
Learning Shallow Semantic Rules for Textual Entailment

Marco Pennacchiotti? & Fabio Massimo Zanzotto�

? Computational Linguistics, Saarland University, Saarbrücken, Germany, pennacchiotti@coli.uni-sb.de
� DISP - University of Roma Tor Vergata, Roma, Italy, zanzotto@info.uniroma2.it

Abstract
In this paper we present a novel technique for
integrating lexical-semantic knowledge in sys-
tems for learning textual entailment recognition
rules: the typed anchors. These describe the se-
mantic relations between words across an entail-
ment pair. We integrate our approach in the
cross-pair similarity model. Experimental re-
sults show that our approach increases perfor-
mance of cross-pair similarity learning systems.

1 Introduction

The Recognizing Textual Entailment (RTE) task has
recently received growing attention, as a means to
computationally model textual inference in Natural
Language Processing (NLP) applications. Formally,
given a pair of text fragments, the Text T and the Hy-
pothesis H , the goal of an RTE system is to recognize
if T entails H . Textual entailment is a key component
of many NLP applications. For example, consider a
Question Answering system which has to answer the
question: “When did John Lennon died?”. The sys-
tem could find the answer from the snippet “In 1980
Chapman killed John Lennon”, by recognizing the fol-
lowing implication:

T1 “In 1980 Chapman killed John
Lennon.”

H1 “John Lennon died in 1980.”
(E1)

In the last few years, RTE challenges [1] have been
organized to compare the performance of different
RTE systems over a common and balanced corpus of
entailment pairs (T, H). Most strategies for RTE fall
into these three categories: lexical overlap (e.g. [4]),
syntactic matching (e.g. [14, 11, 9], entailment trigger-
ing (e.g. [15, 5, 6]). All these approaches are plausi-
ble and effective. Also, they are fairly complementary
as they recognize different set of entailment pairs [2].
Yet, today it is still not clear which approach is most
appropriate for RTE; so far, only few systems success-
fully integrated them in a common model (e.g. [10, 5]).
This lack of integration is one of the reasons of the low
recognition performance (the average accuracy at the
RTE-2 challenge was 0.59).

Recently, an original machine learning approach for
RTE has been proposed in [16]. Its aim is to in-
tegrate lexical overlap and entailment triggering, in
order to leverage complementarity and boost perfor-
mance. The key idea is a similarity between pairs of
texts and hypotheses, the cross-pair similarity, that
considers the relations between words in T and H .
These relations are captured using placeholders. This

allows the system to automatically exploit rewrite
rules. Yet, the system suffers a major problem which
highly limits its performance. Placeholders align two
words if they are semantically similar, but the rela-
tion between them is not explicitly represented. This
limitation can lead the learning algorithm to exploit
erroneous rewrite rules.

In this paper, we present a novel method to solve
the above mentioned limitation, by introducing the
notion of typed anchors. The idea is to adopt place-
holders with a semantic tag expressing the semantic
relation standing between the lexicals. This intuition
allows the system to exploit more semantically prin-
cipled rewrite rules, which should avoid misclassifica-
tions and significantly improve performance. For ex-
ample in the pair E1, the learning algorithm would
exploit the correct rule: if the object of T aligns to
the subject of H, and the verbs are in causation
relation, then entailment holds.

The paper is organized as follows. Sec. 2 reviews
the cross-pair similarity model and analyzes its limits.
In Sec. 3, we introduce our model for typed anchors
aiming at integrating semantic information. Finally,
in Sec. 4 we empirically assess that the use of typed
anchors significantly outperforms approaches based on
simple placeholders and approaches based on lexical
overlap, syntactic matching, and entailment triggering.

2 Cross-pair similarity and its
limits

In this section we firstly review the cross-pair similar-
ity model used to exploit textual entailment recogni-
tion rewrite rules. We then analyze its limits observing
how poorly defined relations among words may gener-
ate wrong rewrite rules.

