 0.946 2%
C11 Eye Diseases hole 0.828 3%
C11 Eye Diseases happening occurrence naturalevent 0.535 8%
C11 Eye Diseases membrane tissuelayer 0.312 5%
C11 Eye Diseases physicalphenomenon 0.019 2%
D07 Reproductive Control Agents contraceptive preventive preventative 579.461 50%

contraceptivedevice prophylacticdevice
birth control device

D07 Reproductive Control Agents hormone internalsecretion 0.157 50%

measure of the intentional strength ofα with respect
to wordswi.

Notice that DCH nodesC are in a many-to-many map-
ping to LKB senses. As a consequence setsW = ext(C)
may not receive a uniqueα ∈ LKB but are usually cov-
ered by more than one generalization (i.e. there is notα
that is a common ancestor for allt ∈ W , implying that
the intentional strength is 0). In this case an alternative can
be found by partitioningW in more coherent (and possi-
bly overlapping) subsetsWi. These will give independently
rise to common generalizations,αi: each one is a trade-off
as the higher in the hierarchy isαi, the larger is the size of
the correspondingWi.

2.2. Mapping domain concepts to lexical senses

The semantic dictionary that will result from the harmo-
nization of DCH and LKB is a lexical hierarchy extended
with the domain concepts (see Fig. 1), as metafeatures. In
fact, each useful senseα in LKB will be augmented with
references (e.g. the labelst) to domain conceptsC lin-
guistically interpretable asα. In terms of the propertiesP1
andP2 domain concepts are mapped to word senses in the
following way. A domain conceptC receives the minimal
set of word senses inlgen(C) with themaximal intentional
strengthas subsumers of non-trivial subsets of the linguis-
tic extension ofC, i.e. ext(C). Usually specific entries

in DCH (e.g. Tissues) are mapped into one ore more LKB
senses (e.g.’body part’ and’epithelium’ in WordNet). Vice
versa one sense may be tagged by several DCH primitives
(e.g. ’body part’ as ’Digestive System’, ’Cardiovascular
System’, ’Tissues’, ...).

In our model the notion ofconceptual density(cd), as in-
troduced by [1], is used as a measure of intentional strength
(principle P2). The conceptual density aims to state why
and how much a set of words may be considered similar
according to a reference lexical hierarchy, LKB5. Given a
setW of words (eventually with multiple senses) and a spe-
cific nodeα in the lexical hierarchy dominating at least one
sense for eachw ∈ W , the conceptual densitycd(W,α)
is a real value associated to the common ancestorα: it is
proportional to the number of covered senses ofw ∈ W
and inversely proportional to the size of sub-tree rooted at
α. Therefore, the smaller the sub-tree (i.e. the more specific
is α as a generalization of the senses ofw’s), the higher is
thecd value. Although its application in the ontology engi-
neering framework proposed in this paper is new, this mea-
sure has been widely applied to word sense disambiguation
problems: technical details are also discussed in [1].

The model we propose here requires that a triggering set
T of DCH conceptsC (with category labelstC) has been
previously selected. This set will drive the application of

5WordNet has been used as the underlying reference taxonomy for the
definitions and experiments related to the conceptual density, [1].



the principleP1 andP2 over the DCH. Then, for each con-
ceptC ∈ T , the corresponding set of linguistic expressions
(ext(C) in Eq. (1)) is determined by DCH.ext(C) and the
conceptual density are then used to derive anoptimalset of
LKB senses within the linguistic generalizations ofC (i.e.
lgen(C) in Eq. (2)): this set is optimal as it is made of the
intentionally strongest sensesαi that generalize all the ex-
pressions oft ∈ ext(C). By means of a greedy technique,
the generalizationsαi of non-trivial subsetsWi ⊂ ext(C)
are selected according to decreasing values of conceptual
density until the entire set is not completely covered. In
this way, eachC ∈ DCH is mapped to anαC ∈ lgen(C)
characterized by the highest intentional strength (i.e.cd()).

