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Abstract. In this paper, we want to farther advance the parallelism be-
tween models of the brain and computing machines. We want to apply the
same idea underlying neuroimaging techniques to electronic computers.
Applying this parallelism, we can address these two questions: (1) how
far we can go with neuroimaging in understanding human mind? (foun-
dational perspective); (2) can we understand what computers “think”?
(applicative perspective). Our experiments demonstrate that it is possible
to believe that both questions have positive answers.

1 Introduction

Studies of machines and of living organisms are strongly related. Biological prin-
ciples have been often used to design machines. In cybernetics [1], artificial adap-
tive machines, i.e., machines that can control their states, have been studied
with respect to the adaptivity of natural living organisms. This relation between
studies of living organisms and design of machines is even more strict when we
observe computing machines. It is not hard to imagine that the Von Neumann
architecture [2] and the neural-based computing architecture originally intro-
duced by Turing [3] have been inspired by concepts coming from the study of
the mind and of the brain. Viceversa, also theories of computer architectures
inspired some studies of the mind and the brain. Cognitive Psychology [4] uses
computing machines as a metaphor for defining models of the human mind. Cog-
nitive Science (see [5]) is even more radical as computing machines are exploited
to test and validate models of the mind.

The strict relation between models of the mind and computing machines is
fascinating. Staying in this tradition, in this paper, we want to farther advance
this parallelism.

Brains are often studied using neuroimaging techniques to discover areas
related to particular cognitive processes. Neuroimaging techniques are also used
to induce activation patterns for high-level cognitive processes related to specific
semantic categories [6]. These activation patterns can be used to determine what
cognitive process a brain is performing.

Computing machines nowadays are extremely complex. These machines per-
form complex tasks. These tasks seem to be “cognitive processes”1. For example,
manipulating symbols can be seen as a “cognitive process”.
1 We often use terms in wrong contexts, e.g., “cognitive processes” as related to ma-

chines. Yet, we need to make use of human centered terms for describing machines.



We have then a wonderful opportunity. We can think to observe electronic
computers with techniques similar to brainimaging. We have good reasons for
doing this as we can address these two questions: (1) how far we can go with
neuroimaging in understanding human mind? (foundational perspective); (2) can
we understand what computers “think”? (applicative perspective).

This is a fascinating research program and in this introduction we gave only a
taste of it. We will better describe our vision in Sec. 2. We describe the parallelism
between brains and machines that gives the possibility of applying “brainimag-
ing” techniques for electronic computers. We better introduce the two reasons
motivating this novel view: a foundational perspective and an applicative per-
spective. The rest of the paper is organized as follows. In Sec. 3, we report on
the studies that are the background for this research. In Sec. 4, we describe the
approximated model for studying the parallelism between brains and machines.
In Sec. 5, we report on the experiments for testing the approximated model. We
here define a test set that can be used for further experiments. Finally, in Sec.
6, we draw some conclusions on this experience and we plan the future work.

2 The vision

Electronic computers nowadays are extremely complex information processing
systems. In some sense, these machines are performing “cognitive processes”. As
previously happened in cognitive science and in cognitive psychology studies,
we can imagine the parallelism between computers and minds in the field of
neuroimaging. Computers as well as brains are the physical objects performing
“cognitive processes”. We hereafter call them “cognitive physical objects”. As
shown in Fig. 1, cognitive tasks activate the “cognitive physical objects”. In both
cases, it is possible to observe the activation of these cognitive objects by taking
activation images. We can take these activation images by observing different
physical phenomena, e.g., electric or magnetic. The parallelism is now complete.
On the brain side, we have the brain as the observed cognitive physical object, a
real cognitive task, and classical brainimaging techniques, i.e., fMRI, as the way
of observing the brain activation. On the electronic computer side, we have the
computer as the observed cognitive physical object, a program as the cognitive
task, and images of the electrical activation of micro-chips as a way of observing
the computer activation.

The parallelism we made between brains and computers in the field of neu-
roimaging opens two possible very interesting research perspectives:

– foundational perspective: how far we can go with neuroimaging in under-
standing human mind?

– applicative perspective: can we understand what computers “think”?

Both research questions are extremely fascinating.

Whenever we misuse a term, we will indicate it with different characters as we did
for “think” in the title and for “cognitive processes”.