2.1 Learning entailment rules with
syntactic cross-pair similarity

The cross-pair similarity model [16] proposes a fea-
ture space of entailment pairs (T, H) where similarity-
based learning model can exploit rewrite rules defined
in training examples. The key idea is to define a cross-
pair similarity KS((T ′, H ′), (T ′′, H ′′)) that takes into
account relations among words within a pair. This is
done using placeholders. A placeholder co-indexes two
substructures in the parse trees of T and H , indicating
that such substructures are related. At the word level
(i.e. leaves) placeholders link pairs of words which are
highly similar: these pairs are called anchors. For ex-
ample, the sentence pair, “All companies file annual



reports” implies “All insurance companies file annual
reports”, would be represented as follows:

T2 (S (NP 1 (DT All) (NNS 1 companies))
(VP 2 (VBP 2 file) (NP 3 (JJ 3 annual)
(NNS 3 reports))))

H2 (S (NP 1 (DT All) (NNP Fortune) (CD
50) (NNS 1 companies)) (VP 2 (VBP 2

file) (NP 3 (JJ 3 annual) (NNS 3 re-
ports))))

(E2)

where the placeholders 1 , 2 , and 3 indicate the rela-
tions between the structures of T and those of H , and
companies/companies is an example of anchor.

Placeholders help to determine if two pairs share the
same rewrite rule by looking at the subtrees that they
have in common. For example, suppose we have to
determine if “In autumn, all leaves fall” implies “In
autumn, all maple leaves fall”. The related co-indexed
representation is:

T3 (S (PP (IN In) (NP (NN a automn)))
(, ,) (NP b (DT all) (NNS b leaves))
(VP c (VBP c fall)))

H3 (S (PP (IN In) (NP a (NN a automn)))
(, ,) (NP b (DT all) (NN maple) (NNS a

leaves)) (VP c (VBP c fall)))

(E3)

E2 and E3 share the following subtrees:

T4 (S (NP x (DT all) (NNS x )) (VP y

(VBP y )))
H4 (S (NP x (DT all) (NN) (NNS x ))

(VP x (VBP x )))

(R4)

These subtrees represent the rewrite rule that E2 and
E3 have in common. Then, E3 can be likely classyfied
as a valid entailment, as it shares the rule with the
valid entailment E2.

More details on the cross-pair similarity model can
be found in [16] and an efficient algorithm for its com-
putation is described in [13].

2.2 Limits of the syntactic cross-pair
similarity

Learning from examples using cross-pair similarity is
an attractive and effective approach, as results of the
RTE-2 challenge show [1]. Yet, the cross-pair simi-
larity strategy, as any machine learning approach, is
highly sensitive on how the examples are represented
in the feature space. An incorrect or inaccurate fea-
ture modelling can strongly bias the performance of
the classifier.

This problem is even more evident in kernel-based
methods, where the feature space is implicit, and the
classifier can only rely on the syntactic structure of
the examples. Then, as in the cross-pair similarity ap-
proach placeholders play an important role within the
syntactic tree, the classifier can then be highly biased,
if they convey incomplete or incorrect information.

Consider for example the following text-hypothesis
pair, which can lead to an incorrect rule, if misused.

T5 “For my younger readers, Chapman
killed John Lennon more than twenty
years ago.”

H5 “John Lennon died more than twenty
years ago.”

(E5)

In the basic cross-pair similarity model, the decision
process can use rules like the following:

T6 (S (NP: x ) (VP: y (VBD: y ) (NP: z )
(ADVP: k )))

H6 (S (NP: z ) (VP: y (VBD: y )
(ADVP: k )))

(R6)

where kill and die are anchored by the y placeholder.
This rule is useful to classify examples like:

T7 “Cows are vegetarian but, to save
money on mass-production, farmers fed
cows animal extracts.”

H7 “Cows have eaten animal extracts.”

(E7)

but it will clearly fail when used for:

T8 “FDA warns migraine medicine makers
that they are illegally selling migraine
medicines without federal approval.”

H8 “Migraine medicine makers declared
that their medicines have been ap-
proved.”

(E8)

where warn and declare are anchored as generically
similar verbs.

The limitation of the cross-pair similarity measure
is then that placeholders do not convey the semantic
knowledge needed in cases such as the above, where
the semantic relation between connected verbs is es-
sential.

3 Adding semantic information

to cross-pair similarity

In the previous section we showed that the cross-pair
similarity approach lacks the lexical-semantic knowl-
edge for anchoring words. In the examples, the missed
knowledge is the type of semantic relation between the
main verbs. The relation that links kill and die is not a
generic similarity, as a WordNet based similarity mea-
sure would suggest, but a more specific causal relation.
The exploited rewrite rule R6 holds only for verbs in
such relation. It is correctly applied in example E7,
as feed causes eat. Yet, it gives a wrong suggestion
in example E8, as warn and declare are related by a
generic similarity relation.