The algorithm that maps theDCH into theLKB is trig-
gered by the subset of conceptsT and is sketched in the fol-
lowing. Its discussion will make reference to the example
in Fig. 1.

proceduremerge(DCH,LKB,T )
for eachC ∈ T

(Step 1) Determine the linguistic extensionslgen(C)
in DCH made of all descendants ofC

(Step 2) Compute the optimal mappingG(C) ⊂ lgen(C),
by a greedy selection that maximizes conceptual density

(Step 3) AttachtC to senses inG(C)
(Step 4)for each t ∈ ext(C)

Attacht to α ∈ LKB iff:
α is a sense fort in LKB and
∃β ∈ G(C)|β subsumesα in LKB

The subsetT of the domain concepts inDCH is there-
fore an input parameter. For example, the top levels of
DCH can be retained asT 6. Then, for eachC ∈ T the
process depicted in fig. 1 is carried out: first linguistic ex-
pressionsti ∈ ext(C) of C descendants in theDCH hier-
archy are determined in (Step 1), e.g.ext(C) = {t1, ..., t4}
in fig. 1. Linguistic descriptionsti are analysed against
the lexical semantic hierarchy LKB. Different subsets are
derivedW1 = {t1},W2 = {t2, t3} and W3 = {t4} as
they receive different interpretations, i.e. activate senses
α1, ..., α6. All elementsti are ”somehow” more specific
of Ti. (Step 2) allows to select the optimal generalizations
G(Ti) as word senses. These are the valid generalizations of
subsets ofext(C) having the highercd and covering the en-
tire setext(C). In the example,G(C) = {α5, α4} as they
are enough general to represent allti and enough specific to
refuse some senses. TheDCH conceptC is thus used to
annotate sensesα5 andα4 (Step 3). Finally, the linguistic
labels ofDCH concepts are attached to the related senses
in theLKB (Step 4). It is easy to see that this information
reduces the ambiguity oftj . For instance, the interpretation

6A limited semantic dictionary for which wide extensional evidence is
available can improve the mapping accuracy

α6 of t1 is discarded: its conceptual density is too low and
other senses are sufficient to cover the entire set{t1, ..., t4}.

The resulting of the above process is aConcept Hier-
archy that integrates denotations of domain concepts with
their linguistic counterparts: the former will support dis-
ambiguation in language processing, while the latter will
favour linguistically consistent generalizations of general
(i.e. non domain-specific) surface forms.

As previously noted, some labels in theDCH are not
represented in the LKB: they are possibly too much specific
and are uncovered by LKB. As an example,Common Hep-
atic Ductof MeSH has no counterpart in WordNet, although
the sub-termHepatic Ducthas a unique sense. Partial forms
of termst ∈ ext(C) are also used in the above mapping al-
gorithm as they bring useful information for determining
suitable interpretations (αC) and their conceptual density.
As the term head is the semantic carrier of multiword ex-
pressions, terms not covered in LKB are processed by back-
ing off to the sub-terms obtained via incremental elicitation
of modifiers: e.g.w1w2...wn is reduced to the longest cov-
ered sub-termwi...wn that has a sense in the LKB. Unfortu-
nately this approximation may introduce noise in the map-
ping process as sub-terms are usually more polysemic than
complete terms.

3. Mapping MeSH to WordNet: a case study

To investigate the features of the proposed method,
we applied it for mapping the Medical Subject Headings
(MeSH) in WordNet. MeSH has been therefore partitioned
according to its first level, i.e. the 111 main index cate-
gories. This subset of concepts referred asT in the algo-
rithm description triggers the interpretation of the MeSH
concepts in WordNet.

The first observation is that only the 24% of MeSH terms
are fully represented by WordNet, while domain specific
complex terms are almost absent. As discussed in Sec.
2.2, we allowed for degraded interpretations of these com-
plex terms, by discarding modifiers in hierarchical order
until a correspondence with WordNet is found. For in-
stance, trying to assign WordNet interpretation tocancero-
genic blood cell, as this term is unknown to WordNet, we
drop the more external modifiercancerogenicand repeat
the test withblood cell. Table 2 summarizes the results of
this activity: note that MeSH terms that have a direct in-
terpretation in WordNet are generally unambiguous (poly-
semy=1.2), while terms that result from pruning modifiers
become less specialised (polysemy=2.74). In fact, for most
of these terms, we are selecting a hyperonym as term repre-
sentative. This loss of selective information will also affect
the clusters inspected by the method we propose, as it will
be applied to less specialized senses and, therefore, result-
ing senses will be more likely selected in the upper part of



Table 2. MeSH vs WordNet relevant features
MeSH Terms 20603
MeSH Categories 37864
1st Level MeSH Headings 111

MeSH Terms in WordNet 4960
Partial MeSH Terms in WordNet 9345
Unrepresented MeSH Terms 6298
Partial Terms Average Polysemy 2.74
Full Terms average polysemy 1.2

the WordNet hierarchy.
As expected, thecd combined with the exploitation of

the propertiesP1 andP2 enables to evaluate semantic co-
hesion of the candidates in theDCH, allowing to focus
overparticularly denseregions and to select good senses in
WordNet.

