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Abstract. We report some existing work, inspired by analogies between
human thought and machine computation, showing that the informa-
tional state of a digital computer can be decoded in a similar way to
brain decoding. We then discuss some proposed work that would lever-
age this analogy to shed light on the amount of information that may be
missed by the technical limitations of current neuroimaging technologies.

1 Introduction

Analogies have often been drawn between machine computation and human
thought. In computer science biological principles are sometimes appealed to
when designing machines. For instance in cybernetics [1], artificial adaptive ma-
chines – that is machines that can control their states – have been studied with
respect to the adaptivity of natural living organisms. And both the Von Neu-
mann architecture [2], and the neural-based computing architecture originally
introduced by Turing [3] show the influence of concepts coming from the study of
the mind and of the brain. In contemporary cognitive sciences the analogy is also
widespread, a computational theory of mind [4] being central to the “cognitive
revolution” in the second half of the last century. For example in the work of
Chomsky [5, 6] we see cognitive operations (in this case linguistic) being rooted
in formal mathematical models, and in various guises this idea continues to be
an influential model for understanding cognition more generally (see e.g. [7]).

Here we try to explore whether the analogy may provide concrete insights
into the nature of the task of decoding brain states from neuroimaging data,
describing in this paper some preliminary work that might inform the fields of
cognitive neuroscience, and machine learning from neuroimaging data.

In neural decoding analyses, we take recordings of brain activity, which are
noisy and limited in resolution, and use machine learning methods to determine
which patterns of activity consistently co-occur with the cognitive states and
processes that are active in the minds of participants. One could take a simi-
lar “black box”, data-driven approach to reading the informational state of a
computer, by learning the relationship between particular computational tasks
and snapshots of its contemporary RAM contents. But of course in the case of
a computer, unlike in the human brain, the ground-truth is well-defined: the



precise informational state of the machine is known at all times, and the distinc-
tion between process (code) and representation (data) is unambiguous. Previous
papers have demonstrated that such decoding of RAM-states is possible for clas-
sical computational tasks [8, 9] and that it is even possible to produce real chip
scanners that could capture RAM activation images [10].

In this paper, we propose to use the more cognitively realistic tasks of linguis-
tic processing for classification of semantic and syntactic categories (analogous
to cognitive-neuroscience studies [11–15]). In our view, observing this computa-
tional task can give concrete insights on the task of decoding neuroimaging data.
In section 2 we discuss how such an analysis could give us a better handle on the
limitations of resolution imposed by physiological properties of the brain and
technical limitations of imaging devices: since in computer decoding we have ac-
cess to the “true” informational state, we can investigate the extent to which we
may be missing information in the relatively impoverished brain data to which
we have access. In section 3, we describe the computational task of linguistic
processing from the distributional perspective. In section 4, we estimate the size
of the brain areas involved in particular linguistic processing tasks. And, finally,
in section 5, we discuss the experiments on decoding computational processing
while exploring different blurring levels. With this experiments, we aim to in-
vestigate how decoding performances decrease with blurring. This is an useful
insight for the understanding of brain state decoding.

2 Modelling Resolution Limitations of Imaging
Technologies

Current neuroimaging methods have impressive spatial and temporal resolution,
but are still working at a level far from the actual physical phenomenon of
interest: millions or billions of single neuron firing events. For example, MEG has
a temporal resolution that can capture the full temporal dynamics of neuronal
firing, but spatially a single channel may aggregate the activity of the order of
109 individual neurons.3 EEG is further limited in that its sensors are sensitive
to larger overlapping areas of cortex, and that the low-pass filtering properties of
the skull make higher frequencies hard to record. Turning to fMRI, its effective
sampling rate of under 0.5Hz (due to the sluggish blood-oxygen level response) is
well below the firing rates found in neurons (ca. 10-1000Hz), and even at higher
limits of its spatial resolution (voxels of size 1mm3) it still samples the order of
104 neurons at a time.4 Capabilities for recording individual neuron activity is
limited to very small numbers of cells, typically under 100 and is usually random
in the particular neurons it samples in a brain locality of interest. As a result we
do not have a detailed understanding of the functional activity of large neuronal
populations, nor consequently how the patterns of activity seen in neuroimaging
experiments relate to it. Furthermore, from the machine learning perspective,

3 Assuming 100-300 channels, and 100 billion neurons in total
4 Assuming cortex covered by ca. 700,000 voxels of size 1mm3



we do not have a handle on how impoverished our data is, relative to the full
neuronal population activity that we would ideally have access to.