The type of relation that links two words (anchor
type) seems to be mandatory, in order to exploit cor-
rect rules. The problem is then to encode this informa-
tion in the syntactic trees along with the placeholders.

In this section we describe how we encode the an-
chor types in the syntactic trees, by using two models:
the typed anchor (ta) and the propagated typed anchor
(tap) models. As anchoring words of H with words
in T is the basic step, before describing the models
(Sec. 3.2), we shortly revise how anchors are selected
and how they are encoded in the trees (Sec. 3.1).

3.1 Anchors and Placeholders

As many other approaches (e.g., [4]), our anchoring
model is based on a similarity measure between words
simw(wt, wh). We use a two-step greedy algorithm
to anchor the content words (verbs, nouns, adjectives,



and adverbs) in the hypothesis WH to words in the
text WT . In the first step, each word wh in WH is
connected to all words wt in WT that have the highest
similarity simw(wt, wh). As result, we have a set of
anchors A ⊂ WT × WH and the subset W ′

T
⊆ WT

of words in T connected with a word in H . In the
second step, we select the final anchor set A′ ⊆ A,
as the bijective relation between WH and W ′

T
that

mostly satisfies a locality criterion: whenever possible,
words of constituent in H should be related to words
of a constituent in T . See [16] for more details on the
adopted word similarity simw(wt, wh).

Once the set A′ is found, anchors are encoded in
the syntactic trees with placeholders. Placeholders are
put on the pre-terminal nodes of the anchored words.
Then, they climb up in the tree according to this rule:
constituent nodes in the syntactic trees take the place-
holder of their semantic heads. This latter step guar-
antees that any subtree has the relational information.
The final tree explicitly indicates how T relates to H
using co-indexing (see E2).

3.2 Typing anchors and placeholders

Our goal is to augment the co-indexed syntactic trees
with typed anchors. To do that, we first have to decide
what type of semantic relations we want to represent
in the typed anchors (Sec. 3.2.1). Then, we need to
define how to encode this information in the syntactic
trees (Sec. 3.2.2).

3.2.1 Defining anchor types

The idea of introducing anchor types is in principle
very simple. Yet, this may be not effective: attempts
to introduce semantic information in RTE systems
have often failed. A main reason for this failure is
that any model using semantic information has the
problem of dealing with ambiguity.

To investigate the validity of our idea, we then need
to focus on a small set of relevant relation types. A
valuable source of relation types among words is Word-
Net. We choose to integrate in our system three re-
lations: part-of, antinomy, and verb entailment. This
small set seems to be a correct choice, as it is relevant
for many entailment cases such as those presented in
Sec. 2.

We also define two more general anchor types: simi-
larity and surface matching. The first type links words
which are similar according to the WordNet similarity
measure described in [7]. This type is intended to cap-
ture synonymy and hyperonymy. The second type is
activated when words or lemmas match: it captures
semantically equivalent words. The complete set of
relation types used in the experiments is given in Ta-
ble 1.

3.2.2 Augmenting placeholders with anchor
types

Once anchor types have been defined, it is necessary
to decide how to integrate their information in the
syntactic trees. We apply a strategy similar to that
adopted for placeholders, described in Sec. 3.1. How-
ever, the main problem is then to decide how the se-

Rank Relation Type Symbol
1. antinomy ↔
2. part-of ⊂
3. verb entailment ←
4. similarity ≈
5. surface matching =

Table 1: Ranked anchor types

mantic information should be encoded. We experi-
ment two possible models:

typed anchor model (ta) : anchor types augment
only the pre-terminal nodes of the syntactic tree;

propagated typed anchor model (tap) : anchors
climb up in the syntactic tree according to some
specific climbing-up rules, similarly to what done
for placeholders.

The ta model is easy to implement: typed anchors
simply augment the pre-terminals of anchored words.
The tap model is apparently more suitable for our
purpose. The anchor type information is repeated in
several tree fragments. As tree fragments are com-
pared in the cross-pair similarity, this guarantees that
the information is used in the decision process.