For instance, if all the terms covered byCardiovascular
Systemin MeSH were taken alone, several possible gener-
alizations would have been admitted. A trivial set of gen-
eralisations would be the union of all the topmost Word-
Net concepts of the activated senses. PropertiesP1 andP2
with the cd allow evaluating how well the different senses
are representative of the knowledge underlyingCardiovas-
cular system(i.e. generalize this knowledge while staying
sufficiently specific). As a result, we obtain in this case
only a small number of interesting senses:bodypart (with
cd = 104.60) covering 67% of the original material,ob-
ject physicalobject(with cd = 0.57), covering a remaining
20%, and a tail of other senses cumulating a 0.001 score
for the rest (13%). These spurious interpretations are manly
due to noise deriving either by WordNet polysemy, or by
terms that are only partially represented in WordNet.

The fact that medical terminology is only partially rep-
resented gives a further evidence of the distance existing
between this domain and the language. Most of the terms
convey an implicit meaning that is only accessible through
strong background knowledge. In a significant number of
cases, the hypothesis to use term heads as an approximation
of complex nominals could result in a strong noise source,
as sometime syntactic heads alone fail to convey the in-
tended meaning. After applying the proposed method, we
obtain a set of WordNet senses that represents, from a Ma-
chine Learning perspective, an extensional linguistic defini-
tion of each MeSH category in terms of WordNet concepts.
More examples of the resulting mapping are shown in Table
1.

It is worth noticing that the score synsets receive by Con-
ceptual Density allows to drastically reduce the impact of
polysemy as in the estimation of the cluster cohesion sparse
senses (i.e. spurious interpretations suggested by the re-
sulting topology) are filtered out receiving lower scores in

weighting with respect to their frequencies. Thus for in-
stance, even if 7% of terms ofTissues(A07) (see row 4)
category are best generalized withobject physical object
synset, while only 3% byepithelium(see row 2), this last
receives a greater score, as the internal cohesion of its terms
is stronger. Moreover, complex terms missing in WordNet,
as for instanceGastric Chief Cellwhose only the headcell
is found, even if strongly ambiguous (cell has 6 WordNet
senses), become unambiguously assigned to specific senses
(body partin the example).

Finally, the chosen a set of primitive types in WordNet
allows covering and explaining novel situations, bearing as
a side effect the rest of the hierarchy into the analysis. By
generalizing lexical phenomena in the corpus with respect
to this model we are now able to find a linguistic definition
for more words in text analysis.

3.1. Ontology Engineering based on the created se-
mantic dictionary

The previous section has described the derivation of lin-
guistic explanations for medical concepts. MeSH topics
have thus been mapped into a dictionary of Wordnet senses
in a many-to-many mapping. This knowledge DCH+LKB
resource is involved in several tasks. The first istext anal-
ysisas topic labelst mapped into Wordnet senses support
disambiguation in sentence understanding. MeSH is thus
translated into a large-scale terminological resource for any
NLP process insisting on a medical corpus.Semantic in-
dexingis also enforced as topics labelst have now interpre-
tationsαt ∈ LKB. These latter can drive the interpreta-
tion of text portions and suggests for them domain labelst.
These are ontological indexes by which texts are mapped to
domain primitives.

An important activity, that in fact includes also the al-
ready mentioned ones, isOntology engineering. Here pro-
cesses ofdomain-specific lexical learningcan be run on
texts and used within a conceptual information extraction
framework. From one side, the extracted knowledge can
be interpreted linguistically (according to the LKB) and its
ontological counterpart (supported by DCH+LKB) may be
used to populate/refine the domain knowledge (i.e. DCH).

In a perspective of lexical learning, the following in-
ductive phases are useful to the ontology engineering en-
terprise: (1) acquisition of a domain terminology to inte-
grate/extend theDCH; (2) acquisition of linguistic patterns
that typically express concepts and relations in the domain
(e.g. relationships among new medicines towards patholo-
gies); (3) generalization of the detected patterns in new on-
tological relations or in instances of known relations.