Fig. 1. Observing brains and machines

The foundational perspective is extremely important. The aim of some studies
in neuroimaging [6, 7] is to determine the correlation between high-level cogni-
tive processes and neuroimages. The idea is that processing different conceptual
knowledge produces different brain images representing different activation pat-
terns. For example, different conceptual information such as faces, chairs, and
houses produces different activation patterns [6]. These correlations can be used
for better understanding the way the human brain organizes conceptual knowl-
edge. Yet, an extremely important question is: how far we can go with neuroimag-
ing in understanding human mind using these methods?. With the parallelism
between brains and machines we have a wonderful opportunity to answer to this
question. On the brain side (Fig. 1), we have two known variables, i.e., the re-
quired cognitive activity and the observed activation pattern, and one unknown
variable, i.e., the way the brain is performing the cognitive process. In brain
imaging, the aim is to understand and to model the unknown variable. On the
electronic computer side, there are no unknown variables: the three elements are
completely known. This gives a very relevant test-bed. We know exactly how
“knowledge” is processed in computers and we know exactly the “cognitive pro-
cess” we ask machines to do. If we succeed in studying the correlation between
the cognitive process and the activation image in the electronic computer side,
we can be confident that the same method can be used on the brain side. We
can also answer two additional questions. On the electronic computer side, we
can study if better activation image interpretation models produce better corre-
lations between activation images and cognitive activities. For example, what is
the effect of knowing that processes are stored as code and data? Does it help
in determining the correlation between activation images and the process “cog-



nitive” activity? Answering these kinds of questions on the electronic computer
side can help in determining if clearer separations between brain images related
to different cognitive activities correlate with better understanding of the brain
cognitive processes.

The applicative perspective is also an extremely interesting and unexplored
area of research. Using the ideas developed on the brain side of the parallelism
(Fig. 1), we can try to apply them to the electronic computer side. Can we
develop technologies that “read the computer mind”. This predictive model can
have a wide variety of applications, e.g., detecting malicious software, detecting
the intentions of hostile computers by looking at their activation patterns. We
need specific devices that can capture activation images of computers. We can
then study the application of machine learning to induce models that can predict
what a computer is doing by analyzing its activation patterns.

The complete realization of the electronic computer side of the vision is a long
term goal. It requires physical devices to capture the activation state of electronic
computers. Yet, as electronic computers are easily and directly observable, it is
possible to set up a scenario where we can test the idea. This scenario can
help in preparing the ground of the complete research program. This first phase
of analysis is the virtual observation of electronic computers. We exploit the
fact that we can directly observe the memory state of machines and, then, we
can draw their activation state. As the observation of the activation state is
done through a software system instead of a physical device, we call it virtual
observation. We will describe this scenario in Sec. 4.

3 Background

Categorization is the cognitive ability of classifying objects into concepts. This
ability is extremely important for this study as, on both the brain side and the
electronic computer side, we want to study the correlation between activation
images (i.e., objects) and cognitive processes (i.e., concepts). The final aim is to
develop models that determine the performed cognitive process by observing an
activation image. For example, we want to have a model that determines that
the brain in Fig. 1 is performing the act of looking at a chair. This should be
done only by observing the brain image.

One of the objectives of machine learning is to define models and algorithms
that can learn categorization functions from existing training data. Observing
some brain images grouped into classes, i.e., grouped according to the cognitive
process, machine learning algorithms induce classifiers that can predict the class
for a new and unseen brain image. A classification function C is defined as:

C : I → T (1)

where I is an instance space and T is the set of possible categories. This clas-
sification function will observe objects i ∈ I assigning a class t ∈ T . The cate-
gorization is possible if some regularities appear in the space of the instances I.
To discover these regularities, we need to observe instances using some feature.



These instances are then represented as points in feature spaces F1 × ... × Fn

where each Fi is an observable feature. We can then define a function F that
maps instances i in I to points in the feature space, i.e.

F (i) = (f1, ..., fn) (2)

This model is generally called feature-value vector and underlies many algo-
rithms.

The field of machine learning has delivered a wide range of algorithms to
analyze huge amounts of data in order to find regularities. Supervised (e.g., [8,
9]), semi-supervised (e.g., [10]), and weakly supervised (e.g., [11]) algorithms
and models are available to automatically learn classifiers or decision making
systems. These models are widely and successfully applied in many important
fields, e.g., homeland security (e.g. [12]), data mining for business intelligence
(e.g. [13]), and computational linguistics [14].