Here we propose to make use of the computer-brain analogy in the following
way. We will choose cognitive tasks that are studied in neuroscience, and can be
emulated successfully by a computer – in this case detecting the semantic and
syntactic categories involved in noun-phrase composition. While such a task is
being performed by the computer we will take snapshots of RAM state. Given
this very rich data, we expect that high-accuracy decoding should be achievable.
The question we will then ask of the data, is how much accuracy is degraded as
the input data is downsampled in ways that reflect neuroimaging technologies,
such as MEG, EEG or fMRI.

3 Computer-based Distributional Semantic Processing

Processing natural language is one of the key activities of artificial intelligence.
Many morphological, syntactic, and semantic formal models are available. Even
if many of these approaches are not cognitively inspired, we can rely on a good
basis of computational models to experiment with our idea of a comparative
study between brain activities and machine activities.

Among the others, distributional semantics is an attractive model for our
comparative study. Unlike symbolic formal semantics for natural language [16],
word meaning is represented in the memory as vectors of real numbers. These
vectors can be easily seen as activation images like the activation images of the
brain. These idea of observing vectors as images has been also used in the slightly
different context of distributed knowledge representation (see [17]). The recently
revitalized trend of compositional models for distributional semantics [18–22]
produces interesting computational processing models for semantic interpreta-
tion of natural language utterances. This is a semantic process and the model
along with the distributional semantic vectors can be easily seen as activation
images.

The rest of the section is organized as follows. First, section 3.1 introduces
to distributional semantic principles and to linear compositional distributional
semantic models. Then, section 3.2 describes how these computational models
can be easily transformed in activation matrices and, consequently, activation
images.

3.1 A Linear Compositional Distributional Semantic Model

Lexical distributional semantics has been largely used to model word mean-
ing in many fields as computational linguistics [23, 24], linguistics [25], corpus
linguistics [26], and cognitive research [27]. The fundamental hypothesis is the
distributional hypothesis (DH): “similar words share similar contexts” [25]. Re-
cently, this hypothesis has been operationally defined in many ways in the fields
of physiology, computational linguistics, and information retrieval [28–30].



Given the successful application to words, distributional semantics has been
extended to word sequences. This has happened in two ways: (1) via the re-
formulation of DH for specific word sequences [31]; and (2) via the definition
of compositional distributional semantics (CDS) models [18, 19]. These are two
different ways of addressing the problem.

Lin and Pantel [31] propose the pattern distributional hypothesis that extends
the distributional hypothesis for specific patterns, i.e. word sequences represent-
ing partial verb phrases. Distributional meaning for these patterns is derived
directly by looking to their occurrences in a corpus. Due to data sparsity, pat-
terns of different length appear with very different frequencies in the corpus,
affecting their statistics detrimentally. On the other hand, compositional distri-
butional semantics (CDS) propose to obtain distributional meaning for sequences
by composing the vectors of the words in the sequences [18, 19]. This approach
is fairly interesting as the distributional meaning of sequences of different length
is obtained by composing distributional vectors of single words.

A compositional distributional semantic model aims to compute the distri-
butional meaning of word sequences by composing distributional vectors of in-
dividual words. Focussing on 2-word sequences, e.g., z =close contact, the CDS
model has to compute the distributional vector z for the entire sequence using
the distributional vectors u and v of, respectively, close and contact.

Among all the models, we focus here on the generic additive model that sums
the vectors u and v in a new vector z:

Au +Bv = z (1)

where A and B are two square matrices capturing a particular syntactic relation
R between the two words, e.g., adjective-noun (JN) for close contact. This linear
model for semantic processing is extremely interesting as A and B activated by
u and v can be easily seen as activation images.

For a good CDS model, we estimate matrices A and B using the methodology
described in [20]. We can then have different CDS models for different syntactic
relations. In the experiments, we use three different pairs of matrices for three
different syntactic relations: adjective-noun (JN), noun-noun (NN), and verb-
noun (VN).