The resource built with the method described in this pa-
per can support all the above phases. When new terminol-
ogy is available (as in phase (1) above) it can be linguis-



tically interpreted according to syntagmatic and semantic
principles of LKB. Traversing the LKB hierarchy is used
to find interpretations,αt. Mapping towards conceptsC is
then used to locate terminological information in DCH. In
phase (2) patterns can be acquired as linguistic structures
(e.g. sub-graphs) connecting systematic domain phenom-
ena (e.g. named entities and/or terminological expressions
acquired in (1), see e.g. [3, 8]). Linguistic patterns made of
domain concept labelstC can be here built while consistent
generalization are allowed via traversing the DCH as well as
the LKB hierarchy. The material observed in the corpus can
here be generalized (or refused as noise) when validated by
DCH and/or LKB. This evidence improves the learning ac-
curacy and can be effectively used to build the ontological
interpretations (i.e. relations in DCH) from the linguistic
elements of these patterns (e.g. constituents in grammati-
cal structures). Classes of generalized relations can be then
mapped back to DCH to extend existing relations or popu-
late DCH of new relation instances.

4. Conclusions

Domain knowledge for semantic interpretation is a rel-
evant source of information. However, the integration of
domain specific resources within a text processing task is
not straightforward as available primitives have an unclear
semantic status. In this paper a method to harmonise a do-
main concept hierarchy with a lexical knowledge base has
been defined. The method tries to keep separate the infor-
mation provided by a taxonomic organization of concepts
and the linguistic counterpart. Linguistic information here
first seen as an extensional definition (i.e. an explanation) of
domain concepts through the hypothesis (i.e. their descen-
dants) provided by the taxonomy. Then a measure of the
representativity of each linguistic interpretation (sense) is
proposed as a function of the concept labels as well as of the
lexical hierarchy. Finally, an augmented lexical knowledge
base is released as a semantic network annotated by domain
concepts. Several linguistic inferences are discussed and
can be improved by such an extended resource. The results
obtained by the application of the proposed method within
a medical knowledge domain are more than promising. A
significant reduction of the average ambiguity in the inter-
pretation of domain labels uncovered by the lexical knowl-
edge base is a first achievement. The interpretation of term
labels for newly discovered terms and the potentials opened
for the correct interpretation of textual phenomena are two
further benefits. More in depth analysis of the impact of the
method within a knowledge based information extraction
system is still needed. More work is necessary to assess
the consistency of the method hypothesis within domains
different from the medical one as well as to reproduce the
accurate results obtained in this first experiments. Implica-

tions of the above procedure in the semantic interoperability
problems within Web applications will be the target of con-
sistent research in the near future.

References

[1] E. Agirre and G. Rigau. Word sense disambiguation using
conceptual density. InProceedings of the 16th International
Conference on Computational Linguistics, 1996.

[2] R. Basili, R. Catizone, L. Padro, M. T. Pazienza, G. Rigau,
A. Setzer, N. Webb, Y. Wilks, and F. M. Zanzotto. Mul-
tilingual authoring: the namic approach. InProceedings
of the WORKSHOP ON HUMAN LANGUAGE TECHNOL-
OGY AND KNOWLEDGE MANAGEMENT, held jointly with
ACL’2001 Conference, 2001.

[3] R. Basili, M. T. Pazienza, and M. Vindigni. Corpus-driven
learning of event recognition rules. InProceedings of the
Workshop on Machine Learning for Information Extraction,
held jointly with ECAI 2000, Berlin, Germany, 2000.

[4] S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea, M. Sur-
deanu, R. Bunescu, R. Girju, V. Rus, and P. Morarescu. Fal-
con: Boosting knowledge for answer engines. InProceedings
of the Text Retrieval Conference (TREC-9), 2000.

[5] K. Humphreys, R. Gaizauskas, S. Azzam, C. Huyck,
B. Mitchell, H. Cunningham, and Y. Wilks. University of
sheffield: Description of the LASIE-II system as used for
MUC-7. In Proceedings of the Seventh Message Understand-
ing Conferences (MUC-7). Morgan Kaufman, 1998.

[6] G. A. Miller. WordNet: A lexical database for English.Com-
munications of the ACM, 38(11):39–41, Nov. 1995.

[7] MUC-7. Proceedings of the seventh message understanding
conference(MUC-7). InColumbia, MD. Morgan Kaufmann,
1997.

[8] E. Riloff. Automatically generating extraction patterns from
untagged text. InProceedings of the Thirteenth National Con-
ference on Artificial Intelligence (AAAI-96), Portland, Ore-
gon, 1996.

[9] P. Vossen.EuroWordNet: A Multilingual Database with Lex-
ical Semantic Networks. Kluwer Academic Publishers, Dor-
drecht, 1998.