Machine learning algorithms have been used to discover regularities in images
of brains performing cognitive and semantic tasks. The work in [7] follows the
idea that it is possible to discover regularities in brain images of individuals
observing or thinking of objects in the same semantic class such as chairs, houses,
etc. (e.g., [6]). Machine learning has been applied to induce brain activation
patterns for words where the activation image is not observed. Words with similar
meaning should have similar activation patterns. Using corpus linguistics, word
similarity is determined comparing their distributional meaning, i.e., their vectors
of co-occurring words. This is the distributional way of determining the meaning
of a word [15]. The induced activation patterns have high predictive performance.

4 Virtual Observation of Computational Machines

Electronic computers have a very nice property with respect to our research
program. The activity of these machines is observable using software programs.
Then, we can simulate the electronic computer side of our vision without actually
having a physical device to observe the activation state of machines. We can write
a software program that snapshots the memory of the machine. These snapshots
can then be used to produce activation images as if these were taken from an
external device.

Using these virtual observations of the activation states, we can test the
overall process of the electronic computer side. Then, we can study if it is pos-
sible to derive a correlation between the images of the activation states and
the performed “cognitive processes”. For this purpose, we will extract features
from activation images to feed machine learning algorithms. Given a set of train-
ing examples, i.e., training activation states, associated with different types of
“cognitive activities”, the machine learning algorithm can extract prototypical
models of activation for these types of cognitive activities. These latter models
can be used to classify novel activation states, i.e., recognize the type of cognitive
process that the activation state suggests. If classifiers have good performances
with respect to a set of testing activation states, we can conclude that the task



of reading “machines’ thoughts” is reachable using the proposed features. Fi-
nally, we can repeat the process using smoothed images of the activation states.
Smoothed images better approximate the images produced with physical obser-
vation devices. Then, we can determine if the final vision is viable.

In the rest of this section, we first describe the way of capturing the activation
state of machines using software programs (Sec. 4.1). Then, we describe the
standard features for image classification we used (Sec. 4.2).

Fig. 2. Organization of the memory for a process

4.1 Capturing the Activation State

In an electronic computer, we can simulate the capturing of the activation state
by directly observing the status of the memory. The way we are doing this then
is simple. The aim of this phase is to produce an image representing the acti-
vation state of a machine performing a particular “cognitive task”, e.g., sorting
a vector or comparing two strings. We exploit the fact that processes perform
“cognitive activities”. We can define here a “cognitive activity” as the execution
of a program over input data. Processes are completely represented in memory,
i.e., both programs and data are stored in memory. Then, we can directly take
snapshots of the memory associated with target processes. These snapshots can
be used to build images.



Given a cognitive activity, the procedure for extracting images from this
activity is then the following:

– running the process representing the cognitive activity, i.e., the program and
the related input data

– stopping the process at given states or at given time intervals τ
– dumping the memory associated with the process
– given a fixed height image and the memory dump, read incrementally bytes

of the memory dump and fill the associated RGB pixel with the read values
– eventually, produce a smoothed image

This simple procedure can produce more images for each process related to a
cognitive activity.

As it is important to explain which part we are using, here we briefly describe
the organization of the process memory (see Fig. 2). The process memory con-
tains: the process control block, the stack, the heap, the data, and the program
text. The process control block (PCB) contains the information about its status,
i.e., the process identification number, the program counter, the registers, the
list of opened files, etc. The stack contains information regarding function calls,
passed arguments, and local variables. The heap contains dynamically allocated
data, e.g., vectors with a length decided at run-time. The data area contains the
statically allocated data, e.g., vectors with fixed length decided at compilation
time. Finally, the text area contains the compiled program.

(a) (b)

Fig. 3. Sorting Process: two activation states

The relative size of the different memory areas is extremely important. The
PCB is extremely small with respect to the other areas. The fact that it is not
directly observable from an external process is then not relevant. The information
loss can be ignored. The other four areas are instead observable. Yet, in general,
the data areas (the heap and the data area itself) are bigger than the code area.
Thus, a large part of the memory image represents the data areas.