Unfortunately, the tap model is more complex, as
it depends on strategy adopted for the anchor type
climbing-up. The strategy must account for how an-
chors that climb up to the same node should interact.
We implement our strategy by using climbing-up rules,
as done in the case of placeholders. Yet, in this case,
rules must consider the semantic information of the
typed anchors. The choice of correct climbing-up rules
is critical, as an incorrect rule could alter completely
the semantics of the tree. In the case of placehold-
ers, the climbing-up rule states that a constituent in
the syntactic tree takes the placeholder of its seman-
tic head. It is easy to demonstrate that in the case of
typed anchors this rule would have disastrous effects.
For example, consider the following false entailment
pair:

(E9)
T9 H9

S = 3

NP = 1

NNP = 1

John

VP = 3

AUX

is

NP = 3

DT

a

JJ ↔
2

tall

NN = 3

boy

S = 3

NP = 1

NNP = 1

John

VP = 3

AUX

is

NP = 3

DT

a

JJ ↔
2

short

NN = 3

boy

In the example, we apply the abovementioned rule:
the typed anchor = 3 climbs up to the pre-terminal
node NP, instead of the typed anchor↔ 2 , as it is the
head of the constituent. If modelled in this way, this
false entailment pair could generate, among others, the
incorrect rewrite rule:

T10 (S= 3 (NP= 1 ) (VP= 3 (AUX is)
(NP= 2 )))

H10 (S= 3 (NP= 1 ) (VP= 3 (AUX is)
(NP= 2 )))

(R10)



which states: if two fragment have the same syntac-

tic structure S(NP, V P (AUX, NP )), and there is a
semantic equivalence (=) on all constituents, then en-
tailment does not hold. This rule is wrong, as in that
case entailment would hold (as all substructures are
semantically equivalent).

The problem is that the wrong typed anchor climbed
up the tree: we need the antonym anchor on the ad-
jective (tall/short) to climb up, instead of the match-
ing anchor on the noun (boy/boy), in order to exploit
a correct rule. Our strategy must then implement a
climbing-up rule producing these trees:

(E11)
T11 H11

S ↔
3

NP = 1

NNP = 1

John

VP ↔
3

AUX

is

NP ↔
3

DT

a

JJ ↔
2

tall

NN = 3

boy

S ↔
3

NP = 1

NNP = 1

John

VP ↔
3

AUX

is

NP ↔
3

DT

a

JJ ↔
2

short

NN = 3

boy

In this case the pair generates correct rewrite rules,
such as:

T12 (S↔ 3 (NP= 1 ) (VP↔ 3 (AUX is)
(NP↔ 2 )))

H12 (S↔ 3 (NP= 1 ) (VP↔ 3 (AUX is)
(NP↔ 2 )))

(R12)

The rule states: if two fragment have the same

syntactic structure S(NP1, V P (AUX, NP2)), and
there is an antonym type (↔) on the S and NP2 ,
then entailment does not hold.

The above example shows that the anchor type
that has to climb up depends on the structure of the
constituents. This can lead to a very complex model.
Luckily, this intuition can be also captured by a
simpler approximation. Instead of having climbing-up
rules for each constituent type, we can rely on a
ranking of the anchor types (as the one reported in
Tab. 1). The anchor type that climbs up is the one
that has an higher rank. In the example, this strategy
produces the correct solution, as antinomy has an
higher rank than surface match. We then implement
in our model the following climbing-up rule: if two
typed anchors climb up to the same node, give prece-
dence to that with the highest ranking in the ordered
set of types T = (↔,⊂,←,≈, =). Our ordered set
T is consistent with common sense intuitions. In
the next section we will empirically demonstrate its
validity by reporting experiment evidences.

4 Experimental Results

In this section, we present empirical evidence to sup-
port the claims of the paper. In particular, we com-
pare our ta and tap approaches with the strategies
for RTE: lexical overlap, syntactic matching and en-
tailment triggering. To perform the comparison we
implemented these strategies in our machine learning
platform for RTE, which also allows to combine them
in more complex configurations.

4.1 Experimental Setup

For our evaluation we use the same methodology
adopted at the RTE challenges [1]. The RTE task
is to classify a test set of entailment pairs as true or
false entailment, by relying on an annotated develop-
ment set. Systems are evaluated on their prediction
accuracy. We here adopt 4-fold cross validation, to
obtain more reliable evidences. We use SVM-light-TK
[12] as learning algorithm, which encodes the needed
tree kernel functions in SVM-light [8].