3.2 Image-based Interpretation

Linear CDS are then interesting computational semantic processing models as
we can easily interpret them as activation images. This idea is sketched in Figure
1. The original matrices A and B represent a Composition Matrix that is in ac-
tive process. The Stimulus Vector, that represents the two distributional vectors
for the two words, activate the process by producing the Activated Computation
Matrix. This latter is then transformed in the final composition distributional
vector. Looking the process in this way, we can easily derive an image represent-
ing the active state of the semantic composition computational model.



Fig. 1. Compositional Distributional Semantics: Activation of the Compositional Ma-
trix

We can derive the above view by looking at the linear equations of the model:

Au +Bv =
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The above derivation describes how it is possible to model the activation of the A
and B matrices as a separate step that is done before the final sum. The matrix
∆(u,v) is then a matrix representing the activation of A and B with respect
to the input vectors u and v. Matrices ∆(u,v) are then easily transformed in
activation images as done in [8, 9].

3.3 Decoding Tasks for Computational Semantic Processing

The previous compositional and distributional semantic processing model opens
two possible decoding tasks:



T1) decoding the kind of composition, e.g., deciding whether activation images
∆(u,v) are related to JN, NN, or VN semantic composition activity;

T2) decoding the semantic types of the involved vectors v and u in the com-
position looking at the activation matrix ∆(u,v), e.g., decide animals vs.
tools.

4 Estimating the Size of Correlated Brain Areas

We have the opportunity to use the two computational semantic processing tasks
to investigate our primary problem. We need now to understand the size of the
brain areas that are related to these two tasks. The literature suggests that the
two most relevant areas are:

– Brocas area for the syntactic composition task (T1)

– the fusiform gyri for the animal-vs-tool task (T2)

We need now to estimate the size of each area in order to tune the size of the
computational semantic composition matrices A and B.

4.1 Deciding on Scale of Neural Areas

To model the scale of the neural decoding problem, we should first consider
several candidates for basic units of neural hardware: neurons, minicolumns,
and macrocolumns.

Neurons instantaneously can be either on or off (like a bit). The cerebrum
(that is the cerebral hemispheres, or neocortex), is where the great majority of
higher cognition takes place, and it contains about 20 billion of neurons. The
precise number varies with age and gender, and estimates are affected by the
methodologies adopted by each study. Pakkenberg and colleagues [32] found a
wide range across individuals (also of similar ages), from 15 billion to 32 billion,
with the mean for females at 18 billion, and for males at 23 billion. Stark and
colleagues [33] have very similar average figures for females and males (20 billion
and 23 billion). Here we choose a particularly careful whole-brain estimate which
found an average of 16 billion over four individuals [34].

Minicolumns are collections of about 100 neurons (so there are 200 million
in the cerebrum). One byte could be used to represent the firing rate of each of
these neural assemblies [35].

Macrocolumns (also termed hypercolumns, or simply cortical columns) are
larger collection of neurons that contain approximately 5000-10000 neurons (so
3 million in cerebrum) [36]. Optimistically, macrocolumns are the smallest struc-
ture ( 3mm deep, spaced at 0.5mm) that can be detected individually with fMRI
or MEG. We estimate that the state of a single macrocolumn would require one
or more bytes to be represented.



4.2 Dimensions of relevant brain areas

Based on these cortical densities, and volume estimates for functionally relevant
parts of the brain, we can estimate the dimensionality needed to model them
(see table 1). These numbers are estimated as such. The young healthy brain

Cerebrum neurons minicolumns macrocolumns

size 2 · 1010 2 · 108 3 · 106

Ram size (instantaneous) 2.5Gb 200MB 3MB

Fusiform gyri ( 2.8% of cerebrum)

N 5.6 · 108 5.6 · 106 8.4 · 104

Ram size (instantaneous) 452Mb 4.5 MB 68 kB

Brocas areas ( 0.5% of cerebrum)

size 1 · 108 1 · 106 1.5 · 104

Ram size (instantaneous) 80Mb 0.8MB 12kB
Table 1. Brain areas in bytes

has a volume of about 1250 cm3 (see [37]). The cortical activity detected by
fMRI, MEG and EEG is in the cortex, or grey matter surface of the brain
tissues. Estimates of grey/white matter proportions vary, and here we use the
figure of 1.35 derived from [38] (estimated over 80 individuals of both genders).
Taking this ratio, and the estimated volumes from [34], we estimate the amount
of grey matter in a typical participant to be approximately 710 cm3, containing
16 billion neurons. This leads to an estimate of cerebral neural density of 23
million neurons per cm3, which we assume to be uniform. This density can be
used to estimate the number of neurons (and hence micro- and macrocolumns)
in a functionally relevant part of the brain.