The process memory is then transformed into an image using the following
procedure. Let M(p) be the memory dump of the process p. The memory dump
is a sequence of bytes, i.e., M(p) = [b0, ..., bm]. Using this sequence of bytes we



can produce an image I(p) in Red-Green-Blue (RGB) coding. The image I(p)
is a bi-dimensional array of pixels pi,j . Each pixel is three contiguous bytes of
the memory image. Given the height h of the image, each RGB pixel has the
following RGB values:

pi,j = [b3(i+h·j) b3(i+h·j)+1 b3(i+h·j)+2] (3)

where the first byte b3(i+h·j) is used for the red component, the second b3(i+h·j)+1

for the green one, and the third b3(i+h·j)+2 for the blue one. Figure 3 provides
an example of two memory images for the “cognitive task” of sorting a vector.
Figure 3(a) is the process at the initial state and Figure 3(b) is the process that
accomplished the task. The smaller stripe on the left of each figure is the code
area. This is stable during the process execution. The bigger stripe on the right is
the vector. At the beginning of the process (Fig. 3(a)), this area is homogeneous
as it shows a random vector. At the end of the process (see Fig. 3(b)), we can
see a figure suggesting we have a sorted vector.

(a) (b)

Fig. 4. Sorting Process: two distorted activation states

Finally, to approximate the physical extraction of the activation images, we
use a distortion process for the images. This distortion process allows seeing
images where contiguous pixels are merged. This approximates the condition
of images captured by a physical scanning device. We cannot expect images
of the resolutions given by equation (3). This distortion is called smoothing
or blurring. We use the simplest smoothing model, i.e., the rectangular uniform
filter. According to this filter, each pixel in the smoothed image si,j is a weighted
sum of the rectangle n×m of pixels around the target pixel in the original image.
If we use K = n = m, si,j are the smoothed image pixels, and pi,j are the original
image pixels, the smoothed pixels are defined as:

si,j =
1
K2

K−1∑
u=0

K−1∑
v=0

pi+u−bK
2 c,j+v−bK

2 c
(4)

This kind of distortion is very interesting as it mixes information extracted from
contiguous pixels. For example, the distortion of the images in Fig. 3 is reported



in Fig. 4. These latter are obtained using a parameter K = 10. This smoothing
is particularly relevant as it models what can happen in the situation we have
in the final setting, i.e., we are using an external capturing device to extract
activation images of electronic computers.

4.2 Feature Space for Images

Once we have the complete or the smoothed activation images, we can model
them in the selected feature space to finally use the machine learning algorithm
to induce the classifiers. We describe here the features we used. The basic idea
is to use what is already available for image processing to estimate how far we
can go.

We used three major classes of features: chromatic, textures (OP - OGD)
and transformation features (OGD), as described in [16]. Chromatic features
express the color properties of the image. They determine, in particular, an n-
dimensional vector representation of the 2D chromaticity histograms. Texture
features emphasize the background properties and their composition. Texture
feature extraction, in LTI-Lib [17], uses the steerability property of the oriented
gaussian derivatives (OGD) to also generate rotation invariant feature vectors.
Transformations are thus modeled by the OGD features. A more detailed dis-
cussion of the theoretical and methodological aspects behind each feature set
are presented in [16].

5 Experimental Evaluation

We have now the possibility of investigating whether or not we can solve the
problem of determining the “cognitive process” given the activation image. This
can help in finding initial answers to the questions issued in Sec. 2 related to the
foundational perspective and the applicative perspective.

The rest of the section is organized as follows. First, we describe the exper-
imental settings (Sec. 5.1). Second, we give the results of the experiments (Sec.
5.2). Finally, we discuss these results (Sec. 5.3).

5.1 Experimental setting

For our experiments, we selected 3 different “cognitive tasks”, i.e., 3 types of
algorithms: sorting, comparing two strings, and visiting a binary tree. We used
quicksort as the sorting algorithm and we selected the levenshtein distance algo-
rithm for comparing two strings. We implemented these algorithms in 3 different
programming languages (c, java, and php) on a linux platform. We have then 3
different “cognitive tasks”.