We perform our experiments using the RTE-2
dataset, composed of 1600 entailment pairs from the
RTE-2 challenge (800 true and 800 false entailment).

We evaluate ta and tap by comparing the perfor-
mance of SVM with feature sets representing different
basic approaches. We also experiment more complex
feature spaces, representing combined approaches :

tree : the standard cross-similarity model described
in Sec.2. Its comparison with ta and tap indicates
the effectiveness of our approaches;

lex : a standard approach based on lexical overlap.
The classifier uses as only feature the lexical over-
lap similarity score described in [4];

synt : a standard approach based on syntactic match-
ing. The classifier uses as only feature a syntac-
tic similarity score. A syntactic similarity mea-
sure synt(T, H) is used to compute the score,
by comparing all the substructures of the depen-
dency trees of T and H , in line with approaches
like [14, 11, 9]. This syntactic similarity is de-
rived using the tree kernel similarity KT [3] as
follows: synt(T, H) = KT (T, H)/|H | where |H |
is the number of subtrees in H;

lex+ta , lex+tap : these configurations mix lexical
overlap and our typed anchor approaches;

lex+tree : the comparison of this configuration with
lex+ta and lex+tap should further support the
validity of our intuition on typed anchors;

lex+synt : by comparing this configuration with lex
and synt we aim at verifying if lexical and syn-
tactic methods are complementary, as reported in
[2];

lex+trig : this configuration mixes lexical overlap
with basic entailment triggering features like in
[15, 5, 6]. We use the following features: 1) SVO
that tests if T and H share a similar subj-verb-obj
construct; 2) Apposition that tests if H is a sen-
tence headed by the verb to be and in T there is an
apposition that states H ; 3) Anaphora that tests
if the SVO sentence in H has a similar wh-sentence
in T and the wh-pronoun may be resolved in T
with a word similar to the object or the subject
of H.

4.2 Results Analysis

Table 2 reports the 4-folds and overall accuracy of the
different feature spaces. The left part of the table
shows the performance of the basic approaches, while
the right those of the combined approaches.



ta tap tree lex synt lex + ta lex + tap lex + tree lex + synt lex + trig

Mean 61.29 62.47 61.35 61.81 58.28 63.94 63.81 63.68 61.94 61.56
Std dev ± 2.54 ± 2.68 ± 2.32 ± 1.74 ± 2.48 ± 1.59 ± 1.24 ± 1.59 ± 1.65 ± 2.03

Table 2: 4-folds accuracy using different feature sets over the RTE-2 dataset.

Results for the basic approaches show that tap
outperforms all the other feature sets1. In particular,
it guarantees an improvement of +1.12% accuracy over
tree, suggesting that the addition of typed anchors to
the basic cross-pair similarity model is indeed success-
ful. This demonstrates that syntax is not enough, and
that lexical-semantic knowledge, and in particular the
explicit representation of word level relations, plays a
key role in RTE. This is even more evident by compar-
ing results to the pure syntactic approach synt, that
achieves only 58.28% accuracy.

Also, tap outperforms lex, supporting a complemen-
tary conclusion: lexical-semantic knowledge does not
cover alone the entailment phenomenon, but needs
some syntactic evidence.

An overall analysis of basic systems further substan-
tiate our intuition: approaches mixing syntax and lex-
ical knowledge (tap) outperform method based on lexi-
cal knowledge (lex), which in turn outperform syntac-
tic methods with weak lexical knowledge (tree) and
pure syntactic methods (synt).

The surprisingly low performance of ta reveal that
encoding typed anchors only at the pre-terminal level
is not a sufficiently strong information for the learning
algorithm. This further suggests the intuition the the
semantics of word relations is indeed central.

Results for combined approaches reveals the dif-
ficulty of integrating lexical and syntactic information.
The lex+ synt model does not substantially improves
over lex. This suggests that a trivial integration of lex-
ical overlap and syntactic matching between T and H
is not effective. On the contrary, the use of cross-pair
similarity together with lexical overlap (lex + tree) is
successful, as accuracy improves +1.87% and +2.33%
over the related basic methods (respectively lex and
tree). The conclusion is then that cross-pair informa-
tion across different pairs (in form of rewrite rules) and
lexical information inside each pair are indeed both rel-
evant. Again, our method mixed with lex achieve the
best performance, further supporting the usefulness of
typed anchors.