For the semantic category decoding task we take the fusiform gyri (left and
right, part of Brodmann area 37), which have a grey matter volume of approxi-
mately 20cm3 [37]. These areas are involved in high level processing of visual cat-
egories (including distinguishing between pictures of living vs non-living things),
and which have been shown to have a similar discriminative activity in linguistic
tasks (with word stimuli), even in congenitally blind participants who have no
visual experience [39].

For the syntactic task, we consider Broca’s area, which is generally agreed
to be central to processing linguistic structures [40]. Here we take this to cover
the pars opercularis and pars triangularis (Brodmann areas 44 and 45) of the
left inferior frontal gyrus, with grey-matter volume of 5cm3 [41].

5 Experimental Investigation

5.1 Experimental Set-up

Classification Tasks Two classification tasks have been designed in the context
of compositional distributional semantics processing.



The first one aims at distinguishing between the different syntactic relations
among the concepts being composed. We considered three syntactic relations:
noun-noun (NN), adjective-noun (JN) and verb-object (VN). As specified in Sec-
tion 3.1, the three classes of compositions are performed by means of different
pairs of matrices A and B. The data set included 100 term pairs for each class,
selected at random from the set of terms whose distributional vectors were pro-
duced. The set was split into a 70% training set and a 30% testing set, uniformly
distributed among the three classes. For this experiment, the classifiers were used
in the context of a multi-class classification.

In the second experiment, only the JN syntactic relation was considered, but
the adjective-noun pairs were chosen among two different semantic domains.
The domains are those of animals versus objects. Aggressive anteater and shy
reindeer are examples of the animals class, while elegant dress and modern pot
are examples of the objects class. In this case, the experiment tried to relate the
composition process to a semantic domain rather than to a syntactic relation.
While this task could have been performed on nouns only, we still used noun-
adjective pairs to work in the same setting of the first experiment and of the
general model presented in the paper. The data set included 123 pairs for each
class, and was again split into uniformly distributed 70% training set and a 30%
testing set.

Feature extraction from activation images For learning and applying a
classifier, we need to extract specific features from images generated using the
activation matrices ∆(u,v). We then used two major classes of features: chro-
matic and energetic. Chromaticity features express the color properties of the
image. They determine, in particular, a n-dimensional vector representation of
the 2D chromaticity histograms. Since chromaticity is invariant against changes
in the illuminant color, the intensity information can also be evaluated using
simple color histograms, one for each color component R, G and B and the
luminance L. Energy features emphasize the background properties and their
composition. They are extracted by generating a texture-energy image, and cal-
culating the energy images for the three color channels R, G and B. A more
detailed discussion of the theoretical and methodological aspects behind each
feature set are presented in [42].

Classifier learners For finally building the classifiers of the “cognitive task”
that the machine is performing, we used three alternative machine learning mod-
els. This is useful to see whether or not results are confirmed for any kind of
classification method. We then used: a decision tree based learner [43], a simple
Naive Bayes classifier (for more information see [44]), and, finally, an instance
based learner (IBk) [45]. These machine learning methods have been used in the
context of Weka [46].

The three models are different. Decision tree learners capture and select
the best features for doing the classification. Naive Bayes learners instead use a
simple probabilistic model that considers all the features to be independent. The



instance based learner defines a distance in the feature space, does not make any
abstraction of the samples, and classifies new instances according to the distance
of these new elements with respect to training samples. While the first model
makes a sort of feature selection, the second and the third use all the features
for taking the final decision.