For each of the 3 algorithms in the 3 programming languages, we randomly
generated 20 different input data according to the type of algorithm. For the
quicksort algorithm, we generated 20 unsorted vectors of 105 elements. For the
levenshtein distance algorithm, we generated randomly 20 pairs of strings of



100 characters. For the tree visiting algorithm, we generated 20 trees with 104

nodes and a random node for each tree. We then have 180 different algorithm-
data pairs. For each of the algorithm-data pair, we took 3 snapshots: one at the
beginning of the execution, one in the middle, and one at the end. We have then
540 instances. We randomly selected 50% of the instances as training and 50%
of the instances for testing. We kept the same distribution of the algorithms and
of the languages for both training and testing.

We have then defined two classification tasks:

– per-algorithm task (algo), the final classes are the 3 different algorithms (i.e.,
sorting, comparing, and visiting), regardless of the programming language
of the implementation

– per-language task (lang), the final classes are the 3 different programming
languages (i.e., c, java, and php), regardless of the implemented algorithm

The per-algorithm task is our final task, i.e., understanding whether or not it
is possible to determine the “cognitive task” performed by the machine. The
per-language task is instead a control test. We want to see if it is possible to
determine the “cognitive substrate” where the “cognitive task” is performed. As
this task seems to be easier and it is similar to the per-algorithm task, we want
also to see if it is solvable with the feature space for images we are using.

For the two classification tasks, we prepared two different settings according
to the smoothing applied to the final images:

– no-smoothing, images are kept with the highest quality available;
– smoothed, images are smoothed according to the equation (4).

We need these two settings to determine if the performance of the two classifi-
cation tasks is affected by a degradation of the images. As we already discussed,
the degradation approximates the real operational conditions where the captured
image cannot have the quality of the single byte of memory.

Finally, as machine learning algorithms we used a decision tree learner [8]
(DecTree) and a probabilistic model, i.e., the naive bayes (NaiveBayes). We se-
lected these two types of algorithms because they behave completely differently.
The decision tree learning algorithm recursively selects features. At each step,
the one selected is the best discriminatory one. The pruning done in the J48
algorithm also performs a feature selection. Yet, the naive bayes algorithm uses
and weights all the features in the probabilistic model. These two algorithms
then give the possibility of analyzing performances in two completely different
setting. We used the implementation given in [18].

5.2 Results

The results of the experiments are reported in Tab. 1. The first column describes
the tasks that have been analyzed. The second column reports if the smoothing
has been applied. The third column reports the accuracy obtained using the
decision tree learning algorithm. Finally, the third column reports the accuracy
obtained using a naive bayes probabilistic learning algorithm.



Task Smoothing DecTree NaiveBayes

algo no 80.37 64.44
lang no 98.89 99.25

algo yes 81.48 62.96
lang yes 98.89 99.62

Table 1. Classification accuracy over the different experimental settings

5.3 Discussion

As expected, the task of deciding the language of the process is simple and
solvable. Accuracies are extremely high. There is no difference in performance
either between the machine learning algorithms or between the quality of the
images. Programming languages produce different organizations of the memory
of the processes.

Deciding the algorithm performed by a process is instead more complex. Yet,
results are encouraging. The performance of the decision tree learning algorithm
is above 80%. The performance is even higher for smoothed images. The differ-
ences between the naive bayes algorithm and the decision tree learning suggests
that some features are more informative than others. These features are even
more important for smoothed images. This increase in performance is unex-
pected. The behavior of the naive bayes algorithm is instead more predictable as
classifiers learnt and applied on plain images performed better than those learnt
and applied on smoothed images.

These are initial answers to the two questions issued in Sec. 2. As discussed in
the next section, we still need to investigate more complex datasets to generilze
these initial findings.

6 Conclusions and future work

We introduced a new vision that can both help in answering questions in neu-
roimaging and produce novel applications in the computer field. The results of
the experimental evaluation suggest we can read what computers “think” as we
can positively predict “cognitive processes” from activation images. Then, we can
have positive expectations of the foundational perspective and the application
perspective. Yet, the research program we started is still at the beginning and
many questions still have to be addressed. For this study we investigated simple
“cognitive processes”. We need to scale-up to different datasets, e.g., datasets
containing activation images of word processors and image processors. Then,
we have to attack the problem of determining which processes are active in a
given memory. Finally, we have to figure out physical devices to directly capture
activation images from the electronic computer.
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