In general, our results also empirically confirm the
manual analysis on the RTE-2 dataset performed in
[2], suggesting that lexical and syntactic level are com-
plementary for RTE, i.e. they recognize different set
of entailment pairs.

5 Conclusions

Effectively integrating semantic knowledge in textual
entailment recognition systems is one of the major
problem in the area. In this paper we presented a

1 According to the sign-test, tap outperforms with more than
90% of statistical significance all the other basic approaches
except the lex. In this case, the statistical significance is
lower.

simple but effetive model to integrate lexical semantic
knowledge in a learner of rewrite rules for detecting
textual entailment. Experimental results show that
this is a promising model that may be used to inte-
grate more complex semantic information.

References
[1] R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro, D. Giampiccolo,

and I. Magnini, Bernardo Szpektor. The second pascal recog-
nising textual entailment challenge. In Proceedings of the Sec-
ond PASCAL Challenges Workshop on Recognising Textual
Entailment, Venice, Italy, 2006.

[2] R. Bar-Haim, I. Szpecktor, and O. Glickman. Definition and
analysis of intermediate entailment levels. In Proc. of the ACL
Workshop on Empirical Modeling of Semantic Equivalence
and Entailment, 2005.

[3] M. Collins and N. Duffy. New ranking algorithms for parsing
and tagging: Kernels over discrete structures, and the voted
perceptron. In Proceedings of ACL02, 2002.

[4] C. Corley and R. Mihalcea. Measuring the semantic similar-
ity of texts. In Proc. of the ACL Workshop on Empirical
Modeling of Semantic Equivalence and Entailment, 2005.

[5] A. Hickl, J. Williams, J. Bensley, K. Roberts, B. Rink, and
Y. Shi. Recognizing textual entailment with lcc’s groundhog
system. In B. Magnini and I. Dagan, editors, Proc. of the
Second PASCAL RTE Challenge, Venice, Italy, 2006.

[6] D. Inkpen, D. Kipp, and V. Nastase. Machine learning ex-
periments for textual entailment. In B. Magnini and I. Dagan,
editors, Proc. of the Second PASCAL RTE Challenge, Venice,
Italy, 2006.

[7] J. J. Jiang and D. W. Conrath. Semantic similarity based on
corpus statistics and lexical taxonomy. In Proc. of the 10th
ROCLING, Tapei, Taiwan, 1997.

[8] T. Joachims. Making large-scale svm learning practical. In
B. Schlkopf, C. Burges, and A. Smola, editors, Advances in
Kernel Methods-Support Vector Learning. MIT Press, 1999.

[9] S. Katrenko and P. Adriaans. Using maximal embedded syntac-
tic subtrees for textual entailment recognition. In B. Magnini
and I. Dagan, editors, Proc. of the Second PASCAL RTE
Challenge, Venice, Italy, 2006.

[10] B. MacCartney, T. Grenager, M.-C. de Marneffe, D. Cer, and
C. D. Manning. Learning to recognize features of valid textual
entailments. In Proc. of the HLT/NAACL, 2006.

[11] E. Marsi, E. Krahmer, W. Bosma, and M. Theune. Normalized
alignment of dependency trees for detecting textual entailment.
In B. Magnini and I. Dagan, editors, Proceedings of the Second
PASCAL RTE Challenge, Venice, Italy, 2006.

[12] A. Moschitti. Making tree kernels practical for natural lan-
guage learning. In Proceedings of EACL’06, Trento, Italy,
2006.

[13] A. Moschitti and F. M. Zanzotto. Fast and effective kernels
for relational learning from texts. In Proceedings of the Inter-
national Conference of Machine Learning (ICML), Corvallis,
Oregon, 2007.

[14] V. Rus. Dependency-based textual entailment. In FLAIRS
Conference, pages 110–109, 2006.

[15] R. Snow, L. Vanderwende, and A. Menezes. Effectively us-
ing syntax for recognizing false entailment. In Proc. of
HLT/NAACL 2006, New York, 2006.

[16] F. M. Zanzotto and A. Moschitti. Automatic learning of textual
entailments with cross-pair similarities. In Proceedings of the
21st Coling and 44th ACL, pages 401–408, Sydney, Australia,
July 2006.