Distributional Vector Extraction Finally, we describe how the distributional
vectors were obtained for all experiments of this paper. Raw frequency distri-
butional vectors were obtained from the UKWaC British English web corpus5.
We considered as contextual window the sentence in which each target word or
linguistic unit occurs. Features are contextual words and the weighting scheme
is term frequency times inverse document frequency (tf × idf). We applied a
crude feature selection using tf × idf and keeping the first 10.000 dimensions.
The resulting distributional vectors constitute a high dimensional vector space
model. An SVD reduction with k = 250 was then applied to the vector space to
build our final distributional vector set.

Learning of the Compositional Matrices For learning the compositional
matrices A and B, we used the methodology described in [9]. As we operated in
English, we used the definitions in WordNet [47] to extract training instances for
the dictionary-based method. We extracted bigram training instances that follow
three syntactic structures, i.e. noun-noun (NN-WN), adjective-noun (JN-WN)
and verb-object (VN-WN). Respectively, we used 1220, 6131, and 1317 triples
to learn different A and B matrices for NN , JN , and V N . For the details of
the methodology, refer to [9].

Dimension of the CDS matrices The CDS process is represented by an
activation matrix of 500x250 decimal values (in double format, i.e. 8 bytes each).
This leads to a byte matrix of size 4000x250, for a total of 1000000 bytes (∼1
MB). Looking at Table 1, the modeled process has an order of magnitude similar
to what we would get by observing the Broca’s area or the fusiform gyri at the
level of the minicolumns. Applying a blurring factor ∼10 to the resulting images
can simulate the observation at the level of the macrocolumns.

5.2 Results and Analysis

Tables 2 and 3 report the results of the experiments. Both are organized in the
same way. The first column reports the different blurring levels we experimented
on. The second and third columns give an estimate of the corresponding level of
blurring that would arise by observing the brain at the levels of minicolumns and
macrocolumns respectively. The estimates are based on the orders of magnitude
reported in table 1 for the sizes of the brain areas. The last three columns report
the results of the classification task obtained by the three considered classifiers.

5 http://trac.sketchengine.co.uk/wiki/Corpora/UKWaC



RAM Minicolumns Macrocolumns
blurring factor blurring factor blurring factor Decision Tree Naive Bayes IBk

1 1 - 96.67% 98.89% 98.89%
2 2 - 95.56% 98.89% 96.67%
4 4 - 96.67% 98.89% 96.67%
10 10 1 93.33% 98.89% 92.22%
100 100 10 88.89% 92.22% 94.44%

Table 2. Test 1: classify JN vs NN vs VN

The results of the first experiment are reported in Table 2. The accuracies
scored by all the classifiers are very high, even though the task requires a multi-
class classification. This comes from the fact that in this experiment both the
inactive process (matrices A and B) and the input stimuli (vectors u and v) are
different. The introduction of blurring factors has an impact on the results, but
still allows for high accuracies.

RAM Minicolumns Macrocolumns
blurring factor blurring factor blurring factor Decision Tree Naive Bayes IBk

1 1 - 59,46% 75,68% 54,05%
2 2 - 63,51% 70,27% 64,86%
4 4 - 62,16% 70,27% 63,51%
10 10 1 60,81% 66,22% 52,70%
100 100 10 51,35% 52,70% 54,05%

Table 3. Test 2: classify animals vs objects

The results of the second experiment are reported in Table 3. In this case
the accuracies are much lower, especially considering that this task requires a
binary classification. The introduction of blurring factors has different impacts,
depending on the considered classifier. The Naive Bayes classifier is the one that
scores higher accuracies, but its performances degrade rapidly when introducing
higher blurring levels. The other two classifiers, instead, score lower accuracies,
but are less affected by the introduction of blurring factors. In fact, they seem
to benefit from a slight blurring.

Notice that the activation matrices in themselves appear to contain enough
information to perform a correct classification. In fact, the same experiment run
using the explicit activation matrices as features yields an accuracy of 100% for
Naive Bayes and IBk, and 91.89% for Decision Trees.

These results are very encouraging, and we hope to build upon them in future
work. A priority will be to directly compare our simulations of decoding perfor-
mance with classification accuracies achieved for neuroimaging data recorded
during similar tasks. We also hope to examine the dimension of time (in which
EEG and MEG have an advantage over fMRI) and compare the effect of differ-
ent trade-offs of temporal and spatial resolution that neuroimaging technologies
provide.
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